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Abstract— In this paper we investigate collision detection and
avoidance in a vehicular network of full duplex (FD) operating
nodes. Each vehicle in this network senses the energy level of
the channel before and during its transmission. The measured
energy is compared against a dynamic threshold which is
preset based on the target detection probability, transmitter’s
power, sensing time and self-interference cancellation (SIC)
capability of the vehicles’ on board units (OBU). Probabilities
of detection and false alarm, detection threshold before and
during transmission, and effect of residual self interference
(SI) on these metrics have been formulated. It is shown that the
proposed scheme would experience a shorter collision duration.
Meanwhile, it also requires a minimum SIC capability for
acceptable operation, below which, system throughput would be
poor due to high false alarm probability. Numerical simulations
verify the accuracy of our analysis. They also illustrate that
the proposed model perform better than the fixed threshold
strategy. A trade-off between half duplex (HD) and FD has been
found and the scheme would be applicable even if SIC capability
of OBUs is relatively poor, with no need for complicated and
expensive devices for future vehicular communication.

Index Terms - full duplex, collision detection and avoidance,
vehicular communication.

I. INTRODUCTION

Over the past few years intelligent transportation systems
and smart driving have attracted the attention of auto makers
and academia towards introduction of vehicular communica-
tion systems. In such networks, information such as safety
messages are exchanged between vehicles (vehicle-to-vehicle
V2V) or between vehicles and any other object (vehicle-to-
everything V2X) to provide a better transportation system in
terms of safety, latency, and energy efficiency. Two different
V2X communication technologies are widely considered as
promising applicants for future vehicular networks. One of
them is dedicated short range communication (DSRC) [1],
which is also known as IEEE 802.11p (WAVE). While
the other is cellular-V2X communication (C-V2X) such
as release-15 published by 3GPP [2]. Many works have
compared performance of these two technologies such as [3].
However, which technology would be the better solution is
still an open question, since each of them has its own pros
and cons. This work is built upon DSRC. C-V2X will be
considered in our future work.

One of the main challenges based on IEEE 802.11 legacy
standard (especially ad hoc networks) is the access protocol
and prevention of data loss due to collision of concurrent
transmission of two or many nodes. In this standard, carrier
sense multiple access with collision avoidance (CSMA/CA)
protocol has been deployed to minimise the probability of
collision and data loss. However, this protocol will not elim-
inate such incidents and the condition becomes worse when

there are too many nodes in the network (dense networks)
[4]. This problem is more serious in vehicular networks
in which safety messages known as cooperative awareness
messages (CAMs) are broadcasted without acknowledgement
and loss of them may result in a higher risk of accidents.
Finding a way to eliminate the loss of data due to signal
collision in V2X networks is an important problem to be
solved.

Deploying full duplex technology in vehicular networks
seems a promising solution to this problem. FD technology
enables the nodes in a V2X network to sense the carrier while
they are transmitting at the same time over the same channel.
Thanks to recent advances in self-interference cancellation
(SIC) techniques, SI suppression as high as 110 dB could be
obtained under certain conditions [5]. Therefore, deploying
FD technology in legacy CSMA/CA protocol enables colli-
sion detection (CD) so that vehicles would be able to detect
probable collisions while broadcasting and go to backoff
process in an earlier phase.

In this work we have considered collision detection and
avoidance in V2X networks where the transmitting nodes
would sense the channel, in a FD manner, to detect any
probable concurrent transmissions. Sensing is carried out
through measuring the energy level of the channel, which
is a simple and widely-applied method. To the best of
our knowledge, we are among the first ones exploring this
method in vehicular networks. Other related works are either
not in the area of vehicular networks such as [6], [7], [8],
[9], [10], [11] and [12], or in vehicular communications but
assumed ideal energy detection such as [13] and [14]. Unlike
these works, we have assumed imperfect energy detection
and investigated the effect of threshold, transmit power, SIC
capability, sensing time, collision duration and throughput on
the network performance.

The remainder of the paper is structured as follows.
Section II describes the system model including assump-
tions of the analysis and important notations. Corresponding
mathematical analysis are demonstrated in Section III. On the
basis of the mathematical analysis, numerical simulations are
conducted and detailed in Section IV. Finally, the paper is
concluded in Section V with a brief description of our future
work.

II. SYSTEM MODEL AND NOTATIONS

We consider a vehicular ad hoc network (VANET) in
which vehicles broadcast CAMs periodically. All vehicles
are equipped with FD capability. Rayleigh fading channels
are assumed to be the channel model between vehicles. The
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noise component is assumed to be Gaussian, independent
and identically distributed (i.i.d.) with zero mean and unit
variance. Regarding the hidden node problem, the proposed
method is not focusing on eliminating it. However, the
effect of the hidden node problem could be weakened by
setting up a wider sensing range such as double of the
transmission range. This could be done by adjusting the
thresholds formulated in section III. Since this is not the
focus of this work, the transmit power level of all vehicles
would be set to the same and fixed value based on the
required coverage area of the vehicular network, and the
sensing range is considered to be equal to the transmission
range.

In our model, energy detection is the core technology and
the level of the received energy depends on the distance
between the sensing vehicle and the potential concurrent
transmitting vehicle(s). To be conservative, we have devel-
oped our model to be able to detect the signal collision from
the farmost vehicle, as shown in Fig. 1. All vehicles are
able to transmit and sense simultaneously. Here vehicle A
is assumed to be a transmitting and sensing vehicle, vehicle
B and C are probable concurrent transmitting vehicles. It is
obvious that A can easily detect the transmission of B if B
is also broadcasting since B is close to A, and the measured
SNR of B at A is relatively high. However, C is far away
from A. If C is competing with A for broadcasting, the diffi-
culty of detecting its transmission would be much higher than
detecting B. So, we set our thresholds to satisfy the detection
of signals sent by C (farmost vehicle). Certain requirements
for the received SNR, sensing time and SIC capability are
found, which will be discussed in later sections. Furthermore,
our method performs even better when multiple CAMs are
competing for broadcasting at the same time, because the
energy level of the received signal would be much higher and
the colliding signal is much easier to be accurately detected,
comparing to the case where there is only one concurrent
broadcasting vehicle.

Fig. 1. Demonstration of the signal detection between vehicles

The system works as follows, whenever a vehicle would
like to broadcast a CAM, it first probes the medium to
measure the energy level of the channel. If the measured
energy is less than the threshold εth0 which is derived from
the theoretical formulation in Section III, the vehicle knows
the channel is free for broadcasting; if the sensed energy is
greater than the threshold εth0

, the vehicle knows there is
another or even more vehicles occupying the channel and
will not broadcast until the channel is free. Sensing process

continues during the broadcasting period in a FD manner.
The measured energy would be compared to an elevated
threshold εth1 which is dependent on the amount of residual
SI after cancellation. If the measured energy is higher than
this elevated threshold εth1

, the vehicle knows its transmis-
sion is in collision with another vehicle(s) transmitting at
the same time. Otherwise, the vehicle itself is regarded as
the only one using the channel in the network.

TABLE I
IMPORTANT NOTATIONS

Parameters Notes
N number of samples

(maximum integer that is smaller than or equal to τ · fs)
r[n] the received signal at a FD node,

where n = 1, 2, ..., N
τ sensing time
fs sampling frequency
w[n] noise signal with mean zero and variance σ2

w

si[n] SI signal with mean zero and variance σ2
i

s[n] transmit signal from a FD node
with mean zero and variance σ2

s
η SIC factor
E|.| Expectation operator
σ2
w variance of w[n] (σ2

w = E|w[n]|2)
σ2
i variance of si[n] (σ2

i = E|si[n]|2)
σ2
s variance of s[n] (σ2

s = E|s[n]|2)
E energy detection test statistic

Υ1 measured SNR of the node itself (Υ1 =
σ2
i

σ2
w

)

Υ2 measured SNR of other transmitting node (Υ2 =
σ2
s

σ2
w

)

εth0
first threshold

εth1
second threshold

Hi hypothesis i where i = 0, 1, 2, 3
Pf,bt probability of false alarm before transmission
Pf,dt probability of false alarm during transmission
Pd,bt probability of detection before transmission
Pd,dt probability of detection during transmission
Q(.) Q function operation
pi(x) PDF of E under hypothesis Hi
µi mean value of pi(x)
σ2
i variance of pi(x)

However, the aforementioned detection is not perfect. All
decisions are made with certain probabilities. Detection prob-
ability is defined as the probability that a vehicle successfully
detect the presence of an event (an ongoing transmission or
a collision) when the event actually exists, and false alarm
probability is defined as the the probability that a vehicle
falsely declare the presence of an event when the event does
not exist. In order to have a high probability of detection,
both thresholds (εth0

, εth1
) should be set to a low value.

However, this will result in a high false alarm probability.
In other words, we are missing opportunities to transmit. In
this paper, we focus on keeping the detection probability to
a high value while attempting to find the requirements for an
acceptable probability of false alarm in terms of transmission
power, sensing duration and SIC capability. In this paper
we just focus on detecting collisions of signals, and further
actions to be followed when collision or false alarm occurs
will be left to a MAC layer scheduling protocol considered
in our future work.

In order to make the mathematical formulations clear, we



list the important notations in Table. I. Specifically, η refers
to SIC factor which is the percentage of residual SI after SIC
and it varies between 0 and 1. If η = 0, it means that SIC
is perfect and there is no residual SI.

III. MATHEMATICAL ANALYSIS

From now on when we refer to transmitting vehicle we
mean the vehicle which is or going to transmit and sense the
channel, and colliding vehicle(s) means that the vehicle(s)
that are causing collision due to concurrent transmission.

We have four different hypotheses for different transmis-
sion scenarios. Hypothesis H0 is defined as when there is
no vehicles broadcasting; H1 is defined as when there is
an ongoing transmission from colliding vehicle(s); H2 is
defined as when the transmitting vehicle is the only vehicle
occupying the channel and H3 is defined as when there are
at least 2 vehicles competing for broadcasting.

So the received signal at a FD-enabled vehicle would be

r[n] =


w[n]; H0

s[n] + w[n]; H1√
ηsi[n] + w[n]; H2√
ηsi[n] + s[n] + w[n]; H3

(1)

The energy detection test statistic is given by

E = 1
N ·

∑N
n=1 |r[n]|2 (2)

• Under H0:
E is a random variable (RV) whose probability density
function (PDF) p0(x) follows a Chi-square distribution
for the complex-valued case, therefore, probability of
false alarm can be expressed as [6]

Pf,bt(FD) = Q((
εth0

σ2
w
− 1) ·

√
N) (3)

• Under H1:
Probability of detection under this hypothesis is given
by [6]

Pd,bt(FD) = Q((
εth0

σ2
w
−Υ2 − 1) ·

√
N

2Υ2+1 ) (4)

• Under H2:
Similar to H1, probability of false alarm is derived from

Pf,dt(FD) = Pr{E > εth1 |H2} =
∫∞
εth0

p2(x)dx

(5)
According to Central Limit Theorem (CLT), for a
large N, p2(x) can be approximated by a Gaussian
distribution with mean µ2 = η2σ2

i + σ2
w and variance

σ2
2 = 1

N · [η
4σ4
i + 4σ2

w − (η2σ2
i − σ2

w)2]
Then PDF of the measured energy would be

p2(x) = 1√
2πσ2

2

· exp(− (x−µ2)2

2σ2
2

) (6)

Therefore, probability of false alarm is given by

Pf,dt(FD) =
∫∞
εth1

1√
2π
· 1√

1
N ·(2η2σ2

i σ
2
w+σ4

w)
·

exp(− [x−(η2σ2
i+σ2

w)]2

2[ 1
N ·(2η2σ2

i σ
2
w+σ2

w)]
)dx

(7)

After simplification, we can represent Pf,dt(FD) in
terms of the Q function as

Pf,dt(FD) = Q((
εth1

σ2
w
− η2Υ1 − 1) ·

√
N

2η2Υ1+1 )

(8)
• Under H3:

Similar to the previous hypotheses, probability of de-
tection during transmission is given by

Pd,dt(FD) = Pr{E > εth1
|H3} =

∫∞
εth1

p3(x)dx

(9)
p3(x) can be approximated by a Gaussian distribution
with mean µ3 = σ2

s + η2σ2
i + σ2

w and variance σ2
3 =

1
N · (2η

2σ2
i σ

2
w + 2η2σ2

i σ
2
s + 2σ2

sσ
2
w + σ4

w)
We use the same method to derive Pd,dt(FD) as

Pd,dt(FD) = Q((
εth1

σ2
w
−Υ2 − η2Υ1 − 1)

·
√

N
2η2Υ1+2η2Υ1Υ2+2Υ2+1 )

(10)

• Thresholds εth0 & εth1 :
Threshold εth0 is found from (4) by calculating the
inverse Q function, which is given by

εth0
= (

(Q−1(Pd,bt(FD))√
N

2Υ2+1

+ Υ2 + 1) · σ2
w (11)

Threshold εth1
is defined from (9) as

εth1
= (

(Q−1(Pd,dt(FD))√
N

2η2Υ1+2η2Υ1Υ2+2Υ2+1

+ Υ2 + η2Υ1 + 1) · σ2
w

(12)
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Fig. 2. relationship between threshold εth0
and threshold εth1

Assume the target probabilities of detection before and
during transmission are identical, then the relationship
between the two thresholds can be derived as

εth1 =

εth0
σ2
w
−Υ2−1√
2Υ2+1

2η2Υ1+2η2Υ1Υ2+2Υ2+1

+ η2Υ1 + Υ2 + 1

(13)
This relationship is depicted in Fig. 2. It is obvious that
the higher the residual SI is, the higher the thresholds
would be, and the bigger the difference between the two
thresholds would be.

• SIC factor η:
SIC capability plays an important role in detecting
collisions during transmission. With a huge amount of
residual SI, both probabilities become worse. In order to



see the impact of residual SI, we derive the SIC factor
η in terms of the false alarm probability as

η =
2N(

εth1
σ2
w
−0.5)+2[Q−1(Pf,dt(FD))]2−N

2NΥ1

+

√
8(
εth1
σ2
w
−0.5)N [Q−1(Pf,dt(FD))]2+4[Q−1(Pf,dt(FD))]4

2NΥ1

(14)
(15) has solutions only when
∆ =

8yN [Q−1(Pf,dt(FD))]2+4[Q−1(Pf,dt(FD))]4

N2 > 0,
where y =

εth1

σ2
w
− 0.5.

• Average probability of false alarm:
SIC factor is not always fixed, it may fluctuate due to the
imperfection of the hardware or channel variations. For
a given SIC factor η0 with ±m% fluctuation distributed
uniformly, the average probability of false alarm can be
calculated by

Pf,dt(FD) =
∫ η0+m

η0−m Q((
εth1

σ2
w
− η2

0Υ1 − 1)·√
N

2η2
0Υ1+1

) · PDF (η)dη
(15)

According to [15], the Q function could be approxi-
mated as Q(x) ≈ 1

2e
− x2

2 . Thus, the average probability
of false alarm is derived as

Pf,dt(FD) = 1
4m

∫
e−

(y−z)2N
4z · 1

Υ1
dz (16)

where y =
εth1

σ2
w
−0.5 and z = η2

0Υ1 +0.5. This integral
cannot be solved and the closed-form expression cannot
be found. However, we can approximate the average
probability of false alarm according to the simulation
result shown in Fig. 3 as an example. We found that
regardless of target probability, initial SIC factor and
SIC fluctuation, the average probability of false alarm
is always the average of Pf for η0 +m and η0 −m.
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Thus the average probability of false alarm is expressed
as

Pf,dt(FD) ≈
Q((

εth1
σ2
w
−(η0+m)2Υ1−1)

√
N

2(η0+m)2Υ1+1
)

2

+
Q((

εth1
σ2
w
−(η0−m)2Υ1−1)

√
N

2(η0+m)2Υ1+1
)

2
(17)

IV. SIMULATION RESULTS

Following the mathematical analysis, we now evaluate our
proposed method through simulations. Relevant simulation
parameters are shown in Table II.

TABLE II
PARAMETERS AND ASSUMPTIONS

Parameters Values
target Pd,bt(FD) & Pd,dt(FD) 90% & 50%
modulation scheme BPSK, QPSK
measured SNR from SI signal before SIC (SNR1) +10 dB
measured SNR from another vehicle (SNR2) (-20)→0 dB
Residual SI 0%-40%
vehicle density 0-200 vehicles/km

Fig.4 shows a good match between the simulated
Pd,dt(FD) and Pf,dt(FD) and their theoretical values,
which verifies our mathematical analysis to be correct and
accurate. When residual SI becomes stronger, in order to
achieve the same detection probability, thresholds should be
set to a higher value because more energy (from SI signal)
is received. Moreover, a small variation of the threshold εth1

would result in a huge deviation in the probabilities even
when SIC is perfect. For example, if the threshold changes
from 1 dB to 1.025 dB, such a small change would lead to
45% drift of the probabilities of detection and false alarm.
This result highlights the calculation of the threshold is of
great importance and should be done as accurate as possible.
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Fig. 4. Probabilities of detection Pd,dt(FD) and false alarm Pf,dt(FD)
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under different SIC assumptions

Fig. 5 and Fig. 6 illustrate the significant impact of
transmit power and the difference between two threshold
setting strategies. One is our proposed method where the
threshold is dynamically changing, while the other is the
fixed threshold method. For the fixed threshold strategy,
along with the rise of the transmit power, probability of
detection increases while having a high and unacceptable
probability of false alarm. Our proposed method would have
a lower detection probability which is still in the acceptable
range. But because the threshold is increasing too with the
rise of the measured SNR, false alarm probability would
decrease at the same time. Compared to the fixed threshold
method, although our proposed method will sacrifice some
detection probability by dynamically changing the threshold,
a much better false alarm probability would be rewarded,



while keeping the probability of detection in an acceptable
range.
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Fig. 7 shows the effect of residual SI on the probabilities.
Firstly, target probability of detection is achievable regardless
of SIC factor by using the dynamic threshold. However, when
SIC factor η increases, false alarm probability increases too
since more energy is received. In order to achieve detection
probability to be at least 90% and false alarm probability to
be at most 10%, our model would have acceptable perfor-
mance when SIC factor is less than 15%. In other words, our
system does not operate only when SIC is extremely well,
it works quite acceptable when SIC is relatively poor.

Fig. 8 highlights the damage of SIC fluctuation. When a
10% random SIC fluctuation is considered, both probabilities
of detection and false alarm become worse compared to the
case where such a fluctuation does not considered. Thus, a
space for SIC fluctuation should be left when deploying the
scheme in future V2X systems.

Fig. 9 shows the impact of the sensing time on the
precision of detection. By setting the thresholds properly,
the system can achieve the target detection performance.
Meanwhile, the longer the sensing time is, the lower chance
the system would wrongly alarm an impending collision.
This is because we are measuring and averaging the received
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energy over a longer period of time, which gives a more
accurate detection result. Another way to reduce the false
alarm probability is to increase the sampling frequency, since
N = τ · fs. However, the accuracy of the detection perfor-
mance cannot be improved by only increasing fs. When the
number of samples taken of a signal is large enough, more
samples would not give a more accurate measured energy
level.

Fig. 10 shows the collision duration over 10 seconds
versus the average vehicle density. Vehicles are assumed to
be placed on a line according to Poisson distribution, which
is the same as the assumption in [13]. It is clear that vehicles
with CD capability experience a shorter period of collision
compared to the vehicles which operate in HD mode. The
difference becomes larger when the number of vehicles
increases. In other words, FD technology helps vehicles to
avoid impending collisions by aborting transmissions at an
earlier stage, while vehicles without CD capability would
experience collision for an entire packet duration.

Fig. 11 demonstrates the drawback of enabling CD capa-
bility. While detecting probable collisions at an early stage,
we are sacrificing throughput compared to HD mode, espe-
cially when probability of false alarm is high. However, since
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Fig. 10. Collision duration over 10 seconds VS average vehicle density

probability of false alarm can be reduced while keeping the
probability of detection in an acceptable range, throughput
could be improved. Thus, a trade-off between HD and FD
modes is found. When the number of vehicles in a VANET
is relatively low, HD mode is preferred. FD mode is more
suitable for dense VANETs.

V. CONCLUSIONS

In this paper we studied full-duplex collision detection
and avoidance through energy detection method in V2X
networks. By deploying the proposed model, a vehicle
can detect and avoid collisions with certain probabilities.
Two thresholds which are dynamically changing have been
formulated. Simulation results have shown that our model
does not require near perfect SIC, it works well even
when SIC is poor. On the basis of these results, detecting
and avoiding collisions in V2X communication networks
could be better, more suitable MAC layer protocol based
on original CSMA/CA could be proposed to provide better
communication environment, which will also be our future
work.
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