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Abstract—We explore the feasibility of AI assisted hand-
gesture recognition using 802.11ad 60GHz (mmWave) technology
in smartphones. Range-Doppler information (RDI) is obtained
by using pulse Doppler radar for gesture recognition. We built
a prototype system, where radar sensing and WLAN commu-
nication waveform can coexist by time-division duplex (TDD),
to demonstrate the real-time hand-gesture inference. It can
gather sensing data and predict gestures within 100 milliseconds.
First, we build the pipeline for the real-time feature processing,
which is robust to occasional frame drops in the data stream.
RDI sequence restoration is implemented to handle the frame
dropping in the continuous data stream, and also applied to
data augmentation. Second, different gestures RDI are analyzed,
where finger and hand motions can clearly show distinctive
features. Third, five typical gestures (swipe, palm-holding, pull-
push, finger-sliding and noise) are experimented with, and a
classification framework is explored to segment the different
gestures in the continuous gesture sequence with arbitrary inputs.
We evaluate our architecture on a large multi-person dataset and
report > 95% accuracy with one CNN + LSTM model. Further, a
pure CNN model is developed to fit to on-device implementation,
which minimizes the inference latency, power consumption and
computation cost. And the accuracy of this CNN model is more
than 93% with only 2.29K parameters.

Index Terms—Gesture recognition, Deep learning, mmWave
sensing, Mobile device, Range Doppler

I. INTRODUCTION

Mobile computing has shown powerful capability, and
far exceeds the desktop application scenarios. The hu-
man–computer interaction (HCI) community has seen tremen-
dous interest in the mobile-based solution, especially on the
smartphone. In the context of mobile and wearable computing,
the main focus is the vision based HCI, which have reached
high levels of accuracy in stationary settings, but it requires
good light condition. Besides, vision based HCI has privacy
concerns.

RF-sensing has been developed to match the ubiquitous
interaction in mobile application. Different to an appearance-
based recognition system (e.g. standard video), radar sensing
can work well regardless of light conditions with limited
power consumption. Also it is not affected by differences
in skin color and other static information and is thus less
likely to overfit to certain genders and races. However, the
capability of the lower frequency system is fundamentally
limited by the narrow bandwidth, small antenna aperture,

and large wavelength. Specifically, due to the small antenna
aperture, the spatial resolution of these systems is too low to
distinguish the RF signals reflected by multiple reflectors.

Recently, higher frequency band is explored in wireless
local area networks (WLAN), e.g., 60GHz in 802.11ad, and
in cellular, e.g., 28GHz in 5G. Such mmWave band provides
larger bandwidth, compact antenna array and lower power
consumption, and brings new opportunities to the RF-based
HCI, e.g., one promising contactless phone control. In the
forthcoming 5G and beyond network, such RF-sensing and
wireless communications co-existence, also termed as inte-
grated sensing and communications (ISAC) in [1], is with
huge commercial demands but facing diverse challenges. For
example, shared spectrum and hardware for the co-existence is
designed to ensure no interference between two technologies
or performance degradation in [2]. This paper will show a
feasible way to have WLAN and RF-sensing coexistence in
mmWave band.

One mature and popular method is Frequency-Modulated
Continuous Wave (FMCW) based waveform in the RF sensing.
Its transmitted signals is frequency modulated by a periodical
saw-wave function. Generally, the frequency shift from the
time delay between Tx and Rx would maintain the stable
Doppler and range estimation. But the waveform spreads
in the whole time duration, and the corresponding power
consumption is relative large. Further, if coexisting with the
communication waveform, e.g., OFDM in 60GHz, the con-
tinuous frequency modulation would require additional RF
chain, which isn’t available for the coexisting of sensing and
communications. Another option is pulse-based waveform,
where only small partial time is occupied in the time duration,
e.g., 5% duty cycle, which largely save the power. Moreover,
simple pulse waveform is easily modulated by sharing the most
RF components in the communication systems. For example,
the commonly used random access procedure is designed with
the Pulse-based waveform.

Another important consideration is the antenna deployment.
Generally, in HCI scenario, radar array is placed in the front,
where the Tx-Rx beam is with high resolution in space. But for
mobile device, e.g., the phone, the antenna space is limited,
and it is hard to use the front antenna. Even with the front
antenna configuration, the screen would largely attenuate the
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signal strength in the propagation from the internal to outside.
With the constraints, antenna are usually assigned along the
sides and the back of the phone. Unfortunately, the sides
assignment would degrade the beam spatial angle resolution
compared to the front.

Embracing these challenges, we build a smartphone based
RF sensing prototype, and propose a deep learning based
gesture recognition framework, specifically designed for the
recognition of dynamic gestures with millimeter wavelength
RF signals. The main innovations include:

• A data logging pipeline is proposed where series of
parameters are optimized to fix the frame dropping issues.

• A noise-based segmentation method is designed to fetch
clean gestures segments in the sequence dataset.

• Side-based antenna array deployment is implemented,
which align with mobile device size constraints.

• Pulse-based waveform is applied, coexisting with the
base-band processing in single chip.

• Finally, one CNN+LSTM sequence model and one tiny
pure CNN model are designed to recognize different
gestures, including hands and fingers, with high accuracy
and small size.

The rest of the paper is organized as follows. Section 2
introduces the related work in the RF-based hands gesture
recognition. In section 3, the data pipeline is built to illustrate
the theoretical model of CIR, and the RDI sequence process-
ing. Section 4 proposes an end-to-end trained stack of deep
learning (DL) solution in the real-time operation. Finally, we
conclude our findings in the paper and describe the future
work.

II. RELATED WORKS

Many camera based solutions exist, mainly focusing on 2D
RGB images [3]. [4] uses the wrist-worn cameras, and [5]
considers the mobile devices built-in cameras. Recently, fine-
grained 3D hand pose estimation is experimented in the real-
time depth camera, e.g., in [6], [7]. However, the direct line
of sight constraints and the privacy concerns have restricted
the wide application for the mobile scenarios.

One of the non-vision based solutions is to leverage the
RF signals to detect the motions. In the low frequency band,
usually less than 6GHz, [8] provides an overview, where
disturbances of GSM signals are used for the sensing in
[9], and other examples include picking-up electromagnetic
interference in LCDs [10] or piggybacking onto existing
WLAN signals [11]. But the limiting spatial resolution in low
frequency band degrades the performance.

Industrial, Soli chip was commercialized in Google Pixel4,
which accelerates the higher frequency band application for
gestures recognition at 60GHz. Soli related work [12]–[15]
focuses on the short range hands gesture recognition. [12],
[13] is from Google to introduce the Soli sensor, and its
application for gesture detection. [14] introduces the related
application for the human-car interaction. [15] proposes a
hyper-adaptive robot hand, combined with the Soli sensor and

tactile sensor. Besides, NVIDIA develops the FMCW mono-
pulse radar works at 24GHz [16], and based on the TI sensor,
it considers the radar and depth camera to detect the gesture.
Intel’s work for the gesture recognition in [17] consider the
pure CNN network, by constructing the 3 channels 2D image.
OPPO and BUPT consider the long-range hands recognition in
[18]. All of these works are purely based on FMCW waveform,
and designed with dedicated chip, which needs to be further
optimized for the mobile phone application.

Pulse-based waveform is also experimented in many works.
[19] provides one HW implementation with pulse-based trans-
mission. [20] might be the only one, based on pulse-based
gesture recognition with machine learning. [21] only consider
the reflected signals as the input, with a simple HW configu-
ration. [22] provides one demo usage for gesture recognition
in the hands-car scenario.

A challenge of gesture recognition is the dynamic modelling
in a motion sequence. Recently, a growing trend toward
feature representations learning is based on deep neutral
networks. For example, sequence based solution, e.g., Long
short-term memory (LSTM) cells, has been shown to cap-
ture sequential information, which has been widely used for
gesture recognition, including Soli related works [12]–[15]
and others. Besides, [23] investigate the feasibility of human
gesture recognition using the spectra of radar measurement
parameters. [24] provides one comprehensive analysis based
on the conventional method such as support vector machine
(SVM) to distinguish the motion and gestures. [25] provide
one comprehensive work on the RDI based on the 3D to
distinguish the hands gesture.

Besides the gesture recognition, in ISAC configuration,
mmWave sensing have been explored in many aspects. For
example, [1] jointly maximizes the sum-rate for communica-
tion and the mutual information between the target impulse re-
sponse and target echoes for radar. [26] proposes a radio-based
sensing approach utilizing the 5G NR uplink transmit signal
and an efficient receiver processing and mapping scheme.

III. SYSTEM DESIGN AND THEORETICAL MODEL

A. Data processing Pipeline

As shown in Fig.1, we use a Qualcomm testing device,
as our phone factor prototype. It is equipped with 802.11ad
WLAN 60GHz Chipsets, and assigned antennas at the phone
sides. The device has 32 elements assembled in a 6×6 layout
for both the transmitter (Tx) and the receiver (Rx) and operates
with 3.52GHz bandwidth. We consider to operate it in radar
mode, which is TDD multiplexing with WLAN waveform.
In the radar portion, one radio frame is split into multi-burst
interval, and each burst duration is with low cycle duty, shown
in Fig.2. The Tx transmits a known pulse sequence in the
configured radar burst.

The Tx transmits a known pulse sequence for channel im-
pulse response (CIR) estimation, and CIR is the source output
of the radar device. Refer to the Fig.3, pulse-based solution
leverages the CIR to derive the 2D matrix by FFT operation,
called as RDI in the Radar signal processing function. The



Fig. 1. Phone factor implementation equipped with 60GHz and two sides
antenna assignment.

Fig. 2. Pulse-based waveform and radar frame configuration.

RDI buffer would be sent for either data-set logging module
function, or for the DL model for the real-time inference. The
RDI image is thought as the input of DL model.

Fig. 3. Data processing pipeline

Assume the signals of the electromagnetic waves from Tx
antenna m to Rx antenna n are formulated as hm,n (t), where
2R is the distance from Tx to Rx after the target reflection,
and c is the light speed. To measure frequency, the signal is
observed for at least one cycle. To model how R changes with
time, assume constant velocity and the distance is expressed
as R = R0 + v0t. Substituting in (1)

hm,n (t) = am,n (t) exp
[
−j2πf0

(
t+ 2R

c

)]
= am,n (t) exp

[
−j
(
2πt

(
f0 + f0

2v0
c

)
+ 2πf0R0

c

)]
(1)

fD = −f0
2v0
c

= −2v0
λ0

(2)

where fD is the Doppler frequency shift. By convention,
positive Doppler shift means the target and radar closing.

B. Sequence frame dropping and recovery

In the experiment, we build one self-contained data-set,
where 21 people, with different genders/ages/weights, are
invited for the data logging. There are more than 20000
sequences, each with duration of 60 seconds roughly. Although
this procedure takes much effort, the data-set is still limited.
Besides, there are random frame dropping in the captured
RDI sequence. Ideally, sensors capture the data sample-by-
sample as one sequence, for example, with index 0,1,2,3. . . ,
etc. Hardware constraints (e.g., limited computation capability,
and limited power or buffer size designed for mobile phones)
may lead to random frame dropping, which destroys the
sequence order information. The frame dropping would further
reduce the size of the data-set and lead to the loss of useful
information.

Generally, hardware optimization would solve the issue, but
this would involve additional large cost. Here, we propose
solutions with two parts: one with software (SW) optimization,
and another with pattern restoring algorithm in the frequency
domain. Fig.4 shows how to allocate the processing function
in 3 parallel pipelines, which would improve the frame rate
from 4FPS to 7FPS. The two instances act as client and
sends data stream to server for radar signal processing, which
makes client keep gathering data instead of waiting for data
processing. Further, shown in the Fig.5, the RDI feature
sequence is extracted within the encoder, and each dimension
of the feature vector is optimized after the 1-D FFT operation
to extend the length of the sequence. And further, with the
decoder, the restored sequence is from the extended feature.
Here, the encoder and decoder could be one Auto-encoder
model [27].

Fig. 4. SW parallel pipeline optimization

C. Sequence segmentation

A second challenge presented by the captured RDI sequence
is that RDI sequences mix noise portions and target motion
portions. Additionally, the target motion portions are diffi-
cult to identify in the mixed sequence, because noise RDI
show similar characteristics to those of the target motion,
and conventional vision-based solutions are not applicable.
Accordingly, in some aspects, noise portions of the input



Fig. 5. Sequence restoration blocks

sequence can be easily predicted, identified, and removed to
produce a sequence including a less or no noise portions.
The resulting sequence may include only the target motion
portions (e.g., pure portions). Shown in the Fig.6, one binary
classification model is used to recognize the noise features
in the short-range scenarios. Here, the one-vs-others binary
model is based on the pure motions dataset, purely associated
to some repeated hands or fingers actions without any noise
and body interference. And finally, for any mixed sequence,
the pre-trained model could accurately identify and remove
the noise portions, and the left is the pure motion sessions.

Fig. 6. Noise-based effective motions segmentation.

All of the above operations are implemented offline, and
the complexity would not impact the real-time inference.

IV. DL SOLUTIONS FOR THE RECOGNITION

We propose a deep-learning architecture for gesture recog-
nition with high-frequency radar. While our implementation
is specific to the WLAN pulse-based implementation, gen-
eralizing the approach to other high-frequency RF signals is
straightforward.

In the RDI, e.g., Fig.7, the features are summarized as one
channel image, where the detected target with high light pixel,
and the X/Y-dimension mapped to the Doppler speed / range
index. The shape of the high light pixels set is corresponding to
the speed and range variation in the measured frame duration,
which is not directly representing any target.

Generally, continuous RDI sequence would represent the
actions. As shown in Fig.8, the buffered RDI are pushed into
the DL model, where the corresponding output is classification
of the different gestures. And further, one post-processing
function is to improve end to end inference accuracy, e.g., label
prediction hysteresis-based approach, which could prevent the

Fig. 7. Range Doppler Image with two targets in the range with similar
speeds.

wrong gesture prediction from transition point between the
two different gestures. For DL model, we explore the CNN +
LSTM structure, which is widely utilized in many works,e.g.,
[13]. And we also propose one tiny CNN model to adapt to
the on-device implementation.

Fig. 8. DL structure.

In the experiments, we optimize the RDI with size 9*49,
which is roughly corresponding to < 40cm range (4cm reso-
lution) and <1m/s speed (2cm/s resolution). Meanwhile, we
explore multi buffered sequence length from 5 to 10.

A. CNN + LSTM

Conv layer is to extract the 2D feature of RDI in the input
sequence, and then, LSTM tracks the temporal features. The
detail is shown in the Fig. 9, where CNN block is to extract
the frame feature with two convolution layers: kernel size =
3× 3, dropout ratio = 0.5 and flatten vector output 16× 1.



Fig. 9. CNN+ LSTM structure with N images input

B. Pure CNN

LSTM shows the good performance with acceptable cost,
but sequence model on-device still faces many challenges.
Limited memory restricts complicated model application, e.g.,
the weights size and the operation. Therefore, we propose
another pure tiny CNN model, shown in Fig.10, where 7
frames are combined into one 2D enlarged image with the
size 63*49. Here, we build one CNN block with 3 convolution
layers to extract the sequence feature, where kernel size = 3×3,
and Max Pooling and Batch Normalization are leveraged
to avoid the over-fitting and accelerate the convergence

Fig. 10. Pure CNN model

C. Performance evaluation

The LSTM model is to explore the feasibility of the gesture
recognition in the setting. Simply, we analyze the performance
with 5 images in each captured sequence. Validation accuracy
is larger than 95%, shown in Fig. 11. But, in the realistic on-
device implementation, LSTM-Cell involves additional spe-
cific HW complexity, e.g., forget and input gates, to support
the real-time application, which increases additional cost of
the implementation in terms of memory and battery.

The LSTM exploration with 5 images has shown that the
short sequence has already kept the main feature of one
gesture, which roughly match the effective gesture duration,
about 0.625 second. For the short memory work, the CNN is
another option with the combined inputs.

The pure tiny CNN model is proposed to achieve the
low-complexity. Firstly, the input sequence is combined to
2D matrix, frame by frame with one order. One 2D matrix
corresponds to one captured sequence. In the experiment, we

Fig. 11. Confusion matrix: CNN + LSTM performance with 5 images input

evaluate different sequence length [3.5,7,10], and the overall
validation accuracy is shown in TABLE. I.

TABLE I
PURE TINY CNN: ACCURACY VS INPUT SEQUENCE LENGTH.

Sequence length Accuracy, %
3 89.96
5 93.13
7 95.41
10 97.15

Although large sequence length improves the accuracy, it
involves more computation complexity and latency, shown in
Table.II. 10 images is with more processing time, partially
because of the model size ∼ 16K,and user experiences some
delays of the recognition. Moreover, the training accuracy
approaches 100%, which might have over-fitting. With the
real-time demo, considering the actual quality of the user
experience (QoE), such as latency and accuracy, length 7 is
the final selection, with larger than 95% accuracy and only ∼
6K parameters.

TABLE II
OVERALL PERFORMANCE COMPARISON BETWEEN THE LENGTH 5, 7 AND

10.

Sequence length 5 7 10
Training accuracy, % >95 >98 >99

Validation accuracy, % >93 >95 >97
Parameter size ∼ 2K ∼ 6K ∼ 16K

The detail is shown in the confusion matrix, Fig. 12.

V. CONCLUSION

In this paper, we presented a real-time gesture recognition
implementation for smartphone applications, where a tiny
CNN model was proposed with only 2.29K parameters. 5
different gestures can be detected with the accuracy larger



Fig. 12. Confusion matrix: pure tiny CNN performance with 7 images input.

than 93% in less than 100 millisecond latency. Additionally,
we applied sequence restoration to fix the frame dropping
issue in the captured sequence, which is also used for the
data augmentation. Further, we proposed a noise-based motion
segmentation method to get the intentional gesture segments.
The current prototype has two-sides antenna array layout,
which constraints the beam-forming performance in the front.
In future, we will explore beam-forming optimization for 3D
hands tracking capabilities.
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