Finding Reusable Software Components in Large Systems

James M. Neighbors
Bayfront Technologies, Inc.

Abstract

The extraction of reusable software components from
existing systems is an attractive idea. The goal of the
work in this paper is not to extract a component
automatically, but to identify its tightly coupled region
(subsystem) for extraction by hand or knowledge-based
system. Much of our experience is anecdotal. Our
experience with scientific systems differs from much of
the work in reverse engineering that focuses on COBOL
systems.

Module and data interconnection was collected from
three large scientific systems over a 12 year period from
1980 to 1992. The interconnection data was analyzed in
an attempt to identify subsystems that correspond to
domain-specific components. The difficulties of dealing
with large scientific systems and their organizations are
discussed. The failures and successes of various
subsystem analysis methods is discussed. A simple
algorithm for the identification of subsystems is
presented. A pattern of object hierarchies of subsystems
is briefly mentioned.

The average subsystem is surprisingly large at 17,000
source lines and 35 modules. The concept of a subsystem
is informally validated by developers from subsystem
interconnection diagrams. The actual reusability of these
identified components is not assessed.

Keywords: reuse, component, subsystem

1. Introduction

Our motivation in reverse engineering systems was to
discover reusable software components that could be
encapsulated for Draco, a knowledge-based forward
engineering system [9]. Our focus in this work is not the
extraction the individual components, but on general
techniques for finding the locus of a component in an
existing large system. We presume that once found the
individual components could be extracted either by hand
or by an advanced knowledge-based system.

1.1 Related Work
Much of the existing reverse engineering literature
applies to COBOL programs [8] where the data model

and program flow seem more explicit than in scientific
programs. We collect and graph similar interconnection
data. However, some techniques that work for COBOL
such as data flow analysis slices [11] failed to work as
well for our purposes as discussed in section 4.4.2.
Perhaps it is because the number of paths through a large
scientific application is much larger than through a large
COBOL application. This large number of paths makes it
much more difficult to recognize the plans of a technique
such as [15]. Further compounding the problem is the
richness of the underlying problem domain. As succinctly
stated in [13] "domain-specific operations and objects
form a domain model absolutely critical for
understanding the programs built on top of them."
Unfortunately, as we discuss in section 4.1, even the
developers of a large scientific application may not have
this domain model.

Some of the problems we have encountered may be due
to the large systems we examined. Our subsystem analysis
work is similar to the patterns of relationships in the
DESIRE system [2]. However, DESIRE was able to use
"suggestive data names" as functional clues; but in very
large systems global names tend to no longer be
functional but architectural as discussed in section 4.4.3.

The goal of this work is not to displace knowledge-
based program understanding. Instead it is to place a
bounding scope on recognizing "plan calculus" [14],
"design patterns" [4] and "typical architectures" [5] in the
millions of source lines that make up general systems.

2. Hypotheses

The basic beliefs that lead us to use a structure-based
approach rather than a knowledge-based approach during
continuing system development are discussed and
rationalized in the following sections.

2.1 Architecture of Large Systems

Classical Software Engineering teaches that the
architecture of a system is a tradeoff between top-down
functional decomposition (Stepwise Refinement) [16] and
bottom-up support of layers of Application Programming
Interfaces (API's or Virtual Machines) [3]. Functional
decomposition partitions the architecture vertically while

virtual machine architecture

horizontally.

layers partition the

Figure 1. Functional Decomposition and API
Decomposition

These two partitioning forces are in constant
opposition. The decision as to which of these approaches
to use is the policy of maximal information hiding [12].

Since real systems are constructed as a trade-off of
these two decomposition techniques we cannot expect the
architecture of a large system to predominately follow one
technique. They are neither top-down decompositions nor
bottom-up layer by layer constructions but a combination
of the two processes. Experience with system construction
leads us to believe in the informal concept of subsystems.
Subsystems are individual regions of a system that are
tightly coupled in data and function. They are the large
system cells that result from the architecture partitioning
tradeoffs. Subsystems represent encapsulations
convenient to system designers, maintainers and
managers. Thus, we would expect subsystems to be
present even in old, heavily maintained systems.

From these reasons we decided not to stress either
top-down decomposition or bottom-up layer construction
in our attempt to determine system architecture. Instead
we stressed determining the existence, structure, size,
scope and function of subsystems resulting from tradeoffs
in these partitioning approaches. We would expect these
subsystems to be the reusable software components we
seek. After all they are the distillate of years of
maintenance.

2.2 Economics of Large Systems

The complete reverse engineering of old, large systems
followed by the subsequent forward engineering of
replacement systems will be very rare for economic and
business reasons. If we assume a low $20/SLOC (source
line of code) evaluation, then a million line system is a
$20 million business asset. These assets maintain
themselves by producing continuous sales. These sales
support the 20-100 people needed to maintain the system.
In short, the system is a cash generator and an
evolutionary survivor. It takes a long time for a system to
grow to a million lines. Usually, it has had to compete in
its particular area of expertise with similar systems.
Technical staff that suggest a reverse and forward

engineering approach put the management in the position
of effectively scrapping a $20 million asset and starting
afresh with some scavenged parts on the extremely
perilous process of large software development. This is
not an attractive decision to make. If the cash flow is to
be maintained then the development team must be
expanded and forked into two teams. The "old" system
team maintains the cash flow while the "new" team
forward engineers the replacement system. Everyone on
the "old" system team will know that at some time in the
future their system knowledge will be obsolete and their
employment will be in jeopardy. They will be unhappy
and they are maintaining the cash flow. This is not a
good business management situation.

Studies of software maintenance [7] have shown that
maintenance and enhancement of existing function
account for 75-80% of resources. In effect the system is
continually rewritten. The management trick of large
system maintenance is to harness all that change and
channel it towards reverse/forward reengineering that
creates flexibility for the system to meet new challenges.
This points once again towards architectural
encapsulations.

For these reasons we decided that for large systems
the process of reverse engineering and forward
engineering could only be viewed as the ongoing process
of system reengineering (evolution and maintenance).

2.3 Problem Domains of Large Systems

Large systems address problems in a general problem
area, such as banking, accounting, CAD, CAM, CAE,
command/control, and inventory. Underlying all these
problem domain specific applications are more general
systems treated as subsystems such as operating,
networking, graphics, and database systems. The large
system represents a very rich set of knowledge ranging
from the very domain specific to the very general. The
problem of reverse engineering is that all of this
knowledge is spread and intermingled in the context of
programming language code throughout the system
source code [6]. Because of this we would not expect
knowledge based reverse engineering to be very
successful. To successfully reverse engineer an arbitrary
system we would need a knowledge base at least capable
of forward engineering the system.

Experiments with this approach must be carefully
examined. Any small experimental program fragment can
be reverse engineered given a knowledge base for that
fragment. It is not a question of capability - it can be
done. It is a question of practicality for systems of size to
be of interest. Usually researchers in this area have
suggested that "people in the loop" be the ultimate backup
to a failure of the knowledge base to understand a source

code fragment. In the limit this is the "people in the loop"
looking at a million lines of code when the knowledge
base fails and then explaining to the reverse engineering
system what that code means in some semantic notation
that meshes with the semantic understanding already
constructed by the reverse engineering system. We doubt
people can do this in a large problem domain specific
system.

From the previous discussion we decided that
knowledge-based understanding of large system
semantics was currently too difficult for three reasons:
absence of a robust semantic theory, lack of problem
domain specific semantics, and knowledge spreading in
the source code.

3. Experimental Method

Over a 12 year period from 1980 to 1992 we
participated and collected data during the reengineering
of three large systems. By this we do not mean the
systems were completely rewritten. In our cases the
reverse and forward process led to a 10% to 20%
reduction in the number of modules and with an
upwardly compatible increase in function. Table 1
presents the characteristics of the systems at the end of
the process. The approximate source lines of code
measurements (SLOC) does not include comment lines.

The CAD/CAM and CAE/CAM systems were both
started around 1968 and so were over 10 years old at the
start of the reverse engineering process. Reverse/forward
engineering for these systems was motivated by the desire
to move from mainframes to workstations and support
new graphic hardware. The switching system was started
in 1980 and was grown very quickly over 3 years.
Reverse/forward engineering for this system was
motivated by management, performance and flexibility
requirements.

system role size source

Telcom / Software 4M SLOC Pascal,

Datacom switch | Architect 3,800 modules | C, assembly
(full time)

CAD/CAM Consultant 2M SLOC FORTRAN,
(part-time) 3,394 modules | C

CAE/CAD Manager 4M SLOC FORTRAN,
(full-time) 7,089 modules | C

Table 1. Systems Examined

3.1 Interconnection Data

With each system we collected interconnection data
between the modules of the system (globally linkable, top
lexical level procedures and functions) and global data
stores (unnamed COMMON, named COMMON and

global storage variables). This data was only taken on the
FORTRAN and Pascal that constituted the bulk of the
systems in each case. In most cases the C and assembly
modules were software drivers for hardware. Connections
from the FORTRAN and Pascal to C entry points were
taken. The data was taken on the release directly after the
forward engineering phase.

We used three techniques to obtain interconnection
data. First, parsers for each language were built and the
source code was scanned for static interconnections.
Second, link time interconnections were found by
scanning linker reports and object modules. The runtime
libraries for the various languages were removed from
this data. Finally, execution monitoring was used to
determine dynamic interconnections. The dynamic
interconnections, of course, are biased by the input data to
the system during execution monitoring. In all cases we
used the quality control regression tests that exercise as
many system functions as possible under varying loads.

We only collected module reference interconnection
data. Global data stores are treated as modules that make
no references. We did not collect the SLOC size of
individual modules and in retrospect wish that we had.

3.2 Subsystem Analysis

With each system we developed tools proprietary to
each system owner that produce interconnection diagrams
and reports. These tools were easy to build and earned us
the trust of the developers and managers. We used this
trust to ask endless questions about subsystem scope.
Researchers in this area must understand that without this
trust the developers will not take them seriously since
they are just another person here to study something in
the way of finishing the next system release. The
developers will not care who they are or who sent them.
Researchers need to help developers if they want their
help.

The simplest interconnection report is a cross
reference tool that lets the individual developers easily
discover how the system works and how the part they
maintain fits into the overall architecture. The hardest
reports are inter and intra source code module quality
compliance reports from the source code parsers. The
simplest diagrams are top-down decomposition views
similar to the one show in Figure 1. The hardest diagrams
are policy-driven subsystem diagrams similar to the one
shown in Figure 4.

With each system we went through cycles of proposing
subsystems and asking the developers responsible for
each area whether it was a tightly coupled region. The
focus of the discussion was always on what modules could
we add and why and what modules could we remove and
why. The goal was to determine a method to identify a

subsystem and thus identify at least a starting point for
extracting reusable software components from existing
large systems.

4. Results

We admit that we started naively. Armed with a
research-level knowledge of Software Engineering and a
background of 10 years experience with many systems up
to 250K SLOC we decided to study large systems. Large
systems seem to be where most Software Engineering
problems are found. Large systems should also contain
large numbers of reusable software components in the
form of subsystems. While the particular components we
would find would belong to the owners of the systems, we
reasoned it was worthwhile to determine if the locus of
modules that form a component could be determined from
the explicit structure in the system. The extraction of the
component would be an effort past this.

4.1 Large System Development Issues

Many issues related to large system development
needed to be addressed before any data could be collected.

In general the developers and managers of large
systems hold that the statements enumerated below are
true of their system. We found that most of the time they
are right. However for a system of 4,000 modules if they
are not true only 5% of the time, then 200 modules are
affected. This can hamper reverse engineering efforts that
focus on interconnection. We found the following issues
in all of the systems we examined. Each generally true
statement is accompanied by one of many sensible
scenarios of how it can become false in large systems.

1. We know what the system does. All large systems
have special customers or configurations that
occasionally require special versions. These custom
solutions become part of the common system to ensure
their maintenance. Usually only the developers that
added these custom solutions know what they do.

2. The system is one big program. All of the systems we
examined are a complex array of versions,
configurations, support utility programs, and support
data files. In reverse engineering all of these items
need to be examined. It is difficult to find them all.

3. We know where all of the source code is. There are
many good reasons why a source code is not under
source code control. Security codes, proprietary codes
and codes that no longer compile under the current
tools are routinely removed from the source base. A
poor reason is that certain programmers just refuse to
check in their codes.

4. We know the version space of the system. This
addresses the feature space of the system. All large
systems are linked together many ways to provide
different features to the users. There is not one set of
compiled source modules in every system sold. A
series of system releases over time usually enlarges the
version space. Marketing usually breaks down its
product list by the available versions. The developers
seldom have a list of the modules in each version even
in Make files. This space is compounded by the
configuration space below.

5. We know the configuration space of the system.
This addresses the hardware (and driver software)
space of the system. This includes the computer,
operating system, and all attachable I/O devices. As
with the version space there is not one set of compiled
source modules in every system sold. The
configuration space is compounded by the version
space. Make files in theory could characterize the
modules in each system of version by configuration;
but in practice it is seldom done because the space is so
large.

6. The system is written in a standard programming
language. Usually error trap to stack unwind, fast
cross system branch, memory allocation, shared data,
I/O needs and message passing are implemented
knowing the runtime structure of the compilers in the
configuration space.

7. The design documentation represents what the
system does. The only internal design documentation
that is maintained is that which helps the maintainers.
Usually this includes code headers, global data
descriptions, and end-user interface kit documentation.
Other design documentation away from the code is not
maintained.

It is a mistake to assume that the above problems are
somehow a consequence of mismanagement. Better
processes and tools would have very little impact. These
problems are just part of building large systems. All large
systems have these problems.

4.2 Interconnection Data

Figures 2 and 3 present the module interconnection
data for the two FORTRAN-based systems of Table 1. In
each case we used the largest configuration and version.
This data represents 10,483 modules and approximately
6M SLOC. The average module size is about 570 SLOC.
Global data stores are treated as modules that make no
references. If one module references another module
multiple times, it is counted as a single reference. The
vertical lines in the graph represent the range in values
between the two systems. The horizontal bar represents

the average value between the two systems. Some data
has been eliminated in both figures by limiting the
References axis. In Figure 2 we eliminated a total of 210
modules that were referenced by many modules
(maximum value 1455). In Figure 3 we eliminated a total
of 64 modules that referenced many modules (maximum
value 144). With the full set of data the References axis of
both figures would be long and sparse at the higher
values.

The data is surprisingly similar considering that the
two systems, while having a similar function, have
radically different architectures. One system has over 980
named COMMON global data areas while the other only
has 20 to 30. One system is twice the size of the other in
SLOC.

These systems are very carefully partitioned. Figure 2
shows that fully 60% of the modules of both systems are
referred to by only one other system module. Notice that
in the strict top-down decomposition approach of Figure
1 each module is only referred to by one module. These
modules exist simply as functional decompositions.

References From Other Modules

100
f

‘\1 60% of modules referenced by 1 module ‘
1
1 / 90% of modules referenced by 6 or less modules
1
1 B

o
L

% of Modules (log scale)

o

0 2 4 6 8 10 12 14 16 18 20 22 24 26 29 31 34 38 41
References

Figure 2. References From Modules

The wide difference in the number of modules
referenced by no other modules in Figure 2 stems from
the handling of environment callbacks by the two
FORTRAN systems. One system uses a central dispatch
while the other uses a separate module for each needed
callback. All of the callback modules look as if they are
not referenced.

Figure 3 shows that even though there are many
modules in the system, an individual module refers to
very few of them. In fact 50% of the modules refer to only
3 other modules. Remember the average size of a module
is over 500 SLOC. This is much more highly partitioned
that we would expect to see in a small 10K SLOC
program.

Notice that Figure 3 could be fit by a straight line
against a logarithmic scale. We do not know why. It
seems to suggest a constant module embedding.
Comparing the ratio of Figure 2 with Figure 3 does show
that the reference of modules for support is slower to
decline. Figure 2 shows that 60% of the modules are only
referenced by one other module but Figure 3 shows that
50% of the modules refer to 3 or less other modules. This
hints at the horizontal partitioning of Figure 1 in action.

References To Other Modules

100

‘ 75% of modules refer to 7 or less modules ‘

v

% of Routines (log scale)

o

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
References

Figure 3. References To Modules

4.3 Maintenance Programming Style
Some of the effects seen in the interconnection data

can be explained by years of maintenance programming.

Maintenance programmers are very conservative in the

way they approach changing a system. Common

maintenance techniques are:

1. Surround all small local changes with IF-THEN
protections so that the system exhibits the new
behavior only when a specific predicate is true.

2. Try to combine larger changes into an existing module
so that system-wide problems of defining a new
module (e.g., naming the module and finding all
references to the old module and determining which
should call the new module) can be avoided. Use
passed control variables to identify the functionality
desired in each case.

3. For changes that require modification to a complete
suite of modules (subsystem) make a copy of the
complete subsystem with suitable translation naming
and modify the copy of the subsystem.

In forward engineering these are not good
programming practices. The first leads to complex,
unnecessary and brittle predicates all over the system.
The second is poor module cohesion usually with passed
control coupling. The third leads to a dramatic rise in the

number of lines of code in the system. All of these
techniques lead to dead code. The maintenance
programmers do not use this style because they are
foolish or not very good. They program this way because
it works for them. Their concern in the short term is
system stability and maintaining a common
understanding of system function among the developers.
It would be chaos to allow any developer to arbitrarily
add or delete individual modules in the system at will. In
the long term, without cycles of architecture revision,
these techniques lead to hard to maintain and understand
systems. These are the systems we will have to reverse
engineer to find reusable software components.

4.4 Large System Structure

Our hypothesis is that large system architecture is a
collection of subsystems, each piece of which is another
embedded subsystem. The interconnection data of Figures
2 and 3 hint at this by affirming that the systems are very
highly partitioned. This affirms that the tradeoffs of
Figure 1 were made. These tradeoffs resulted in system
architecture cells or subsystems. The questions we are
trying to answer is what constitutes a subsystem and how
do we find them.

Our basic approach to finding these subsystems was to
propose them and ask the developers what was missing.
Proposing the subsystems based on the interconnection
data took many wrong turns. Some unsuccessful and
successful approaches are described below in
chronological order. Each approach was implemented
and given to developers for evaluation.

4.4.1 Failure: subsystems based on decomposition:
Given a module, the subsystem includes all of the
modules it references and include the transitive closure of
those modules. To our surprise this ended up including
every module in the system almost every time. Even more
surprising this turned out to be the case even for the
systems written in FORTRAN, a non-recursive language.
Yet, in execution the systems never recur or they fail.
This behavior is a consequence of maintenance
programming with passed control variables discussed in
the previous section.

The developers liked the top levels of these reference
trees. We added a depth limit to the traversal but it was
only a rough fix to get the top level decomposition
diagrams out.

4.4.2 Failure: subsystems based on intermodule data
flow analysis: Given a module, the subsystem includes
all modules in that module's interval as determined by
interval analysis [1]. Informally a module's interval is a
local set of modules bound by data production,

consumption and pass-through dependencies. Full data
flow analysis on a large system with large amounts of
global data is virtually impossible since it is related to the
number of paths through the source code. In our case we
applied the technique to the reference structure of the
systems that includes a restricted view of global data. The
subsystems proposed were the individual interval graphs
that were embedded into higher level data flow graphs
that represented higher-level subsystems.

The developers liked the interval groupings because it
pared away context of the surrounding system. Many
times too many modules were included because as can be
seen in Figures 2 and 3 the system is very vertically
partitioned. Because of high module specialty the context
of a special module is highly specialized (i.e., few
modules reference it). This leads to the data of the
module being highly dominated by a specialized line of
reference modules. The developers expressed the opinion
that this long vertical string of referencing modules
crossed many subsystem boundaries. This hints at
embedding but is as yet unclear.

4.4.3 Success: subsystems based on module name
matching: Given a string matching pattern on module
names, produce a subsystem diagram based on the
reference structure of modules whose names match the
pattern. The name space in large systems is very
important. Naming conventions are rigorously followed.
The module names are not functional descriptions but
architectural markers. In large systems it is more
important to determine the owning subsystem of a module
rather than its function. So this approach is not as odd as
it might seem at first blush.

The developers motivated this approach because it is
one of the basic approaches they use. Also from earlier
diagrams we had heard "This has a lot of the modules but
it is missing some that are named similarly to these." The
problem with this approach is that to get a particular
subsystem diagram acceptable to its associated developer
team, we would start to enlarge the regular expression. In
effect we were explicitly stating the modules of a
subsystem with a large regular expression. The
expressions were not general or time invariant. The
benefit of this approach was that we had given the
individual developers a simple tool they could use. They
started to identify and draw the subsystems for which they
were responsible. They became enthusiastic and we got
examples of subsystems. This strengthened our belief in
the subsystem concept.

4.4.4 Success: subsystems based on reference
context:. Given a module that determines the subsystem
of interest and parameters M and N, add a module to the

diagram only if N percent of the modules that refer to it
are already included or M percent of the modules it refers
to are already included. Repeat until no module fits the
policy.

This approach was very successful with the developers.
In fact, with minor parameter variation, we were able to
duplicate and exceed the developers efforts based on the
name matching technique of section 4.4.3. The technique
seems best suited to the lowest-level subsystems where the
parameters are clear. To examine subsystem embedding
we would need to collapse the low-level systems and treat
it and all of its references as a single module. This is the
same embedding idea used in the intermodule data flow
approach. However, this basic approach is capable of
producing a diagram of related composed subsystems.
Figure 4 is an example of such a diagram.

Figure 4. An Example Diagram of Composed
Subsystems

Figure 4 shows a collection of three related subsystems
drawn using the technique given in this section. Each box
represents a module averaging over 500 SLOC in size.
The diagrams are usually drawn in color where the color
represents the time from the last change. The colors
range from recent changes within 5 days in red through
older changes past 2 years in black. Both the modules and
the reference lines indicate time of last change. This way
a developer can determine quickly determine possible
sources of an error. Once an error has been localized to a
subsystem the best places to look for the problem are the
red modules and references.

The particular story of the subsystems in Figure 4 is an
interesting one for reverse engineering. The oldest
subsystem is the one on the left. It is rather small at 19
modules and about 9,000 SLOC. The second subsystem in
the middle was grafted onto it at a later time. This second
subsystem contains 27 modules and about 13,000 SLOC.

The rightmost and newest subsystem is about average size
for the subsystems we found at 54 modules and 27,000
SLOC. It was grafted onto the middle subsystem at a later
time. An appropriate structure for the reverse engineering
of these three related structures is as objects. The leftmost
subsystem is the base object. The middle subsystem
descends from the base object. The rightmost subsystem
descends from the middle one. These are much larger
objects than wusually found in object-oriented
programming discussions. Perhaps, this is how objects
should be used in large systems.

4.4.5 Subsystem Structure: After proposing
subsystems to the developers and getting them approved
as the highly cohesive concept units of the system, we
determined that in general subsystems have the basic
structure shown in Figure 5.

|
- pr—

routines
functional
decomposition
gﬁ Subsystem po
global functional
utility
\) | routines

JAVARN

to enclosing utilities
Figure 5. Basic Subsystem Structure

[7] =routine, 20~150 in a subsystem
average about 35

The basic subsystem structure is not a surprise. It is
similar to the structure of a small programs and
programming language level objects. Both of these
concepts represent encapsulations convenient to system
designers and maintainers. We found approximately 20 to
150 modules in a subsystem with the average size of
about 35 modules or 17,000 source lines. The reader
should be able to validate that the structure of Figure 5 is
somewhat the structure of the three subsystems in Figure
4.

5. Conclusions

We make no pretense that this was a scientific
investigation. Rather it was an attempt to make natural
observations on actual systems. We reported techniques
that worked on only three systems, but with thousands of
modules. It is not known whether these same techniques
will work on other systems.

Section 4.1 reports the issues, problems and solutions
in collecting data from real systems. We hope that our
techniques and solutions will aid other researchers in
their observations. We have presented a simple technique
in section 4.4.4 that seems to work to identify subsystems.
The wuse of subsystems as manpower assignment
technique to clean up the systems was very successful.

We believe that the hypothesis of subsystem existence
was validated. We believe that subsystems would be a
good start for the extraction of domain-specific software
components. The best validation of the subsystem concept
was that on their own volition developers made subsystem
diagrams; put them on their office walls; and used them
for reference, planning, and training. The architectural
concept of subsystems is an important one for forward
synthesis systems such as Draco that purport to address
the building large systems [10]. We also believe that the
subsystems can be a basis for converting an old system to
object-oriented programming as discussed in section
4.4.4.

We were very much surprised that the curves for the
two FORTRAN systems in Figure 2 and 3 were similar.
The Pascal system curves show the same characteristic
shapes but with at different values. We believe the curve
shapes are an aspect of large system development. We
believe the particular values are characteristic of the
encapsulation =~ mechanisms of the underlying
programming language.

The hypothesis of subsystem embedding seems used,
but it is not clearly validated. We are led to this
conclusion by examples such as Figure 4 that could be
viewed as an embedding. The M and N parameters in the
subsystem determination policy of section 4.4.4 seem to
change the view from enclosing subsystem to enclosed
subsystem. Also, the developers and managers talk about
subsystem embedding. Perhaps even for large systems the
degree of embedding is small. We suspect that the ratio of
the data in Figures 2 and 3 says something about average
subsystem formation and embedding; but it is still
unclear. Embedding needs a better determination and the
straight line fit of Figure 3 seems to call for some
explanation.

We believe that subsystems represent the domain-
specific building blocks of large systems. At an estimated
average size (in FORTRAN) of 17,000 source lines and
35 modules they are much larger than the loops, data
structures, procedures, functions, and programming
language-level objects that implement them. We believe
that these subsystems are where knowledge-based
program understanding systems should focus their
attention. In the absence of such systems for the reasons
discussed in section 2.3, these subsystems can serve as the

basis for the manual extraction of reusable software
components.

We would like to thank the companies, managers, and
developers that took their valuable time from the ordered
chaos of large system development to help us.

References

[1] Aho, A., and Ullman, J., "Data Flow Analysis",
Section 11.4, in The Theory of Parsing,
Translation, and Compiling, Volume I1:
Compiling, Prentice-Hall, 1973.

2] Biggerstaff, T., Mitbander, G., and Webster, D.,
"Program Understanding and the Concept
Assignment Problem", Communications of ACM,
37, 5(1994), pp 72-82.

[3] Dijkstra, E., "Complexity Controlled by
Hierarchical ~ Ordering of Function and
Variability", in Software Engineering, P. Naur and
B Randell eds., NATO Science Committee Report,
Germany (1968) pp. 181-185.

[4] Gamma, E. et al., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-
Wesley, 1994.

[5] Garland, D., and Shaw, M., "An Introduction to
Software Architecture", In Advances in Software
Engineering and Knowledge Engineering, Vol. 1.,
World Scientific Publishing.

[6] Letovsky, S., and Soloway, E., "Delocalized Plans
and Program Comprehension”, IEEE Software,
May, 1986, pp 41-49.

[71] Lientz, B.P., and Swanson, E.B., "Characteristics
of Application Software Maintenance",
Communications of ACM, 21, 6(1978) pp. 466-
471.

[8] Markosian, L., et al., "Using an Enabling
Technology to Reengineer Legacy Systems",
Communications of ACM, 37, 5(1994), pp 58-70.

[91 Neighbors, J., "The Draco Approach to
Constructing Software from Components", /EEE
Trans. on Software Engineering, SE-10, 5 (1984)
pp. 564-574.

(10]

(11]

[12]

(13]

(14]

[15]

[16]

Neighbors, J. "An Assessment of Reuse
Technology after Ten Years", in 3rd International
Conference on Software Reuse, IEEE Computer
Society Press, Nov. 1994, pp. 6-13.

Ning, J..Engberts, A., and Kozaczynski, W.,
"Automated Support for Legacy Code
Understanding", Communications of ACM, 37,
5(1994), pp 50-57.

Parnas, D., "On the Criteria to be Used in
Decomposing Systems into Modules",
Communications of ACM, 15, 12(1971) pp. 1053-
1058.

Quilici, A., "A Memory-Based Approach to
Recognizing Programming Plans",
Communications of ACM, 37, 5(1994), pp 50-57.

Rich, C., and Waters, R., "Automatic
Programming: Myths and Prospects", IEEE
Computer, August, 1988, pp 40-51.

Waters, R., "A Method for Analyzing Loop
Programs", IEEE Trans. Sftw. Eng., SE-3, 3(1979)
pp 237-247.

Wirth, N., "Program Development by Stepwise
Refinement", Communications of ACM, 14,
4(1971) pp. 221-227.

