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Abstract—Edge-caching is considered as a promising
solution to address network congestion and to reduce
delivery latency by bringing relevant contents close to users.
In this context, the commonly used notion involves the
storage of the most popular contents in the cache, while
consequently increasing the cache hit ratio (CHR). In the
majority of prior works, the content popularity is assumed
to be perfectly known and often a priori. However, in
reality, the content popularity has to be explored especially
for uncertain contents, such as new entrants and items with
fast time-varying popularity. In this paper, we develop a
framework to analyze the joint exploration and exploitation
trade-off by caching both popular and uncertain contents
to enable more efficient content caching. Particularly, we
formulate an optimization problem to maximize the trade-
off between exploration and exploitation subject to the
storage capacity, guaranteed CHR and back-haul energy
budget constraints. Furthermore, we solve the formulated
mixed-integer combinatorial problem by using branch-and-
bound method and relaxing the binary to box constraints.
The superiority in performance of the proposed method
over the state-of-the-art solution is demonstrated in terms
of the CHR and back-haul energy on a realistic Movie-lens
dataset.

Index Terms—Small cell base station, Cooperative,
Cache-enabled Networks, Exploration, Exploitation.

I. INTRODUCTION

The rapid development of smart mobile devices and
their hunger for data services like high-resolution video
is growing exponentially year-by-year. It is predicted that
by 2023, the number of interconnected devices will be
more than three times the global population, while the
data traffic from these devices is projected to reach 4.8
zettabytes per year [1]. Further, repeated downloads of a
few popular contents have been considered as a primary
factor for the growth of data traffic, which causes more
power consumption that in turn increases carbon emis-
sions. Therefore to address this challenge brought by
data traffic over mobile networks and to reduce the back-
haul load, content caching at the edge node has been
considered as a promising solution [2]-[7]. The main
principle of caching is that the storage of most popular
contents at the edge node effectively reduces the back-
haul load while avoiding duplicate content transmissions
from the original content servers [8]. As a result, mobile

devices can download data from the edge nodes without
utilizing the back-haul link, thereby resulting in the
reduction of excess common/popular data transmission.
Additionally, the energy consumption of the edge node
is reduced by non-essential utilization of back-haul links
[9].

Content popularity, which indicates the frequency in
the demands, plays an important role in the caching
systems [10]. The popularity of different contents is
constantly evolving, which consequently influences the
Quality-of-Service (QoS). In general, it is observed
that only a small number of popular contents are fre-
quently requested [11]. By storing these contents from
the content servers placed closer to the end mobile
users, downloading of the same content multiple times
through the back-haul links can be avoided. Herein, the
content popularity is predicted using machine learning
techniques in the edge networks [12]-[16]. Most of the
existing caching techniques focus on caching in isolated
domains, i.e., either at the edge node or at the small cell
base stations (SBS). However, in the practical scenarios,
content caching is always constrained by the limited
storage capacity [12]. An effective solution is to enable
the edge nodes to cooperate with each other, resulting
in an enlarged set of cached contents at the edge nodes
for exploiting the caching diversity [17]. A cost model
for content retrieval from the neighboring SBS and the
content servers in a decentralized cooperative scenario
was proposed in [18]. The authors in [19] studied a
distributed caching framework by leveraging user mo-
bility and network coding. In terms of minimizing the
system costs like storage, system reconfiguration, content
access latency, and content migration, the authors in
[20] proposed a cooperate caching system wherein the
central offices cooperatively allocate the cloud resources.
A graph-assisted cooperative caching based on local
content popularity was investigated in [21]. However, all
the aforementioned works assume that content popular-
ity is perfectly known a priori, and without any cost
constraints.

Recent works on caching are designed to maximize
the CHR metric i.e., content served from the cache is a



cache hit otherwise cache miss. Such metrics help design
a caching technique to reduce the back-haul load and
data transmissions. However, they completely ignore the
energy-specific costs related to the transportation of the
data. When requested content is cached at the edge node,
mobile users download the relevant contents from the
cache directly. As a result, the network throughput is
improved and the energy consumption of the edge node
caching is considered alongside the data transmission
costs. When the requested contents are not cached at
the edge node, mobile users are required to download
contents from the content servers via back-haul link [5].
In this case, the limited back-haul capacity does not
only influence the throughput but also affects the energy
consumption of networks. Therefore, it is necessary to
analyze the energy efficiency performance of cache-
enabled networks in conjunction with the development
of efficient placement metric designs.

In this paper, we investigate the performance of edge
caching wireless networks in which the small cell base
stations cooperate by sharing the resources, e.g., energy,
back-haul load, power, or financial costs. Specifically,
we study the cooperative edge caching wireless networks
by storing both the most popular and uncertain contents.
The novelty in this work is the formulation of a new
objective function using the exploration and exploitation
trade-off metric. Further, we formulate a joint optimiza-
tion problem to maximize the objective function, while
taking into consideration the overall back-haul energy
cost constraint for the content fetching/placement.

The rest of the paper is organized as follows. Section II
describes the system model. In section III, we present the
problem formulation. Section IV presents the simulation
results and finally, conclusions are drawn in Section V.

Notation: Lower or upper case letters represent scalars,
boldface lower case for vectors, ® is the element-wise
product or also called as Hadamard product, (-)*" denotes
the transpose operator and | - | represents the cardinality
of the set.

II. SYSTEM MODEL

We consider a cache-aided cooperative multi-cell net-
work consisting of N small base stations (SBSs), as
shown in Fig. 1. Each SBS n € N = {1,...,N} is
connected to the mobile core network through back-haul
links and serves a set of user terminals (UTs), indexed
by 4 = {1,...,K}. Further, each SBS is equipped
with a cache of size D, Gigabits (Gbits) to store the
fetched content files from the content server (CS). A
UT randomly requests the content file f; from a content
file library of F files denoted by F = {f1,..., fr},
where each content file has size sy in data unit, and s =
[s1,...,8F]. Note that each UT is associated with one
SBS based on the received signal-to-noise ratio (SNR).

Content Servers (CS)

NETFLIX amazon
<> Backhaul link YoulTD
Wireless link

Small cell base station (SBS)
MEC server
Storage unit/ Cache

Mobile core network

User Terminal

Fig. 1: An illustration of the proposed cache enabled
cooperative network with caching performed at the SBS.

Suppose the UT’s requested content file is available in
the local cache of its associated SBS. In that case, it
can directly access the content file from its associated
SBS (i.e., avoids the back-haul load). Otherwise, the
associated SBS needs to fetch the content file from either
the adjacent SBSs or the central content server. The
number of contents fetched from the adjacent SBSs or
content server to update the cache is defined as the back-
haul load, denoted by B,,. However, the incurred cost for
retrieving content files from the central content server is
higher than the cost incurred for fetching the content
files from the adjacent SBSs.

TABLE I: NOTATIONS AND DEFINITIONS

Notation | Definition
N Set of small cell base stations (SBS)
u Set of user terminals
F Set of content files
s Size of contents
D, Size of cache at n'™ SBS
B, Black-haul load of n' SBS
Pn Popularity vector of n' SBS
un, Uncertainty vector of n" SBS
Zn Placement vector of n" SBS
Xn Placement vector of popular contents at n™ SBS
Yn Placement vector of uncertain contents at n" SBS
En Energy consumed to refresh cache at n™ SBS
At the time interval ¢, where ¢t = 1,..., 7, the mobile

edge computing server (MEC) monitors the UT request
data and keeps the record of the requests received. Let
pn(t) = [p1,...,pr] and u,(t) = [ug,...,ur] be the
popularity and uncertainty vectors of n SBS at time
slot ¢ respectively, which are calculated using the active



learning-based matrix completion' as discussed in [6].
Both the popular and uncertain contents are intended to
be stored in the SBS’s cache. The system leverages this
approach to obtain the trade-off between exploration and
exploitation. Correspondingly, the exploitation is related
to content popularity whereas the exploration is related
to the uncertainty of contents.

Let z,(t) € {0,1}7*! be the placement vector of

b SBS at time slot t. Since both the popular and
uncertain contents have to be stored in the cache, we
define two binary vectors wherein the elements indicate
1 if the content is stored in the cache, and O otherwise.
Let x,(t) € {0,1}7>! and y,, (t) € {0,1}7*! be the
binary vectors defining the cache placement of the con-
tents, where x,,(¢) is comprised of the selected popular
contents for achieving exploitation, while y,,(¢) consists
of the uncertain contents to facilitate the exploration
process. The final placement vector is given by

Zn(t) :Xn(t)+Yn(t); (1)

Using the defined notations, the popularity of the
contents that are used for exploitation are weighted with
content size over the inner product of popularity and
content size. This is termed as the average CHR metric
(Exploitation) of the n™ SBS at time slot ¢, which is
mathematically written as

zn(t) < 1.

pa(t)T (s ©®x,(t))
pn(t)Ts

Similarly, we define the uncertainty of contents i.e,
the variance of contents that are used for exploration,
weighted with content size over the inner product of
uncertainty and content size. This is defined as the
uncertainty ratio metric (Exploration) of the n SBS at
time slot ¢, which is mathematically expressed as

(07 (59 ya(0)

u,(t)Ts

The cache is updated based on the popularity and un-
certainty measures of the contents at each SBS. Further,
the SBS fetches contents either from adjacent SBS or
the content sever depending on the backhaul cost. Let
the energy consumed to refresh the cache at the n™ SBS
at time slot ¢ is given by

T
E,(t) = (max(zn(t)—zn(t—l),O)) (s@fn (Z(t—l)))

“4)
where Z(t — 1) is the placement matrix at (t — 1) time
slot where the column ¢ indicates the placement vector at
i SBS and &,,(Z(t — 1)) is the energy consumed per bit
transmitted (Joule/bit). It depends on the fixed network

Alxn(t)) = 2)

B(yn(t)) = 3)

Tt can be replaced with other uncertainty metric without loss of
generality.

topology captured in £ and the previous time slot cached
contents captured in z, (¢ — 1). Note that, in this work,
&n(+) represents the energy consumed, however, it can
be generalized to other cost functions such as back-haul
load, financial costs, power, etc. To calculate the energy
consumed &, (Z(t—1)), we make use of the shortest path
algorithm [22]. The links among the SBS’s and content
servers represent the edges of a graph. The cost to fetch
the contents represents the weight on the edge and it
is non-negative. More details on the calculation of this
cost is provided in the numerical results section based
on arbitrary network topology.

In the following, we formulate the optimization prob-
lem, to maximize the weighted sum of exploration and
exploitation.

III. PROBLEM FORMULATION

The optimization problem is formulated to maximize
the objective function (i.e., expressed in terms of average
CHR and uncertainty ratio metrics) subject to the binary
constraints (i.e., for caching popular and uncertain con-
tents), maximum storage capacity, guaranteed CHR, and
back-haul energy budget constraints. The optimization
is repeated for each time slot and it requires as inputs
the popularity and uncertainty metrics, the energy per bit
¢ as they evolve over time. The complete optimization
problem is given as

N
771.xn(rtr)1§,)i( 1-7) ;A +TZB ya(t)) (5
s.t. C X (t),yn(t) € {0,137, ¥n=1...N,
Cg: Xn(t) +yn(t) <1, Vn=1...N,
Cs: zp(t) = xn(t) + yn(t), nzl...N,
Cy: zn(t)ngD Vn=1...N,
s - max (pn (t) — un(t), ) (s ©®xn(t)) >0,
pn(t)"s
Vn=1...N,
N
Co: > Ej(t) <
j=1

The constraints are explained as follows,

o The objective of P; consists of the joint weighted
sum of uncertainty ratio metric (exploration) and
the average CHR (exploitation).

o (1 ensures that when the cache stores the popular
file, the popularity vector’s element related to the
corresponding content file is 1. Otherwise, it is
0. Likewise, when it stores the uncertain file, the
uncertainty vector’s element related to the content
file is 1. Otherwise, it is O.

o Constraint Cy implies that content can be either
popular or uncertain, but not both.

o (35 is the final placement vector which is the sum of
popular and uncertain contents placement vectors.



o Constraint C4 specifies the local cache capacity of

each SBS.
o (5 guarantees a lower bound on the CHR, where
6 € [0,1]. This worst case CHR differs from the
average CHR in (2) and is calculated by assuming
that the actual hits are calculated based on the worst
case popularity values i.e. max(py(t) — u,(t),0)

o Constraint Cg ensures that the backhaul link’s en-
ergy consumption should not be more than the
considered threshold value (i.e., €) to update or
refresh the cache with new content files.

The formulated optimization problem? is a mixed-
integer combinatorial problem due to the binary vari-
ables/ constraint (C), challenging to solve in polynomial
time. To get a tractable solution to this problem, we need
to relax the binary variables between 0 and 1. After
relaxing the binary constraint, the problem becomes a
continuous linear problem or convex problem easily
solved using the standard branch-and-bound optimizers
[23]. Note that herein we utilize the Mosek solver of
CVX [24] to obtain an approximate solution.

The computational complexity of the optimization
problem is a function of the sum of the number of
decision variables and the constraints. So, the prob-
lem has (2N)3 decision variables and (6N + 1) con-
straints. Hence, the computational complexity of P; is

O((@N)*)(6N +1)) 125].

IV. NUMERICAL RESULTS

In this section, we present the simulation results to
show the performance of the proposed optimization
framework in terms of CHR and back-haul energy con-
sumption.

A. Real-world data

We use a real-life, Movie-Lens 1M dataset [26], which
consists of ratings on a scale of {1,...,5} for K = 6040
UTs, F' = 3952 movies within the years 2000 to 2003.
The dataset is very sparse, i.e., over 96% of UTs gave
less than 5 ratings for all the movies, and over 94% of
movies have less than 25 ratings for all the UTS. Further,
we assumed that each rating corresponds to one request
irrespective of the rating number. Moreover, using the
zip-codes, we choose only the UTs in New York City,
i.e, the zip-codes between 10000 and 10350. Further,
we divide these zip-codes into 3 groups where each
group corresponds to an SBS. After the preprocessing,
each SBS has a total number of contents |F| = 146.
Since, the dataset does not contain the content sizes, we
assume the normalized content sizes which are uniformly
randomly generated between 0.1 and 1 and is shown in
Fig. 2. Finally, the popularity and uncertainty vectors are

2We assume that both 6 and e are fixed over time without loss of
generality.
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Fig. 2: Content size distribution
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Fig. 3: Uncertainty of contents at time interval (t = 1)

calculated using the active learning matrix completion
presented in [6]. In order to show the uncertainty of
contents, at time slot ¢ = 1, we plot the uncertainty
of contents versus the contents in Fig. 3.

B. System parameters

The back-haul energy is defined as the energy utilized
to fetch the contents from the adjacent SBSs or content
servers, which depends on the transport technology. In
the literature, the energy per bit transmitted is given
by 6§ = 0.5 x 1078 Joule/bit, similar to the values in
literature [27]-[30]. Therefore, the back-haul energy of
n™ SBS at time slot ¢ is calculated as

Back-haul energy,,(t) = B,,(t) x ¢ (Joule/bit). (6)

By taking into account the true popularity values which
lie in the interval [p — u,p + u], the true CHR of n'
SBS at time slot ¢ is calculated as

~ Pone(t)T (s © 20 (1))

CHRye(t) = =5 2o 5 ()
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We use the acronym ‘Proposed for equation (5)’ to refer
to the proposed optimization problem of (5) and ‘Max
exploitation’ refers to only exploitation term i.e., the
average CHR (2) as the objective function and with
the same set of constraints. We assume that the net-
work topology follows the graph properties of adjacency
matrix or also called the connection matrix [31]. The
adjacency matrix is a symmetric square matrix with
entries 1 when there is an edge from vertex and O when
there is no edge. Moreover, the diagonal elements of
the adjacency matrix are all 0, because the edges from
a vertex to itself is a loop. The weighted graph using
adjacency matrix for the considered network topology is
called a cost matrix, which is given as

SBS1 SBS2 SBS3 CS

SBS 1 0 1 0 2

A — SBS2 1 0 1 0
SBS 3 0 1 0 2

cs 2 0 2 0

However, our numerical results can be generalized to
any arbitrary network topology. The simulations are
performed in this paper for one-time slot of multiple
slot simulation. The individual true CHR for each SBS is
calculated using the equation (7) and for cooperative and
conventional, the true CHR is calculated as the average
of all SBS’s true CHR.

C. Results and discussions

In Fig. 4, we illustrate the achieved CHR percentages
according to the values of 7 (i.e., trade-off factor for
exploration and exploitation). As can be seen from the
results in Fig. 4, we observe that the percentage of
CHR reduces by increasing 7. At the higher 7 values,
the cache mostly stores the uncertain content, leading

7
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Fig. 5: Back-haul energy vs 7, D = 70 Gbits, 6 = 55%,
€ = 10 Joules

to the decrement of CHR percentage. In particular, the
results illustrate that the system with the conventional
scheme achieves higher CHR performance than that with
the cooperative scheme at 7 = 0.1. This is occurred
due to caching of more popular contents at the lower
T values. Also, it is observed from the results that, the
proposed cooperative scheme achieves 4% higher CHR
than that with the conventional method at 7 = 0.5. On
the contrary, the results also illustrate that the system
experiences an in-feasibility state when it utilizes the
cooperative policy or only SBS 1 or SBS 3 for accessing
the contents. This is because, for SBS 1, when 7 = 0.7
the problem becomes infeasible since the guaranteed
CHR is 0.55 which is 55%. But the maximum CHR
SBS 1 can achieve is 56% only when 7 = 0.5. As a
result, the problem becomes infeasible when the 7 value
is greater than 0.5. A similar observation can be noted
for SBS 3. Also, the problem is infeasible for 7 greater
than 0.5, because in the cooperative and conventional
scheme if one SBS has an infeasible solution then the
problem becomes infeasible. This result is occurred due
to the considered constraint (C5) for the guaranteed
CHR. However, using a line search over 7 we can find
the maximum tolerable exploration while guaranteeing
the exploration constraint.

Fig. 5 shows the back-haul energy versus the 7 values.
From the results in Fig. 4, it is evident that the system
utilizes the higher back-haul capacity (i.e., back-haul
energy) at the higher 7 values. At the higher 7 values, the
system caches the most unpopular contents leading to the
utilization of more back-haul load to fetch the contents
from the adjacent SBS or content server. Further, it is
clear from the results that the system with the proposed
cooperative scheme consumes a lower back-haul energy
than that with the conventional method.
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In Fig. 6, we show the exploration objective (uncer-
tainty ratio metric (3)) as a function of 7. From the
results in Fig. 6, it is observed that as the 7 increases,
the uncertainty of the contents decreases. This is because
more uncertain contents are stored in the cache for
exploration as a result the uncertainty of the contents
decreases as 7 increases.

The exploitation objective (average CHR metric (2))
is shown as a function of 7 in Fig. 7. As can be seen
from the result in Fig. 7, it is evident that the popularity
of contents increases by increasing the 7 values. The
reason is the uncertainty of the contents decreases by
increasing the 7 values, leading to the increment of the
popularity of the contents.

V. CONCLUSION

In this paper, we investigated the problem of energy-
efficient content caching for the cooperative scenario. We

developed and analyzed a framework to store both the
popular and uncertain contents in the cache to enable
more efficient content caching. Based on the estimated
popularity and uncertainty of contents, we defined two
metrics i.e., the average CHR and uncertainty ratio that
was synonymous with the exploitation and exploration,
respectively. Further, a joint weighted optimization prob-
lem for content caching was formulated, while taking
into consideration the aspect of the overall energy con-
sumption and CHR guarantees. The superiority in the
performance of the proposed method over the state-
of-the-art schemes was established through simulations
in terms of CHR and back-haul energy based on the
realistic Movielens dataset.

ACKNOWLEDGMENT

This work has been supported by the National Re-
search Fund, Luxembourg project AGNOSTIC (742648),
the FNR bilateral project LARGOS (12173206), and the
FNR CORE ProCAST (C17/1S/11691338).

REFERENCES

[1] Cisco, “Cisco Annual Internet Report (2018-2023),” White pa-
per, Mar. 2020.

[2] I. Parvez, A. Rahmati, I. Guvenc, A. 1. Sarwat, and H. Dai, “A
Survey on Low Latency Towards 5G: RAN, Core Network and
Caching Solutions,” IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp- 3098-3130, 2018.

[3] T. X. Vu, E. Bastug, S. Chatzinotas, and T. Q. S. Quek (Eds),
Wireless Edge Caching: Modeling, Analysis, and Optimization.
Cambridge University Press, 2021.

[4] K. N. Doan, T. Van Nguyen, T. Q. S. Quek, and H. Shin,
“Content-Aware Proactive Caching for Backhaul Offloading in
Cellular Network,” IEEE Trans. Wireless Commun., vol. 17, no. 5,
pp. 3128-3140, 2018.

[5] M. Ji, G. Caire, and A. F. Molisch, “Fundamental Limits of
Caching in Wireless D2D Networks,” IEEE Trans. Inf. Theory,
vol. 62, no. 2, pp. 849-869, 2016.

[6] S. Bommaraveni, T. X. Vu, S. Chatzinotas, and B. Ottersten,
“Active Content Popularity Learning and Caching Optimization
With Hit Ratio Guarantees,” IEEE Access, vol. 8, pp. 151350-
151359, 2020.

[7] S. Mehrizi, A. Tsakmalis, S. Chatzinotas, and B. Ottersten,
“A Bayesian Poisson—Gaussian Process Model for Popularity
Learning in Edge-Caching Networks,” IEEE Access, vol. 7, pp.
92341-92 354, 2019.

[8] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge:
The role of proactive caching in 5G wireless networks,” IEEE
Communications Magazine, vol. 52, no. 8, pp. 82-89, 2014.

[9]1 B. Perabathini, E. Bastug, M. Kountouris, M. Debbah, and

A. Conte, “Caching at the edge: A green perspective for 5G

networks,” in IEEE International Conference on Communication

Workshop (ICCW), 2015, pp. 2830-2835.

G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire,

“The Role of Caching in Future Communication Systems and

Networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 6, pp. 1111-

1125, 2018.

G. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah, “Wire-

less caching: technical misconceptions and business barriers,”

IEEE Communications Magazine, vol. 54, no. 8, pp. 16-22, 2016.

S. Tamoor-ul Hassan, M. Bennis, P. H. J. Nardelli, and M. Latva-

aho, “Caching in Wireless Small Cell Networks: A Storage-

Bandwidth Tradeoff,” IEEE Wireless Commun. Lett., vol. 20,

no. 6, p. 11751178, Jun 2016.

[10]

(11]

[12]



[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]

J. Song, M. Sheng, T. Q. S. Quek, C. Xu, and X. Wang,
“Learning-Based Content Caching and Sharing for Wireless
Networks,” IEEE Trans. Commun., vol. 65, no. 10, pp. 4309—
4324, 2017.

A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal
and Scalable Caching for 5G Using Reinforcement Learning of
Space-Time Popularities,” IEEE J. Sel. Topics Signal Process,
vol. 12, no. 1, pp. 180-190, 2018.

B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A Learning-
Based Approach to Caching in Heterogenous Small Cell Net-
works,” IEEE Trans. Commun., vol. 64, no. 4, pp. 1674-1686,
2016.

S. O. Somuyiwa, A. Gyorgy, and D. Giindiiz, “A Reinforcement-
Learning Approach to Proactive Caching in Wireless Networks,”
IEEE J. Sel. Areas Commun., vol. 36, no. 6, pp. 1331-1344,
2018.

X. Li, X. Wang, K. Li, Z. Han, and V. C. M. Leung, “Collabora-
tive Multi-Tier Caching in Heterogeneous Networks: Modeling,
Analysis, and Design,” IEEE Trans. Commun, vol. 16, no. 10,
pp. 6926-6939, 2017.

F. Pantisano, M. Bennis, W. Saad, and M. Debbah, “In-network
caching and content placement in cooperative small cell net-
works,” in International Conference on 5G for Ubiquitous Con-
nectivity, 2014, pp. 128-133.

K. Poularakis and L. Tassiulas, “Code, Cache and Deliver on
the Move: A Novel Caching Paradigm in Hyper-Dense Small-
Cell Networks,” IEEE Trans. Mobile Comput., vol. 16, no. 3, pp.
675-687, 2017.

L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online
Resource Allocation, Content Placement and Request Routing for
Cost-Efficient Edge Caching in Cloud Radio Access Networks,”
IEEE J. Sel. Areas Commun, vol. 36, no. 8, pp. 1751-1767, 2018.
Y. Jiang, X. Cui, M. Bennis, F. Zheng, B. Fan, and X. You,
“Cooperative caching in fog radio access networks: a graph-based
approach,” IET Communications, vol. 13, no. 20, pp. 3519-3528,
2019.

E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269-271,
1959.

“Practical guidelines for solving difficult mixed integer linear
programs,” Surveys in Operations Research and Management
Science, vol. 18, no. 1, pp. 18 — 32, 2013.

I. CVX Research, “CVX: Matlab software for disciplined convex
programming, version 2.0,” http://cvxr.com/cvx, Aug. 2012.

P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, LMI control
toolbox user’s guide, 05 1995.

F. M. Harper and J. A. Konstan, “The MovieLens
Datasets: History and Context,” ACM Trans. Interact.
Intell. Syst., vol. 5, no. 4, Dec. 2015. [Online]. Available:
https://doi.org/10.1145/2827872

E. Bastug, M. Bennis, and M. Debbah, “Cache-enabled small cell
networks: Modeling and tradeoffs,” in 2014 11th International
Symposium on Wireless Communications Systems (ISWCS), 2014,
pp. 649-653.

Y. Xu, Y. Li, Z. Wang, T. Lin, G. Zhang, and S. Ci, “Coordinated
caching model for minimizing energy consumption in radio
access network,” in 2014 IEEE International Conference on
Communications (ICC), 2014, pp. 2406-2411.

J. Llorca, A. M. Tulino, M. Varvello, J. Esteban, and D. Perino,
“Energy efficient dynamic content distribution,” /EEE J. Sel.
Areas Commun., vol. 33, no. 12, pp. 2826-2836, 2015.

F. Gabry, V. Bioglio, and 1. Land, “On energy-efficient edge
caching in heterogeneous networks,” IEEE J. Sel. Areas Com-
mun., vol. 34, no. 12, pp. 3288-3298, 2016.

Ravindra B. Bapat, Adjacency Matrix. In: Graphs and Matrices.
Springer, London, 2010.



