
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Strategies for Data Reengineering

Henrard, Jean; Hick, Jean-Marc; Hainaut, Jean-Luc

Publication date:
2003

Link to publication
Citation for pulished version (HARVARD):
Henrard, J, Hick, J-M & Hainaut, J-L 2003, Strategies for Data Reengineering..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 16. Apr. 2024

https://researchportal.unamur.be/en/publications/57a56c4f-2531-47c4-ba78-e9f269236100

Laboratory of Database Application Engineering
Laboratoire d’Ingénierie des Bases de Données
www.info.fundp.ac.be/libd

LIBD

Strategies for Data Reengineering

Jean Henrard, Jean-Marc Hick,
Philippe Thiran, Jean-Luc Hainaut

FNRS contact day on «Software (re-)engineering »
Louvain-la-Neuve, 22 may 2003

LIBD

Plan

z Introduction
z Problem statement
z Reengineering strategies

z 2 dimensions
z 3 strategies

z Conclusion

LIBD

Introduction

z Legacy system =
z large and old programs build around legacy DBMS
z vital to the organization
z significantly resists modifications and changes
z expensive to maintain

z Solution : migrate to new platform and
technologies
z expensive and complex process

z Incremental strategy is less risky
z migrate the DB is one of the steps

LIBD

Problem statement

z Data reengineering =
deriving a new database from a legacy
database and adapting the software
components
z the functionalities of the system do not change

z Three main steps:
z schema conversion
z data conversion
z program modification

LIBD

Problem statement

z Schema conversion
z translation of the legacy schema

into equivalent schema in the new technology
z DBRE + database design

z Data conversion
z migration of the data instances from the legacy

system to the new one
z depends on the schema conversion

LIBD

Problem statement

z Program modification
z modification of the programs so that they access

the new DB instead of the legacy one
z functionalities, programming language, user

interface unchanged
z complex process that relies on the schema

conversion

LIBD

Reengineering strategies

z 2 dimensions
z database dimension (schema migration)
z program dimension (program modification)

z Data conversion is directly dependent on the
database dimension

LIBD

Database migration strategies

z Physical conversion (D1):
z translate to the closer construct into the target DMS

(e.g. 1 file ⇒ 1 table)
z no semantic interpretation
z cheap but poor quality DB

DDL analysis Coding

Sch. conversionSPS TPS

Source DMS-DDL Target DMS-DDL

LIBD

Database migration strategies

z Conceptual conversion (D2)
z recovering the semantic (conceptual sch) - DBRE
z developing the new DB from the conceptual sch
z good quality and documented DB but expensive

DDL analysis
Coding

Sch. refinement

SPS

Source DMS-DDL

Conceptualization

CS

code data

DB design

TPS

Target DMS-DDL

D
B

R
E

LIBD

Database migration strategies

z Schema conversion = schema transformation
z History = chain of transformations
z Mapping between the source (SPS) and

target (TPS) physical schemas

= SPS-to-TPS for physical migration
= SPS-to-CS-to-TPS for conceptual migration

LIBD

Program modification strategies

z Wrappers (P1)
z wrappers encapsulate the new database

y data wrapper =
y data model conversion
y semantic conversion
y functionality simulation

y “inverse” wrapper: simulate the legacy data interface on the
new DB

y ex: uses COBOL read, write for accessing SQL data
y SPS -- TPS mapping ⇒ automated generation of

wrapper

z programs use legacy data access logic
z program logic not changed
z local changes: 1 instruction ⇒ x instructions

LIBD

Program modification strategies

z Statement rewriting (P2)
z legacy DMS-DML ⇒ target DMS-DML

ex: replace COBOL file access statement by SQL
statement

z rewriting the access statements (new DMS-DML)
y each legacy DML statement must be located

and replaced by equivalent statements in the new DML
y SPT--PTS mapping ⇒ automatic program modification

z program logic not changed
z local changes: 1 instruction ⇒ x instructions

LIBD

Program modification strategies

z Logic rewriting (P3)
z program rewritten to use the new DMS-DML power

y explicitly accesses new data
y takes advantage of the new DML

z logic of the program is changed
y requires a deep understanding of the program

z global change: x instructions ⇒ y instructions)

LIBD

Reengineering strategies (summary)

Database (schema)

conceptual

physical

Programlogicstatementswrappers

<D2,P1> <D2,P2> <D2,P3>

<D1,P1> <D1,P2> <D1,P3>

z Six strategies

z <D1,P3> useless

LIBD

Wrapper strategy <D2,P1>

z modification of the legacy code is minimal,
new DB well structured and optimized w.r.t. the new DMS

z good solution for complete migration:
first the DB and later the programs... Illustration

READ PRODUCT
 KEY IS PROD-CODE
 INVALID KEY
 GO TO ERR-123.

DELETE PRODUCT
 END-DELETE.

CALL WR-ORD-MNGMT
 USING "READKEY","PRODUCT",
 "PROD-CODE",
 PRODUCT,WR-STATE.
IF STATUS OF WR-STATE NOT= 0
 GO TO ERR-123.

CALL WR-ORD-MNGMT
 USING "DELETE ","PRODUCT",
 "",PRODUCT,WR-STATE.

⇒

LIBD

Statement rewriting strategy <D1,P2>

z Illustration

 MOVE CUS-CODE TO ORD-CUSTOMER.
 START ORDER KEY >= ORD-CUSTOMER.
 MOVE 0 TO END-FILE.
 PERFORM READ-ORD UNTIL END-FILE = 1.
READ-ORD SECTION.
BEG-ORD.
 READ ORDER NEXT

 AT END MOVE 1 TO END-FILE
 GO TO EXIT-ORD.
 <<processing current ORD record>>
EXIT-ORD.
 EXIT.

EXEC SQL declare cursor ORD_GE_K1 for
 select ORD_CODE,ORD_CUSTOMER,ORD_DETAIL
 from ORDER where ORD_CODE >= :ORD-CODE
 order by ORD_CODE END-EXEC.
 . . .
 EXEC SQL declare cursor ORD_GE_K2 for
 select ORD_CODE,ORD_CUSTOMER,ORD_DETAIL
 from ORDER where ORD_CUSTOMER >= :ORD-CUSTOMER
 ORDER BY ORD_CUSTOMER END-EXEC.
 ...
 MOVE CUS-CODE TO ORD-CUSTOMER.
 EXEC SQL open ORD_GE_K2 END-EXEC.
 MOVE "ORD_GE_K2" to ORD-SEQ.

 IF ORD-SEQ = "ORD_GE_K1"
 EXEC SQL fetch ORD_GE_K1 into :ORD-CODE,
 :ORD-CUSTOMER,:ORD-DETAIL END-EXEC
 ELSE IF ORD-SEQ = "ORD_GE_K2"
 EXEC SQL fetch ORD_GE_K2 into :ORD-CODE,
 :ORD-CUSTOMER,:ORD-DETAIL END-EXEC
 ELSE IF ...
 END-IF.
 IF SQLCODE NOT = 0
 MOVE 1 TO END-FILE GO TO EXIT-ORD.
 <<processing current ORD record>>

⇒

LIBD

Statement rewriting strategy <D1,P2>

z modification of the legacy code is minimal,
DB not restructured, mimics the legacy DB

z Quick and dirty solution....

LIBD

Logic rewriting strategy <D2,P3>

z Illustration
DISP-ORD.
 READ ORDER KEY IS ORD-CODE
 INVALID KEY
 GO TO ERR-ORD-NOT-FOUND.
 PERFORM DISP-ORD-CUS-NAME.
...
DISP-ORD-CUS-NAME.
 MOVE ORD-CUSTOMER TO CUS-CODE
 READ CUSTOMER
 INVALID KEY
 DISPLAY "ERROR: UNKOWN CUST"
 NOT INVALID KEY
 DISPLAY "ORD-CODE: ”

 ORD-CODE NAME.

DISP-ORD.
 EXEC SQL
 SELECT O.CODE, C.NAME
 INTO :ORD-CODE, :NAME
 FROM ORDER O, CUSTOMER C
 WHERE O.CUS_CODE = C.CODE
 AND O.CODE = :ORD-CODE
 END-EXEC.
 IF SQLCODE = 0
 DISPLAY "ORD-CODE: »
 ORD-CODE NAME
 ELSE
 GO TO ERR-ORD-NOT-FOUND.

⇒

LIBD

Logic rewriting strategy <D2,P3>

z program is rewritten (long, difficult, risky)
new DB well structured and optimized w.r.t. the new DMS
programs optimized w.r.t. the new DMS

z good solution if no program migration planned, only the
DB is migrated

LIBD

Conclusion

Strategy Database migration Program conversion Quality
D2, P1 complete DBRE,

expensive
cheap,
fully automated,
wrapper semi-
automatically
generated

good quality DB,
the programs
unchanged (call to the
wrapper)

D1, P2 cheap,
fully automated

cheap,
fully automated

poor quality DB,
the programs
unchanged (call the
new DML)

D2, P3 complete DBRE,
expensive

very expensive,
requires a deep
understanding of the
programs

good quality DB,
programs semi-
renovated

LIBD

Conclusion

Strategy Performance Maintenance Evolution
D2, P1 Poor: legacy logic,

mismatch,
emulation

like the legacy system,
but the semantics of
the DB is known
and data access
simulated by the
wrapper

easier, the new
functions can directly
access to the new DB

D1, P2 Poor: legacy logic,
mismatch

like the legacy system,
the semantics of the
DB is not recovered
but data access are
simulated by the new
DML

difficult, the DB
simulates the legacy
one

D2, P3 Good: new logic,
matching

easier, the semantics
of the DB is known

easier, the new
functions can directly
access to the new DB

