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Abstract

This paper proposes a Deep Learning approach to radio signal de-noising. Being data-driven, it allows de-noising signals
(corresponding to distinct protocols) without requiring explicit use of expert knowledge: in this way it grants higher flexibility.
The core component of the Artificial Neural Network architecture used in this work is a Convolutional De-noising AutoEncoder.
We report about the performance of the system in spectrogram-based denoising of the preamble of protocols from the IEEE
802.11 family, studied using simulation data. This approach can be used within a machine learning pipeline: the denoised data
can be fed to a protocol classifier. A further perspective advantage of using the AutoEncoders in such a pipeline is that they can
be co-trained with the downstream classifier (the protocol detector), to optimize its accuracy.

I. INTRODUCTION

Driven by spectrum scarcity, emerging radio standards are envisioned to involve spectrum sharing and coexistence
heterogeneous radio-access technologies. Shared-spectrum access can significantly improve capacity and spectrum utiliz:
However, it gives rise to new operational challenges, given the increased complexity of the radio-access environment ¢
susceptibility to interference-induced disruption. Intelligent access monitoring and orchestration is therefore essential to ens
meeting the objectives of fair quality of service and regulatory compliance.

However, the adoption of intelligent techniques has to face some key challenges. Among the most important are the followir
Firstly, the performance of the algorithms is required to generalize across radio-access scenarios, which vary greatly and 1
involve severe signal degradation (due to physical factors and interference). Secondly, the adopted solutions must be e
applicable across multiple radio standards: this implies factoring out standard-specific expert-engineered features.

Machine learning (ML) methods, and, more specifically, a set of recently developed technigues, known as Deep Learni
(DL) [1], bear the potential of advancing the intelligence of radio devices, providing data-driven flexible solutions, withou
relying heavily on expert knowledge. Among the problems that the ML can target are signal denoising, protocol detection, a
classification; further applications might include device or user profiling and classification, source counting.

In this paper, we address the problem of signal denoising: a deep learning model is applied to radio signals to imprc
the quality of received signals. By noise, we mean not only classic standard perturbations such as white noise etc., but
ensemble of effects of the channel, which distort the transmitted signal before it is received at the destination antenna.

Specifically, we propose a method to unfold #pectrogranof the transmitted signal from such noise by means of a type of
Artificial Neural Network known as Convolutional Denoising AutoEncoders (CDAE, defined in the next Section). Being suct
a spectrogram equivalent to a 2D image, convolutional techniques turn out to be very effective. We demonstrate the mett
using two WLAN protocols: IEEE802.11n and IEEE 802.11a, and focus on the problem of denoising the protocol preambl
In this preliminary work, we use simulated data.

This approach to denoising based on CDAE allows subsequent use of a protocol classifier algorithm based on the deno
data. The classifier used downstream can be, for example, a standard or a convolutional multi-layer perceptron. A perspec
advantage of using CDAE is that they can be co-trained with such a downstream classifier, to optimize its accuracy. Natura
the two components can be trained separately if, as it happens with our case studies, the denoising is very effective. Ind
we achieve a reconstruction accuracy (defined-aoss metrics value) of the order 86%. This loss is referred to the whole
2D spectrogram image: using only selected informative regions, the accuracy would be even higher.

It is important to highlight that, this work does not aim at comparing to the traditional well-established techniques for signe
denoising. Most of those techniques are driven by domain expert knowledge, whereas the method we discuss is comple
data-driven, thus it allows for high flexibility. Once the data from the transmitter and the corresponding data from the receiv
are available, the proposed system can be trained to denoise the signal effectively.

The present paper is structured as follows: Section Il recalls the definitions of ML, DL, and the related work of ML
applications to radio signal processing. In section Ill, Denoising AutoEncoders are described. Data sets and analysis tools
discussed in Section IV. The architecture of the proposed Denoising AutoEncoders, loss function, and optimization algorithi
are discussed in Section V. The experimental configurations and results are discussed in Section VI; conclusions are dr:
and in Section VII.



Il. DEFINITIONS AND RELATED WORK
A. Machine Learning

When describing ML tasks and models/algorithms — where a task can be realized by using more models/algorithms — it
customary to organize them into few main classes, the most widely represented being those of supervised, unsupervised
reinforcement learning algorithms. For instance, in the supervised machine learning task known as classification, a labe
dataset is used to learn a predictor/classifier, later to be used to assign labels to unlabeled data. The performance of .
model can be quantified using a test dataset endowed with labels, not used during the training: this dataset allows to estin
to which extent the learned model is able to generalize to unseen data [2]. An analogous task is regression: there the mi
learns to predict a numerical label for each input. Among the most popular supervised models are K-Nearest Neight
(KNNSs) classifiers [3], Support Vector Machines (SVMs) [4], and Naive Bayesian classifiers [5]. A special role in the recen
developments has been taken by Artificial Neural Network algorithms (ANNs), whose most commonly used representati
is the Multi-Layer Perceptron (MLP). MLPs learn from examples a certain set of input-output mappings by optimizing the
weights that link successive layers of artificial neurons: MLPs are used both for classification and regression, and trained
the back-propagation (BP) algorithm [6].

In unsupervised ML models, the classes of training dataset are not labeled (there are no correct answers to guide the trai
process). Among unsupervised algorithms are the clustering algorithms, that group the trained data into clusters (and poss
sub-clusters): elements within the same clusters are assumed to be similar in some sense, more than elements of different clu
A common clustering algorithm is the k-means algorithm [7]. Another example of unsupervised ML is represented by techniqu
for dimensionality reduction, where a new representation is learned for the dataset [8] (e.g. in this representation redundan
irrelevant information is removed): the new representation can be used to feed a classifier, improving its performance: comn
models of this type are Independent Component Analysis (ICA) [9], and Principal Component Analysis (PCA) [10].

In Reinforcement Learning (RL) [11] the model learns not based on labels but based on rewards, e.g. positive rewards
provided when the algorithm is taking the right direction. Examples of Reinforcement Learning Algorithms are the Genets
Algorithms (GA), Ant Colony (ACO) algorithms and Q-learning.

B. Deep Learning: Convolutional AutoEncoders

The DL methods represent a part of ML developed in the latest years, that allows the training of larger and more compl
models, thus facing more challenging tasks, using reasonable computational time and resources.

The DL techniques related to the present work are Convolutional Neural Networks (CNNs) architectures and AutoEncods
(AEs): those two techniques are used together to create Convolutional AutoEncoders (CNN-AE).

Differently from standard fully connected Multi-layer Perceptrons, where in principle every neuron (of non-output layers
feeds all the neurons of the next layer, in CNNs there is a limited number of connections from one layer to another, and t
same pattern of weights is sought for a layer to the next; this, together with the use of special "pooling” layers (down-samplil
layers) reduces considerably the number of parameters of the network. CNNs are particularly effective in image process
because they can exploit the local coherence/correlation of the image areas.

AutoEncoders are ANNs characterized by a special architecture and a peculiar training procedure: they are used to fin
new representation, aencoding of the data that is endowed by desired characteristics such as extra compactness, or ext
sparseness, depending on the cases. Their structure is a multilayered architecture, but they are trained by means of a
supervised algorithm: they do not use labels associated with input data, but try to replicate every input example on the outj
i.e. use the input record as its own (complex) label. The architecture consists of at least three layers: an input layer, a hidi
layer, and an output layer. The encoding layer is smaller than the input if one looks for a more compact representation, lar
if one looks for a sparser representation. AEs are trained typically using the BP algorithm: after convergence, the weights
frozen and the layer(s) beyond the central (encoding) one are discarded. What is left is a function that maps the input int
different representation: when presenting the data in this new representation to a classifier learning algorithm (e.g. an ordin
MLP), one typically obtains improvements in the classification performance.

By stacking successively trained AEs (the encoding found by one becomes the input of the next), one can build very de
models, optimizing a moderate number of parameters at a time (a moderate set of parameters for each layer involved).

AEs can be used even without the need of feeding a downstream classifier: finding a better (in some sense) represent:
has a value by itself: for instance Denoising AEs (described in the next section) are trained so as to find a representation wt
the signal is unfolded from noise.

CNN-AEs merge the advantages of the AE representation learning process with the reduced complexity of the CNN paradic
In CNN-AEs the down-sampling layers in the initial encoding part of the network are paralleled by up-sampling layers in th
decoding part of the network.

When trained for yielding a denoised representation the CNN-AE is called Convolutional De-noising AutoEncoder (CDAE



C. Machine Learning in Radio Signal Denoising

ML models have been applied in the radio signals area for signal classification, device classification, spectrum detecti
noise estimation, radio optimization, and anomaly detection and other problems [12]. Hierarchical-SVMs (H-SVMs) hav
been applied for channel noise estimation and location estimation to classify mobile nodes [13]. H-SVMs were implement
for Channel selection in cognitive radio networks for users classification [14]. Also, SVMs have been designed for anomg
detection in sensor networks [15].

Q-learning has been applied for channel selection in Cognitive Radio to optimize the spectrum [16]. Bayesian learning
been used in spectrum sensing for spectrum optimization in Cognitive Radio [17]. Moreover, it has been employed for us
detection in Cellular network [18] and other Cognitive Radio applications [19]. CNNs have been proposed for spectrum sensi
and modulation classification in Cognitive Radio for spectrum classification [20].

There are a few works who considered DL for modulation classification in cognitive radio for users classification [21], [22
or for applying DL for indoor localization for Wi-Fi signals to identify antenna’s locations [23]. AE has been applied in digital
receiver design including Multiple Input Multiple Output (MIMO) detection to replace end-to-end receivers by using a dee
learning architecture [24]. Also, AE has been proposed within as new Physical Layer design for communication systems ba
on ANNSs [25].

The presence of noise affects the quality of the received signal. Several researchers designed ML models to improve
radio signal quality. In [13], H-SVMs have been proposed to estimate the noise level for an Additive White Gaussian Nois
(AWGN) channel in MIMO wireless network. In [26], the CNN classifier is proposed for modulation classification in presence
of different Signal-to-Noise Ratios (SNRs). In [27], CNNs are used for spectral identification over different SNRs.

To the best of our knowledge, we are not aware of attempts to improve the signal quality using ML betatelsignal
identification, under fading channel conditions. In our approach, DL is explored for improving the received signal quality usin
CDAEs.

In this paper, we apply the CNN-AEs to denoise the radio signal from the fading channel effects. This process of denoisi
is data-driven, thus carried on without resorting to domain experts knowledge.

IIl. DE-NOISING AUTOENCODERS

Here we briefly describe the Denoising AutoEncoders [28], which are used to reconstruct data from a corrupted input.
contrast to standard AEs — which receive in input an example and is trained to reconstruct the input as faithfully as possi
—, the Denoising AE are given in input a noisy example and forced to reconstruct a denoised version. To do so one needs t
the non-noisy and the noisy version of each example: those can be obtained for instance from a simulation environment
by corrupting artificially non-noisy data.

AutoEncoders [28] consists of an encoder which represents the mapginf the input vectorX into hidden representation
Y.

y = fo(z) = s(Wz +0b) @

wheres is nonlinear function such as Rectified Linear Unit (ReLU) or a sigmoid, witepresents the parametés= (1, b).
W is the weight matrix and is the offset vector.
The y representation is then decoded to yield the reconstruetiavhich is the same size as the input

z=go(y) =s(W'y+1) 2

The parameter$l/, W', b, andb’ are optimized by minimizing a suitable loss function. For binary data whez€0, 1]¢, the
loss function typically used is the following mutual information:

- Z[ffjlog(zj) + (1 —x5)log(1 — 25)] 3)

De-noising AutoEncoders (DAES) follow the general concept of AutoEncoder but with the addition ofrntoste input
x, to obtain a noisy input = x + n. The reconstruction of is however compared to the clear signain the loss function.
The loss is minimized by means of the stochastic gradient descent algorithm [29].

In our approach for de-noising the preamble, the Convolutional De-noising AutoEncoder (CDAE) is applied, i.e. the laye
are convolutional layers like in a CNN: the parametB8fsand b of a patch of the image are shared among all the locations
and enforce spatial locality. In general, CDAEs perform better than classical DAEs in image processing [29].
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Fig. 1. Spectrograms for radio signals for IEEE 802.11a (left) and IEEE 802.11n (right). Top: transmitted signals (Tx). Bottom: received signals (Rx) und
the hypothesis of the NLOS fading channel described in Table Il (standard model E from reference [33]).

IV. SIMULATION DATA

Several experiments have been performed in various scenarios, with the two protocols IEEE 802.11a, and IEEE 802.11r
study the following performances:

« the performance of different CDAE models to de-noise various radio signals coming from one protocaol;

« the performance of different CDAE models to de-noise the received noisy signals for multiple protocols.

We investigated the denoising performance of the CDAEs by means of simulated data, by focusing on the reconstruction
the preamble of each protocol.

A. Simulation and analysis tools

We used mainly MATLAB for generating simulated data and the TensorFlow and Keras libraries (in Python) for building
the Deep Learning models.

Specifically used the MATLAB/SIMULINK suite to simulate the whole model of the physical layer of the IEEE wireless
local area network (WLAN). Specifically, the WLAN System Toolbox can be used to design, simulate, analyze, and te
various IEEE WLAN protocols such as IEEE 802.11b/a/g/n/j/p and 802.11ac/ad/ah standards: it allows the configuration
the physical layer waveform for each IEEE standard, it makes possible to design the transmitter, the channel model, and
receiver [30]. For example, we used thdanTGnChannecomponent to pass input signdl&: through an 802.11n (TGn)
multipath fading channel. Various parameters could be set up for a specific WLAN scenario: the samgle citannel
bandwidthcbw, large-scale fading effect, path loss and shadowing, delay profile, and the channel model.

Several tools have been used for building artificial neural networks. TensorFlow (TF) is a set of Python libraries to devels
deep neural networks [31]. We used the Keras libraries to control the TF back-end [32].

The simulation was carried on both under Windows 10 and Linux exploiting graphical processing units (GPUS).

B. Noise model used in the data

The data from the WLAN environment has been the primary source of the radio signals for this study: we focussed on t
IEEE 802.11 physical layer standards, for Wi-Fi signals operated in 2.4GHz and 5GHz range. Specifically, we generated



end-to-end radio signal environment for the following standards: IEEE 802.11a and IEEE 802.11n. The design parameters
each protocol (channel bandwidfBiV, carrier frequencyf., modulation scheme, channel model, number of transmitters and
receivers, etc.) are summarized in Table | [34]-[36].

TABLE |

WLAN STANDARDS
Standard Year Maximum Channel Frequency Modulation

Data Band- Band

rate width (GHz)
IEEE 2009 600 20MHz, 24 OFDM
802.11n Mbps 40MHz GHz, 5

with GHz

four

spatial

streams
IEE 1999 54Mbps  20MHz 5GHz OFDM
802.11a

In the practical radio spectrograms, the radio signals suffer from noise due to the No-Line of Sight (NLOS), multi-patt
intersymbol interference, Doppler effect, and fading effects. In our experiments, the radio signals are modeled by a Raylei
channel model and NLOS effects, where the distance between the trandiitied the receiveR,, is not less than 5 meters.
Several standard indoor channel models have been developed in [33]. In our research, we chose to study model E, correspor
to a typical large open space, indoor or outdoor, with large delay spread (Wi&eis delay spread), a highly dispersive
channel. Table Il details path delays and average path gains for Model E.

TABLE I
RAYLEIGH CHANNEL MODEL E

Path Delays [0 10 20 40 70 100 140 190 240 320 430

(nanoseconds) 560 710 880 1070 1280 151¥60]

Average  path [-4.9 5.1 5.2 -08 -1.3-1.9-0.3-1.2 -2.1

gains (dB) 0.0 -1.9 -2.8 -5.4 -7.3 -10.6 -13.4 -17.4 -
20.9]

C. The datasets

The dataset consisted in 1000 radio spectrogram images corresponding to as many preambles for each studied IEEE 8C
protocol.

1) SpectrogramsEach spectrogram represented the Short Time Fourier Transform (STFT) [37] of the raw time:&gries
corresponding to the signal of a preamble. More specifically, a spectrogram pictures theSS(FET) as a function of the
(discretized) timer and frequency. Each preamble was partitioned irg@82 time intervals, for each of whicb4 frequencies
were computed. Thus, each image consiste@iir 3782 gray-level pixels, where gray-level expressed the modifuér, w)|.

An example of such spectrograms is provided in Figure 1. One can notice the difference between the two transmitt
spectrograms and the received signal spectrograms, i.e. the severe degradation undergone by both protocol preambles, c
the channel.

2) Quantization: The spectrogram has very high dimensionality. To reduce it, the valigs,w)| have been quantized
and encoded with binary valués(r,w) as follows:

_ 1 1f|Sz| > <Sm(7—7w)>
by (T, w) = {0 if |Sz] < (Se(r,w)) 4)

where the averagé) is taken over the pixels of the spectrogram.
Examples of quantized spectrograms are shown in Fig. 2.
The experimental configurations for which the quantized spectrograms have been generated are shown in Section VI.

V. DENOISING WITH CDAE

The problem we address hereafter is the denoising the preamble spectrograms of a single radio protocol at a time. In o
words, we adopt the simplifying assumptions that, in the sensed area, only one protocol is used and only one transmitte
operational. Furthermore, we posit that we are able to identify the time interval in which lies the preamble and distinguis
it from the subsequent part of the frame. The latter simplifying assumption can be considered plausible if one postulates
presence of a suitable segmentation algorithm (such an algorithm is out of the scope of the present paper).



Fig. 2. Spectrograms for transmitted (top) and received (bottom) preambles for IEEE 802.11a (left) and IEEE802.11n (right).

Adopting a configuration in which we denoise spectrograms implicitly assumes that the radio signal has been previously
ceived and decoded into a time-domain signal representing the actual preamble and subsequently transformed into a spectro
by means of Short Time Fourier Transform.

A. Loss function and optimization algorithm

To de-noise the radio spectrograms, we used the CDAEs introduced in Section lll.

From the example of a spectrogram is shown in Figure 1, one can see that such a 2D signal presents regions of homogen
behavior: e.g. one can notice a horizontal central strip, consisting in vertical strips of low values, alternated to higher valu
The spectrogram can be considered a sort of picture, with consistent regions.

The reasons why we chose to experiment with convolutional versions of the AE are several, however, we counted on |
fact that the convolutional mechanisms are known to be effective in processing/learning images.

It is true that the special kind of image under study had rather unbalanced dimertions782 pixels per spectrogram
instance), but the internal coherence of different regions of the image suggested that the spectrogram could be dealt with alr
like an ordinary gray-scale image.

Among the main parameters to choose for setting up a CDAE are the loss function and the optimization algorithm for t
neurons’ link weights. As an evaluation metric for CDAE several loss functions can be used, such as cross-entropy and m
square error. In our model, we used binary cross entropy defined as follows [38]:

CE =Y P(x)log(Q(x)) + (1 — P(x))log(1 — Q(x)) ®)

where P(z) represents the target distribution a@dzx) the distribution obtained at the CDAE output.
The AutoEncoder is trained over the stochastic channel model at learning.0a1e[25]. The optimization we chose for
our model is based on a variant of Stochastic Gradient Descent (SGD), the Adaptive Gradient Descent (AGD) [39]. The m:
difference between SGD and AGD is that in the latter, the learning rate of the optimization weight gradient descent algorithm
not fixed, but depends on the training loss model. Fig. 3 shows, for comparison, the accuracy of training using SGD and AG
the latter converges faster, and has higher accuracy. Therefore, our CDAE is trained and optimized using AGD algorithms
Among the reasons why we have preferred AGD over SGD is the fact that in general AGD is know to work better fo
images.

B. Operation and architecture of the CDAE

The CDAE follows the standard approach of de-noising AutoEncoders with encoded and decoded convolution neural lay
but uses also some convolutional layers. Convolutional layers are known to preserve the spatial image distribution so that
corresponding networks perform better than non-convolutional neural networks in image processing [29].

Fig. 4 shows the operation of a CDAE network. The input consists in both noisy and non-noisy data: in our case, tt
noisy data are the spectrograms of the received signal, which was generated by propagating the clean transmitted signal ir
non-ideal channel. Those input spectrograms were processed by the encoder, which consists of multiple convolutional lay
and by the decoder: the output is compared to the spectrogram of the clean signal. By optimizing the loss function, the netw
finds a compressed representation which is to some extent denoised.

The architecture of CDAE we used is summarized in Table Ill. It encompasses a sequence of sixteen layers: an in|
layer, seven 2D convolutional layers for thacoder and eight 2D convolutional layers fdecoder The 2Dencoderincludes
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Fig. 4. Schematic view of the operation of a de-noising auto-encoder.

convolutional layers, usesctified linear unit (ReLU)ayers, adropout layer, and a 2Dmax-poolinglayer. TheReLU layer
computes element-wise the maximum between a value and a thresholdirdgwuit layer is used for better generalization
and to avoid overfitting. Thenax-poolingperforms a deterministic down-sampling operation to reduce the spatial dimensions
(width, height) of the convolutional layer.

The first hidden layer is a convolutional layer with 16 feature maps. Each feature map is connected to a different kern
Each kernel has siz& by 3 in each feature map. Theéecoderconvolutional layers includes ReLU layer, anup-sampling
layer, and adropoutlayer. Theup-samplinglayer is adapted to change the output of convolutional layers in the decoder to a
higher resolution that matches the original input size image.

VI. EXPERIMENTAL CONFIGURATIONS AND RESULTS
A. Studied Configurations

The WLAN environment for both IEEE 802.11a and IEEE 802.11n has been modeled as Single Input Single Output (SIS
consists of one transmittéfz, a channel model, and one receiver. The specification parameters for IEEE standards as
mentioned in section IV-B were followed. The channel has been modeled as a Rayleigh channel. Different levels of Sign
to-Noise-Ratio (SNR) were also introduced to study the robustness of the neural network performance. The simulation mo
included also the Doppler Effect.

For all transmitted and received packets for both IEEE standards, the signal was transformed into the correspond
spectrogram.

B. Results and Discussion

Overall, we generated0, 000 spectrogram images, a half for IEEE 802.11a and a half for IEEE 802.90%):was used
for the training andl0% for the test. Half of the training spectrograms were clean, half were noisy. Table IV summarizes thest
data.



TABLE Il
CDAE MODEL ARCHITECTURE

Layer Type OutpuShape
Input layer (None, 300, 641)
2D convolutional layer (Conv2D) (None, 300, 646)
Dropout layer (None, 300, 64,6)
MaxPooling (None, 150, 32.6)
Conv2D (None, 150, 3216)
MaxPooling (None, 75, 1616)
Conv2D (None, 75, 1616)
MaxPooling (output:compressed representation )  (None, 2568,
Conv2D (None, 25, 816)
Upsampling (None, 75, 16,6)
Conv2D (None, 75, 1616)
Upsampling (None, 150, 32,6)
Conv2D (None, 150, 3216)
Dropout (None, 150, 3216)
UpSampling (None, 300, 64,6)
Conv2D (None, 300, 641)
TABLE IV

SIZE OF THE DATASETS IN TERMS OF NUMBER OF IMAGB

Data Type Noisy Clean  Testing Training
Datasets Datasets Datasets Datasets

IEEE 802.11a 10000 10000 2000 18000

IEEE 802.11n 10000 10000 2000 18000

IEEE 802.11a 20000 20000 4000 36000

and

IEEE 802.11n

Fig. 5 shows a sample results of the denoising process. It is obvious that the developed CDAE is capable of performi
an effective denoise operation for the IEEE protocol preambles considered. This is due to the application of convolutior
layers as it preserves the spatial locality of the input image. Fig. 5 provides a blow-up of the original, noisy and denoist
spectrograms. One can see that visually meaningful features have been partially restored.

Fig. 5. An example of the de-noising of the IEEE 802.11n preamble. Left: a) spectrogram of the transmitted signal, b) spectrogram of the the receiv
signal, c) the denoised spectrogram. Right: the blow-up of a central region of the three spectrograms.

The overall accuracy of signal de-noising is assessed with a different type of metrics. Fig. 6 shows the behavior of t
training and testing accuracy for de-noising of radio spectrograms. The accuracy of de-nosing reached 86% after 2000 epo
The training was stopped at 2000 epochs because the gains around that number of epochs resulted to be negligible.
can observe that the training accuracy and testing accuracy follow the same overall curve, which suggests that there wa:
overfitting by the developed model.

VIl. CONCLUSION

We proposed a system for signal de-noising based on machine learning algorithms and demonstrate its effectiveness u
various WLAN protocols. The advantage of such systems is that they can perform such a task without relying on expe
knowledge: this potentially can provide high flexibility. The de-noising algorithm for radio protocols was developed using
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Convolutional De-noising AutoEncoder (CDAE). The results show that the system is capable of performing de-noising ft
radio protocol and of reconstructing the transmitted radio signals even in the presence of severe noise in the radio spectrogr:
The overall training accuracy is about 86%.

Although we demonstrated the approach for protocols of the IEEE 802.11 family, this approach could be generalized to

radio protocols: further studies are required to examine the challenges and the effectiveness of such generalization.

The current study was performed using simulation data; we plan to apply this approach to data sets of real radio signal

Among the assumptions of the current study was that only one radio source was active. Future investigations will consic
multiple concurrent sources and the problem of filtering out the reciprocal interference.

We plan, also, to optimize the Convolutional AutoEncoder structure within an actual classification pipeline in order t
improve the classification performance, which would represent the main application scenario for this kind of denoising. Tl
advantage of using CDAE in such a context is that they can be trained in isolation, but also can be co-trained with the classi
algorithm, so as to improve the overall performance.
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