
On the Use of Metaballs to Visually Map Source Code Structures and Analysis
Results onto 3D Space

Juergen Rilling and S. P. Mudur
Department of Computer Science,

Concordia University, Canada
rilling@cs.concordia.ca, mudur@cs.concordia.ca

Abstract

Many reverse-engineering tools have been developed
to derive abstract representations from existing source
code. Graphic visuals derived from reverse engineered
source code have long been recognized for their impact on
improving the comprehensibility of the structural and
behavioral aspects of software systems and their source
code. As programs become more complex and larger, the
sheer volume of information to be comprehended by
developers becomes daunting. In this paper, we combine
dynamic source analysis to selectively identify source code
that is relevant at any point and combine it with 3D
visualization techniques to reverse engineer and analyze
source code, program executions, and program structures.
For this research, we focus particularly on the use of
metaballs, a 3D modeling technique that has already
found extensive use representing complex organic shapes
and structural relationships in biology and chemistry, to
provide suitable 3D visual representations for software
systems.

Keywords: software visualization, program slicing, 3D
modeling, metaballs, visual mapping.

1. Introduction

Reverse engineering as part of program
comprehension can be described as the process of
analyzing subject system components and their
interrelationships to create a higher level of abstraction
and to understand the program execution and the sequence
in which it occurred. The goal of software visualization is
to acquire sufficient knowledge about a software system
by identifying program artifacts and understanding their
relationships. As programs become more complex and
larger, the sheer volume of information to be
comprehended by the developers becomes daunting. It
would be ideal to be able to simultaneously view and
understand detailed information about a specific activity in
a global context at all times for any size of program. As

Ben Shneiderman explains in [25,26], the main goal of
every visualization technique is “Overview first, zoom and
filter, then details on demand”. This means that
visualization should first provide an overview of the whole
set of data then let the user restrict the set of data on which
the visualization is applied, and finally give more details
on the part of interest to the user. Software visualization of
source code can be further categorized in static views and
dynamic views. The static views are based on a static
analysis of the source code and its associated information
and provide a more generic high-level view of the system
and its source code. The dynamic view is from analysis of
monitored program execution. Based on their available
run-time information, dynamic views can provide a more
detailed and insightful view of the system with respect to a
particular program execution. Compared to the static
views, the dynamic nature of the information requires
additional overhead while gathering the required data. As
Mayhauser [16] illustrated, dynamic and static views
should be regarded as complementary views rather than
being mutually exclusive.

Typically, a program performs a large set of
functions/outputs. Rather than trying to comprehend all of
a program’s functionality, programmers will focus on
selected functions (outputs) with the goal of identifying
which parts of the program significantly influence those
particular functions. One approach is to apply program
slicing that allows for a reduction of data to be displayed
by including only those software entities (files, modules,
classes, functions, statements and objects) that are relevant
with respect to the computation of a specific program
function of interest. Program slicing is a well-known
decomposition technique that transforms a large program
into a smaller one that contains only statements relevant to
the computation of a selected program function (output).
This is particularly of interest for the analysis and
comprehension of large software systems and program
executions associated with them.

Visual representations of programs, primarily based
on some diagrammatic notation, have been evolved right
from the early days of computing [27]. However, for large,
complex software systems, the comprehension of such

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

diagrammatic depictions is restricted by the resolution
limits of the visual medium (2D computer screen) and the
limits of user’s cognitive and perceptual capacities. One
approach to overcome or reduce the limitations of the
visual medium is to make use of a third dimension by
mapping source code structures and program executions to
a 3D space. Mapping these program artifacts into the 3D
space allows users to identify common shapes or common
configurations that may become apparent, and which
could then be related directly to design features in the
code. In this paper, we focus on the use of metaballs, often
also referred to as metablobs, soft objects, point clouds or
more generally implicit surfaces, a 3D modeling technique
that has found extensive use in representing and
visualizing complex organic shapes and structural
relationships such as the DNA, humans, animals and other
molecular surfaces [4,5,32,33,34]. In this research, we
extend the application domain of metaballs to include the
visualization and comprehension of very large program
artifacts. The extent of their applicability in other domains
has been such that virtually every significant
commercially available 3D modeling software
incorporates metaball modeling and rendering in some
fashion or the other. Correspondingly, there are a large
number of free software sites for packages supporting this
technology [1]. However, to the best of our knowledge,
ours is the first such attempt to apply the metaball
metaphor in software visualization.

The rest of this paper is organized as follows: Section
2 introduces background related to 2D and 3D
visualization techniques and program slicing. Section 3
discusses application of metaballs in combination with
program slicing for typical software comprehension tasks.
Section 4 presents a summary and some possible
extensions.

2. Background

Program Comprehension
The increasing size and complexity of software

systems introduces new challenges in comprehending the
overall program structure, their artifacts and the behavioral
relationships among these artifacts. Numerous theories
have been formulated and empirical studies conducted to
explain and document the problem solving behavior of
software engineers engaged in program comprehension
[6,7,11,16,22]. The bottom-up approach reconstructs a
high level of abstraction that can be derived through
reverse engineering of source code. The top-down
approach applies a goal-oriented method by utilizing
domain/application specific knowledge to identify parts of
the program that are necessary for identifying the relevant
source code artifacts. Both top-down and bottom-up
comprehension models have been used in an attempt to
defined how a software engineer understands software

systems. Studies have shown that, in reality, software
engineers switch between these different models
depending on the problem-solving task [16]. This
opportunistic approach can be described best as exploiting
both top-down and bottom-up.

When it comes to comprehension of very large
programs, humans are limited in the density of textual
information they can resolve and comprehend
[2,16,17,18,24]. Visualization in the form of reverse
engineered 2D diagrams (e.g., collaboration diagrams,
call-graphs, etc.) and models (UML class models) are
suggested in the literature [References] to provide users
with higher abstraction views on the software under
investigation. For large software systems it becomes
increasingly difficult to comprehend these diagrams for
several reasons: (1) the diagram complexity is increased
because of the large amount of information to be
displayed, (2) the awkward layout techniques provided by
the visualization approach,
(3) their non-intuitive navigation, and (4) often their very
specialized scope in depicting only certain program
artifacts and their relationships.

Figure 1. Sequence diagram to visualize program

executions

3D versus 2D Visualization
As previously mentioned, software visualization of

source code structure and execution behavior could consist
of both static views and dynamic views [3,23,30]
Compared to static views, dynamic views are based on
information from the analysis of recorded or monitored
program executions. During the recording of a program
execution, a large amount of data may be collected.
Although this is not a new problem, the rapid increases in
the quantity of information available and a growing need
for more highly optimized solutions have both added to
the pressure to make good and effective use of this
information [19]. This leads to new challenges in
visualization, navigation and generally coping with the
complexity of the dynamic information.

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Three-dimensional visual representations are often
suggested and presented as a solution to provide just this
required extra space and resulting ease of use in
navigation and abstraction level. While the advantages of
adding a third dimension are initially quite obvious, these
are realizable only if truly distinct and effective use is
made of the added dimension. However, most of the
current approaches are just transforming established 2D
visualizing techniques into a 3D space. 3D software
structure visualizations are still centered on creating
standard call graphs within a 3D space. For example, the
usage of 3D call-graphs does offer a greater working
volume for the graphs thus increasing the capacity for
readability. However, at the same time, they introduce
undesirable effects that significantly affect the gain from
the added dimension. Problems that might be introduced
by 3D visualization techniques include significant objects
being obscured, disorientation, and spatial complexity. To
some limited extent, these issues can be resolved by 3D
interaction techniques where the viewpoint of the 3D
graph is actually within the graph structure; otherwise, the
3D visualization is limited to merely a 2D picture of a 3D
structure. Ultimately, for 3D visualizations to be effective,
other techniques than just mapping 2D models into the 3D
space are required. These techniques have to introduce a
more meaningful and abstract program representation that
makes full use of the 3D environment and thus the
engineer’s natural intuition and perceptual skills [20].

Figure 2. Mapping 2D sequence diagram notation into
3D space.

Program slicing

As mentioned earlier, given the large set of
functions/outputs of a large program, in the process of
program comprehension, programmers tend to focus on

selected functions (outputs) and those parts of a program
that are directly related to that function. Program slicing, a
program reduction technique, allows one to narrow down
the size of the source code of interest by identifying only
those parts of the original program that are relevant to the
computation of a particular function/output (Figure 3 and
Figure 4).

Figure 3. Sample program

Through reverse engineering, it is possible to derive data
and control dependencies that can be utilized for
algorithmic source code analysis.

The source code analysis provides users with
additional insight in the dependencies and relationship
among the different program artifacts. Static slicing [31]
derives its information through the analysis of the source
code. A static program slice consists of all statements in
program P that may potentially affect the value of variable
v at some point p [8,9]. That is, a static slice preserves a
program’s behavior with respect to variable v for all
possible program inputs. Static slicing reduces the size of
the original program, but frequently still leads to slices
that are rather large and difficult to analyze. Slicing has
been shown to be useful in program debugging, testing,
program understanding, and software maintenance
[8,9,21,31].

Figure 4. Slice criterion, lastdep at position 8

Class Bank Class Account

Bank::Deposit()
{

1. cin>> amt>>acct;
2. lastdep= amt;
3. while (amt > 0)
{
4. lastdepact.Deposit(amt,acct);
5. act.PrintBalance(acct,lastdep);
6. transactions ++;
7. cin>> amt>>acct;
}
8. cout << lastdep;
9. cout << transactions;

int Deposit (int amt, acct)
{
10. balance[acct]+= amt;
11. last_deposit = amt;
12. return (last_deposit);
}

voidPrintBalance(int acct, lastdep)

{
13. cout << balance[acct]<<lastdep;
}

Class Bank Class Account

Bank::Deposit()
{

1. cin>> amt>>acct;
2. lastdep= amt;
3. while (amt > 0)
{
4. lastdepact.Deposit(amt,acct);
5. act.PrintBalance(acct,lastdep);
6. transactions ++;
7. cin>> amt>>acct;
}
8. cout << lastdep;
9. cout << transactions;

int Deposit (int amt, acct)
{
10. balance[acct]+= amt;
11. last_deposit = amt;
12. return (last_deposit);
}

voidPrintBalance(int acct, lastdep)

{
13. cout << balance[acct]<<lastdep;
}

Bank::Deposit()
{

1. cin >> amt >> acct;
3. while (amt > 0)
{
4. lastdep=act.Deposit(amt,acct);
7. cin >> amt >> acct;

}
8. cout<<lastdep;

Class Bank

int Deposit (int amt, acct)
{
10. last_deposit = amt;
12. return (last_deposit);
}

Class Account

Bank::Deposit()
{

1. cin >> amt >> acct;
3. while (amt > 0)
{
4. lastdep=act.Deposit(amt,acct);
7. cin >> amt >> acct;

}
8. cout<<lastdep;

Class Bank

int Deposit (int amt, acct)
{
10. last_deposit = amt;
12. return (last_deposit);
}

Class Account

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

 The strength of static slicing lies in the following areas:
(a) the computation of a static slice is relatively
inexpensive (compared to dynamic slicing) in that only the
static analysis of the source code and no program
execution is required, and (b) it is useful to gain a general
understanding of the program parts that contribute to the
computation of a selected function with respect to all
possible program executions. However, static slicing also
has some major drawbacks: (1) for programs containing
conditional statements or dynamic language constructs
like polymorphism, pointers, aliases, etc., static slicing has
to make conservative assumptions with respect to their
run-time contribution and their relevance for the slice
computation, (2) based on its static nature, static slicing
does not provide any information with respect to the
analysis of the program execution, and (3) frequently,
static slicing produces larger program slices than dynamic
slicing algorithms.

Dynamic slicing can be regarded as a refinement of
the static slice by only preserving a program's behavior for
a specific program data input rather than all possible
program data inputs [13]. Several different techniques for
the computation of dynamic slices have been proposed,
e.g., [13,21]. For programmers, it is often not feasible to
comprehend the programs without observing a particular
program execution. Dynamic slicing allows a programmer
to focus on a particular program execution (program
input), rather than all possible program executions. This is
achieved by using data based on an actual program flow,
which also leads to accurate handling of dynamic and
conditional language constructs. Frequently dynamic
program slices are smaller than the ones computed by
static slicing algorithms. One of the major drawbacks of
dynamic slicing, compared to static slicing, is that it
requires the identification of relevant input conditions and
a program execution for that particular input. The
identification of input conditions and the recording of
program executions require an additional system
overhead. Figure 5 summarizes the trade-offs between
static and dynamic approaches

Figure 5. Dynamic versus static approaches

The dynamic approaches provide additional insights
with respect to program structures and their executions,
but at the same time they also create new challenges: (1)
effective methods to visualize these large amounts of
information, (2) development of “dynamic” visualization
approaches that allow showing of the dynamic changes in
the data. Static approaches, on the other hand, provide
more generic, less detailed view on the data and its
comprehension support.

3. The metaball metaphor to visualize source

code

 One aid to improve the understanding of large
programs is to reduce the amount of detail a programmer
sees by using a higher level of abstraction to represent a
program. Over the last decade, programs became larger
and more complex, causing new challenges to the
programmer in visualizing these complex and large source
code structures. Different techniques and approaches have
been developed and validated with users. Providing
different levels of abstraction might not be sufficient since
users might be still dealing with a large amount of
information and data. Not every visualization technique is
equally usable in displaying a particular dataset. The
visualization technique might lack an appropriate
navigation support or may not allow the effective
reduction of the amount of information displayed through
a choice of distinct views. The disadvantages of most of
the commonly used high-level abstractions such as call-
graph, UML class models, collaboration diagrams, etc.
have already been discussed before.
 Metaballs, also known as metablobs, soft objects,
point clouds or more generally implicit surfaces, are a 3D
object modeling technique which blends and transforms an
assembly of particles with associated shapes into a more
complex 3D shape, whose use is most suitable for animal
and other organic forms. This technique models particles
in 3D space, which have energy (strength) and have a well
defined, parametrically controlled influence over the
surrounding and neighboring particles. A metaball is
defined by a so-called three-dimensional variable density
field, radiating from a given center point. The value of the
field can vary linearly with distance from the center, or in
any other way expressible via a mathematical formula. For
example, a field can have a negative density distribution,
or even an eccentric distribution. A point on a metaball
surface is constructed at all points in the field with the
same density value, which is given by the modeler or
derived from the modeling context.
 If two or more metaballs are constructed in close
proximity to one another so that they overlap, they
coalesce and their fields are added in a process called
fusion to produce a composite field, which is then
evaluated to produce a composite surface. Metaball fields

Dynamic views and algorithms

Specialization Data volume

+ +

- -

Static views and algorithms

Dynamic views and algorithms

Specialization Data volume

+ +

- -

Static views and algorithms

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

can be transformed in a variety of ways to produce organic
shapes necessary to represent, for example, the human
form. Metaball surfaces are usually rendered as polygons.
Metaballs have found extensive use in representing and
visualizing complex organic shapes and structural
relationships such as DNA, humans, animals, and other
molecular surfaces. Extensions include grouping of
particles, selective influence over other particles, hiding
particles, etc.

In this paper, we propose to apply the metaball

metaphor1 to visualize software entities and their dynamic
influence over other entities. By defining visually intuitive
mappings between the entities or parameters in the
software slices, and metaball models, we can create a 3D
virtual environment in which it is possible to walk around
these entities, see what significantly influences the entity
of interest, hide insignificant influences or zoom into
entity-groups for understanding more detailed interactions.

1 Other 3D metaphors that have been for software visualization include
cone-trees [27], immersive VR [15], human agent [10] and world cities
[12]. However each has its own specific comprehension objectives and
its own advantages/disadvantages.

Mapping different entities in multiple views, say object
oriented or functional, it becomes possible to use the same
3D metaphor to help understand software from different
viewpoints. Mapping entity type to shape gives us the
potential to visually differentiate, for example, free
functions from member functions in a C++ program.
Interacting with a complex metaball model, by moving an
entity of interest closer to clusters of other entities and
seeing the animated response from these further helps in
visualizing the more dynamic aspects of a large software
program. In short, the metaball metaphor gives us a
constantly moving micro-universe of entities (metaballs),
which can be dynamically altered to model program
parameters and can be interactively walked through for
various reverse engineering purposes, such as design
evaluation, maintenance, testing, etc.

Mapping metaballs to program structures
 Difficulties in understanding of OO programs are
caused by the relationships that exist between classes and
other parts of the program. Furthermore, in the case of
very large programs, programmers face difficulties in
comprehending the resulting highly complex
diagrammatic representations of these relationships. Thus,
UML based static and dynamic visualization techniques
such as class models, sequence and collaboration diagrams
can be applied for smaller software systems to provide an
overview of the relationships in a program. However, for
large software systems these diagrams will not provide
adequate abstraction to visualize all the dependencies.
 Particles in the metaball metaphor can be mapped to
software structures, with blobs representing an object or a
function (distinguished by different shapes for particles)
that are created dynamically during a program execution.
The potential energy surrounding blobs has traditionally
been used to indicate the influence amongst blobs. This
can be very intuitively used to visualize the strength of the
coupling among program artifacts. For example, the
number of function invocations performed among objects
could be one of the parameters used to indicate the
relationship (coupling) among the blobs (cf Figure 6).
 The dimensions or size of a blob can be used to
indicate a desired measure of the software entity, for
example, and number of statements in a function. Blobs
will be spatially located in clusters with spatial nearness
indicating an identifiable association between the software
entities that are mapped. We expect that a programmer
preferred spatial configuration of entities is maintained in
a persistent manner. This will enable the programmer to
retain the visual association with software entities with
very little effort.

a) DNA structure (www.scripps.edu/pub/olson-web)
b) Organic visual (www.visualparadox.com)
c) Molecular Images (The Scripps Research Institute.)
Figure 6: Traditional applications of metaballs

a b

c

a b

c

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

 Dynamically changing associations are visually
depicted by animating changes in appearance properties of
blobs/connections. Collapsing particle clusters enables us
to visualize abstraction at different hierarchical levels.
Similarly, hiding or dimming blobs that are insignificant
or less significant to a particular comprehension task gives
us the ability to present only details that matter.
Transparency and blob inclusion may be used to depict
encapsulation. Table 1 shows the visual mappings that
have been defined to use the metaball metaphor for
software visualization.

Program Artifact Metaball property
Software Entities Particles
Entity Types Blob Shape
Entity measure (eg. no. of
statements in function)

Blob dimensions

Entity association Particle clustering
Entity relationship (eg.
coupling)

Energy potential amongst
particles.

Hierarchic levels of
abstraction

Particle collapsing

Different dynamic
behavioral aspects

Blob colors, brightness,
shininess, animated change
in connections, etc.

Table 1. Visual Mappings

 Clearly, the metaball metaphor provides us with a
visually rich environment to depict entities in a software
system along with visual techniques that enable mapping
of software structure and dynamic behavior onto highly
intuitive visual renderings.

Mappings for program slices
 In what follows, we will discuss further extensions to
the previously introduced metaball metaphor in visualizing
software structures, based on program slicing techniques.
For larger software systems, the metaball visualization
technique faces similar problems as more traditional
visualization techniques in its ability to scale for large
amount of information and in providing guidance during

the comprehension and analysis of dynamic dependencies
that exist within large software system (cf Fig 8).

Figure 8. Two different views of a complex metaball
environment

 Not only can program slicing be used to identify
dependencies with respect to a function of interest within
the given program and its execution, but also, it allows for
a reduction of the amount of information that has to be
displayed. This enables a programmer to focus attention
on those parts of a program that are relevant with respect
to a particular function or feature. An object/function is
included in the slice if at least one statement within this
program artifact is included in a program slice. Similarly,
a call relationship connecting line between two modules
M1 and M2 (where M1 calls M2) is included in the slice if
at least one "call M2" statement inside of module M1
belongs to the program slice. One approach to display a
slice is by highlighting the modules (blobs) and call
relationships that belong to the slice in the original
metaball diagram, showing the complete program.
Another approach is to display a metaball sub-diagram
that is constructed from the original metaball diagram by
hiding all modules (blobs) and their calling relationships
that do not belong to the slice. The metaball metaphor can
be further extended to visualize slicing related information
through the introduction of different types of shading,
texture and lighting techniques. Shading can be used to
indicate, for example, the percentage of statements
included in the slice. Focused lightning can be used to
create a focal point for indicating the current execution
position or to highlight objects that gained influence
during a step-wise program re-execution.

Enhancing dynamic views through the notion of
relevancy

The notion of relevancy is derived from the
computation of a dynamic slice. Relevancy is based on the
fact that it is possible for a statement that is part of a slice
to be executed several times, however only a subset of
these executions might be relevant to the computation of a
selected function. In other words, it is possible for one
action of call X to be relevant to the computation of the
selected function but a different action of the same call X
in the same execution trace is not relevant to the
computation of this function. In many situations, a

 left: shows low coupling between two similar type entities
 middle: shows high coupling between two similar type entities
 right: shows medium coupling between two different type entities
Figure 7: Metaballs in visualizing software interaction

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

programmer may be interested in analyzing only program
executions (execution of the dynamic slice) that are
relevant to the computation of the function of interest.
Figure 9 shows this visual for the slice last_dep (shown in
Figure 3). Only the second execution of the member
function Deposit will be relevant, hence the second
execution overwrites the previous value of the variable
last_dep. Therefore, the notion of relevancy allows for
reduction in the information complexity of the execution
trace to be observed.

Another program slicing extension is the concept of

influencing program artifacts. Influencing program
artifacts allow a user to identify those program parts that
currently influence a variable/function of interest. For a
programmer, it is almost impossible to determine during
the analysis process which program artifacts are currently
influencing the computation of a particular function. The
concept of an influencing program artifact is similar to the
concept of the relevant program artifact based on dynamic
slicing related information that is normally discarded after
a slice computation. The difference between relevant and
influencing artifacts is that relevant artifacts identify
program executions that are relevant for the computation
of a particular function. Influencing artifacts, on the other
hand, provide information about which program artifacts
are influencing at a current execution position in the
computation of a selected function. One possible
visualization approach is to highlight the influencing parts
and dim the rest.

Additional visualization enhancements
Another approach to reducing the amount of data is to

allow the user to select the granularity of a particular view.
For a visualization technique to be scalable to represent
large amounts of data, the metaphor has to support
techniques such as collapsing, hiding, and expanding parts
of the diagram, therefore giving the user the ability to
select the view granularity and consequently the amount of
information that has to be displayed.

Clustering/grouping

Frequently, it is advantageous to reduce the number of
visible elements at any time. Limiting the number of
visual elements to be displayed both improves the clarity
and simultaneously increases performance of layout and
rendering [14]. Various “abstraction” and “reduction”
techniques have been applied by researchers in order to
reduce the visual complexity of graph like structures. One
approach is to perform clustering.

Clustering can be described as the process of
discovering groupings or classes in data based on chosen
semantics. Clustering techniques have been referred to in
the literature as cluster analysis, grouping, clumping,
classification, and unsupervised pattern recognition [14].
The use of the semantic data associated with metaballs to
perform clustering could be termed content–based
clustering. Content–based clustering can yield groupings
that are most appropriate for a particular application and
can even be combined with structure–based clustering.
Content–based clustering requires application–specific
data and knowledge. It is important to note that clustering
can be used for functions such as filtering and search. In
visualization terms, filtering usually refers to the de–
emphasis or removal of elements from the view, while
searching usually refers to the emphasis of an element or
group of elements. Both filtering and search can be
accomplished by partitioning elements into two or more
groups, and then emphasizing one of the groups.

We apply clustering of metaballs to provide users
mainly with an option to summarize and analyze a
program structure or a program execution. The clustering
techniques are less applicable in visualizing dynamic
changes (in particular for large software systems), because
of navigation or orientation issues. Grouping, and
therefore, changing the layout dynamically will distort a
user’s ability to correlate the clusters with a particular
program structure or content.

Applying the metaball metaphor in program
comprehension

One basic requirement to enhance acceptance of
visualization techniques is to provide programmers with
navigation techniques that provide easy navigation and a
clear perspective regarding how the current program part
under investigation relates to the overall structure of the

Bank::Deposit

act.Deposit

act.Deposit

Account::Deposit (intamt, acct)

{

10. balance[acct]+= amt;

11. last_deposit = amt;

12. return (last_deposit)

}

Account::Deposit (intamt, acct)

{

102. balance[acct]+= amt;

112. last_deposit = amt;

122. return (last_deposit)

}

Relevant

execution

Non-relevant

execution

1st Execution

2nd Execution

Bank::Deposit

act.Deposit

act.Deposit

Account::Deposit (intamt, acct)

{

10. balance[acct]+= amt;

11. last_deposit = amt;

12. return (last_deposit)

}

Account::Deposit (intamt, acct)

{

102. balance[acct]+= amt;

112. last_deposit = amt;

122. return (last_deposit)

}

Relevant

execution

Non-relevant

execution

Bank::Deposit

act.Deposit

act.Deposit

Account::Deposit (intamt, acct)

{

10. balance[acct]+= amt;

11. last_deposit = amt;

12. return (last_deposit)

}

Account::Deposit (intamt, acct)

{

102. balance[acct]+= amt;

112. last_deposit = amt;

122. return (last_deposit)

}

Relevant

execution

Non-relevant

execution

1st Execution

2nd Execution

Coupling in the right picture is more relevant than in the left picture

Figure 9. Relevancy and its visualization

Bank::Deposit

act.Deposit

act.Deposit

Account::Deposit (intamt, acct)

{

10. balance[acct]+= amt;

11. last_deposit = amt;

12. return (last_deposit)

}

Account::Deposit (intamt, acct)

{

102. balance[acct]+= amt;

112. last_deposit = amt;

122. return (last_deposit)

}

Relevant

execution

Non-relevant

execution

1st Execution

2nd Execution

Bank::Deposit

act.Deposit

act.Deposit

Account::Deposit (intamt, acct)

{

10. balance[acct]+= amt;

11. last_deposit = amt;

12. return (last_deposit)

}

Account::Deposit (intamt, acct)

{

102. balance[acct]+= amt;

112. last_deposit = amt;

122. return (last_deposit)

}

Relevant

execution

Non-relevant

execution

Bank::Deposit

act.Deposit

act.Deposit

Account::Deposit (intamt, acct)

{

10. balance[acct]+= amt;

11. last_deposit = amt;

12. return (last_deposit)

}

Account::Deposit (intamt, acct)

{

102. balance[acct]+= amt;

112. last_deposit = amt;

122. return (last_deposit)

}

Relevant

execution

Non-relevant

execution

1st Execution

2nd Execution

Bank::Deposit

act.Deposit

act.Deposit

Account::Deposit (intamt, acct)

{

10. balance[acct]+= amt;

11. last_deposit = amt;

12. return (last_deposit)

}

Account::Deposit (intamt, acct)

{

102. balance[acct]+= amt;

112. last_deposit = amt;

122. return (last_deposit)

}

Relevant

execution

Non-relevant

execution

Bank::Deposit

act.Deposit

act.Deposit

Account::Deposit (intamt, acct)

{

10. balance[acct]+= amt;

11. last_deposit = amt;

12. return (last_deposit)

}

Account::Deposit (intamt, acct)

{

102. balance[acct]+= amt;

112. last_deposit = amt;

122. return (last_deposit)

}

Relevant

execution

Non-relevant

execution

1st Execution

2nd Execution

Bank::Deposit

act.Deposit

act.Deposit

Account::Deposit (intamt, acct)

{

10. balance[acct]+= amt;

11. last_deposit = amt;

12. return (last_deposit)

}

Account::Deposit (intamt, acct)

{

102. balance[acct]+= amt;

112. last_deposit = amt;

122. return (last_deposit)

}

Relevant

execution

Non-relevant

execution

Bank::Deposit

act.Deposit

act.Deposit

Account::Deposit (intamt, acct)

{

10. balance[acct]+= amt;

11. last_deposit = amt;

12. return (last_deposit)

}

Account::Deposit (intamt, acct)

{

102. balance[acct]+= amt;

112. last_deposit = amt;

122. return (last_deposit)

}

Relevant

execution

Non-relevant

execution

1st Execution

2nd ExecutionAccount::Deposit (intamt, acct)

{

102. balance[acct]+= amt;

112. last_deposit = amt;

122. return (last_deposit)

}

Relevant

execution

Non-relevant

execution

1st Execution

2nd Execution

1st Execution

2nd Execution

Coupling in the right picture is more relevant than in the left picture

Figure 9. Relevancy and its visualization

Coupling in the right picture is more relevant than in the left picture

Figure 9. Relevancy and its visualization

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

software system. Enhancing the maintainability requires
software developers and designers to enhance the quality
and the design of existing systems. The metaball metaphor
can be applied to provide programmers with an intuitive
technique that visually guides programmers during typical
maintenance tasks. Maintenance tends to degrade the
structure of software, ultimately making maintenance
more costly. The longer object oriented systems are in use,
the more likely that these systems have to be maintained.
They have to be changed to reflect new features
(perfective maintenance), fix identified defects (corrective
maintenance), and adjusted for a changing environment
(adaptive maintenance). In what follows, we describe the
potential use of metaballs in connection with program
slicing and its application in software maintenance.

Design evaluation

Software systems have to be flexible in order to cope
with evolving requirements [6,16,29]. Although good
software engineering practice encourages programmers to
plan for future modifications, not every future design
change can be predicted. User requests for changes are
often a consequence of using the system after delivery.
Well-designed modules should exhibit a high degree of
cohesion and a low degree of coupling, such that each
module addresses a specific, well-defined sub-function
from a system structure view. As we have already seen,
the metaball visualization metaphor allows one to identify
and analyze in an intuitive way the coupling among
different program artifacts. In combination with program
slicing, the metaball metaphor enables the creation of
several logical views of the system, representing the slice
specific couplings that exist in a particular system. A
hotspot approach can be applied to identify units of
viability, called hotspots, by highlighting those parts of the
diagrams that do not meet a user pre-specified quality
criteria. After analyzing a program execution, the system
will display hotspots to visualize locations in the current
design where the system does not meet the selected design
quality (with respect to coupling interaction).

Testing

Program slicing has already been shown to be useful
for software testing [8,9,13,31]. The metaball visualization
techniques can further provide a very intuitive high-level
interface in identifying the test coverage of a particular
modules/classes. In particular, for regression testing
performed after modifying a program part, the metaball
approach combined with program slicing can help to
improve the testing process. The reduced program
complexity/size of the slice in combination with the
metaball visualization allows for further reduction in the
time and effort required to test program parts.
Additionally, by applying clustering and grouping of the
metaballs in the system that are highly coupled with each

other, problem areas can already be identified at a very
high level of visual abstraction.

Debugging

For the visualization of long program executions, one
has to apply different levels of granularity within the
metaball visualization. A metaball can represent a variety
of programming constructs, like a file, a class/module a
loop, etc [30]. It is essential that the user have the option
to collapse and expand each node to select an appropriate
view. Moreover, the color and/or the shape of the nodes
could be used to visually help separate types of files
(headers, sources). Metaballs can be used in connection
with program slicing to re-execute a program (based on a
record of program execution) and to highlight the objects
that are influencing the computation of a variable of
interest at a current execution position. Therefore, the user
can dynamically identify those parts of a program
execution that are influencing the computation of a
selected variable at a current execution position.

Performance Analysis

In typical performance analysis tools, program
executions are analyzed and associated to resource
requirements. During performance analysis it would be
desirable not only to identify program artifacts that were
executed but also their frequencies. For a programmer, it
is more important to distinguish between executions that
are relevant and those executions that are not relevant.
Metaballs can be applied to guide visually the analysis of
programs and their executions, providing a summary view
(and analysis) of a program execution. By combining the
size property and the notion of relevancy, one can not only
visually identify places of those executions that have no or
a very low relevancy with respect to a particular dynamic
slice, but also it is possible to cluster and group these
objects based on their relevancy. This information not
only provides guidance during performance analysis but
also guides the user during the process of locating places
with non-optimized source code.

4. Conclusions

It is a well-known fact that a major share of systems
development effort goes into the comprehension of large
systems and their source code, about which we usually
know usually very little. The large and complex programs
developed and maintained in current software
environments are the ones that can most benefit from the
visualization and source code analysis techniques
presented in this research. Our paper presents a novel
approach of applying the metaball metaphor to visualize
source code and source code analysis information.
Specifically, in combination with program slicing, this
technique provides a rich, powerful and intuitive method

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

of visual presentations that can considerably enhance and
speed program comprehension. Along with program
slicing it not only allows for a reduction of the information
to be displayed, but also enable us to provide additional
source code insights that can be applied for a variety of
source code based comprehension tasks (e.g. debugging,
testing, performance analysis, etc.).

Given the complexity of software and the different
problem solving characteristics of programmers, it is now
well recognized that there is unlikely to be any one single
visualization metaphor that can be considered most
optimal for software visualization. Instead, different
metaphors may be better suited to specific program
comprehension purposes and for particular types of
analyses results. In our opinion, the metaball metaphor is
rich and has the potential to be a very good candidate for a
number of software reverse engineering tasks. This is in
no small part due to it being highly effective in visually
capturing the relationships between software entities such
as coupling, relevancy, and influence. Relationships that
play a vital role in virtually all program comprehension
and reverse engineering tasks. While there is a large body
of powerful software available for this technology, both
commercial and public domain, all of this software is
tailored towards application in domains such as molecular
modeling, animation, and electronic gaming. Our use of
metaballs is similar but not identical to those domains. It is
important to develop metaball visualization software
specifically tailored to producing the kind of visuals and
3D interactions that have been elaborated upon in earlier
sections. With such software, it should be possible to
experiment with real large software systems to acquire
feedback that could then be used to further refine software
visualization methods using the metaball metaphor.

Acknowledgements
We also would like to thank David Cunningham for his
support in developing the 3D sequence diagram.

References
1. 3D ARK, “3D Related Software List “,

http://www.3dark.com/resources/products/softwarelist.htm

2. Ball T., Eick Stephen G., “Software Visualization in the
Large”. IEEE Computer 29(4): 33-43 (1996).

3. Baker, Marla J. and Eick, Stephen G., “Space-Filling
Software Visualization”. In Journal of Visual Languages
and Computing, vol. 6, 1995, pp.119-133.

4. Blinn, J. F., "A Generalisation of Algebraic Surface
Drawing", ACM Trans. Graphics, Vol. 1, No 3, July 1982,
pp 135-256

5. Bloomenthal, J., "Polygonization of Implicit Surfaces",
Computer Aided Geometric Design, Vol. 5, No 4,
November 1988, pp 341-355

6. Demeyer S., Stéphane Ducasse and Michele Lanza, “A
Hybrid Reverse Engineering Platform Combining Metrics
and Program Visualization”, In Proceedings of WCRE'99,
IEEE, pp. 175-187, 1999.

7. Favre J.M., "GSEE: a Generic Software Exploration
Environment", 9th International Workshop on Program
Comprehension (IWPC'2001), Toronto, Canada, May 2001,
pp. 233-244

8. Harman M., Hierons R. M., Danicic S., Laurence M.,
Howroyd J. and Fox C, 2001, “Pre/Post Conditioned
Slicing”, IEEE International Conference on Software
Maintenance (ICSM'2001), Florence, Italy

9. Harman M. and Danicic S., “A New Algorithm for Slicing
Unstructured Programs“, Journal of Software Maintenance,
10(6):415-441, Nov/December 1998.

10. Hopkins, J. and Fishwick, P. A., “A Three-Dimensional
Human Agent Metaphor for Modeling and Simulation”,
Proc. IEEE, 89(2), 2001, pp 131-147.

11. Knight C., Munro M., “Visualising Software - A Key
Research Area”, Proc. of the Int. Conference on Software
Maintenance; ICSM'99, IEEE Press, 1999.

12. Knight C., Munro M., “Visualising the non-existing”,
IASTED International Conference: Computer Graphics and
Imaging, Hawaii, USA. 2001.

13. Korel, B., “Computation of dynamic slices for unstructured
programs”, IEEE Transactions on Software Engineering,
23(1), pp. 17-34, 1997.

14. Kreuseler, M. and Schuman, H., “Information visualization
using a new Focus + Context Technique in combination
with dynamic clustering of information space”. Proc. of the
ACM Workshop on New Paradigms in Information
Visualization and Manipulation, Kansas city, 1999, pp. 1-5.

15. Maletic, J.I., Leigh, J., Marcus, A., Dunlap, G., "Visualizing
Object-Oriented Software in Virtual Reality", Proceedings
of the 9th International Workshop on Program
Comprehension (IWPC 2001), Toronto, Canada, May 12-
13, 2001, pp. 26-35.

16. Mayrhauser A., A. M. Vans, “Program Understanding
Behavior During Adaptation of Large Scale Software”,
Proceedings of the 6th Intl. Workshop on Program
Comprehension., IWPC ‘98, pp. 164-172, Ischia, Italy, June
1998.

17. Michaud J., Storey M.-A.D. and Muller H.A., “Programs,
Integrating Information Sources for Visualizing Java”,
Proc.s of the Inter. Conference of Software Maintenance
(ICSM'2002), Italy, 2001.

18. Nielsen, Jakob, “2D is Better Than 3D”, AlertBox,
http://useit.com/alerbox/981115.html, 1998.

19. Pirolli, Peter and Card, Stuart K. and Van Der Wege, Mija
M., “Visual information foraging in a focus + context
visualization”. In Proceeding of the ACM Conference on
Human Factor in Computing Systems (CHI-01), Seattle,
2001, pp. 506-513.

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

20. Price B., Baecker R., and Small I., “A principled taxonomy
of software visualization”, Journal of Visual Languages and
Computing, 1994, pp 211-266.

21. Rilling J., “Maximizing Functional Cohesion of
Comprehension Environments by Integrating User and Task
Knowledge”, 8th IEEE Working Conference on Reverse
Engineering (WCRE 2001), Stuttgart, Germany, October
2001, pp. 157-165.

22. Rilling J., Seffah A., “Enhancing the Usability and
Learnability of Software Visualization Techniques through
Task Wizards and Software Agents”, Proc. of Intern.
Conference on Imaging Science, Systems, and Technology
(CISST'2001), Las Vegas, June 2001.

23. Robertson G. G., Mackinlay J. D., and Card S. K., “Cone
trees:animated 3D visualizations of hierarchical
information”, Proceedings of CHI’91 Conference on
Human Factors in Computing Systems, pages 189–194,
1991.

24. Sanlaville R., Favre J.M., Y. Ledru, "Helping Various
Stakeholders to Understand a Very Large Software
Product", European Conference on Component-Based
Software Engineering, Sept. 2001.

25. Shneiderman, Ben, “Tree Visualization with Tree-Maps: A
2-D Space-Filling Approach”. In ACM Transaction of
Computer-Human Interaction, vol. 11, no. 1, 1992, pp. 92-
99.

26. Shneiderman, Ben, “Designing the User Interface, Addison-
Wesley, 3rd edition, 1997.

27. Stasko, John, Domingue, John, Brown, Marc H. and Price,
Blaine A. (editors), “Software Visualization: Programming
as a Multimedia Experience”, MIT Press, Cambridge, MA,
1998.

28. Storey M.-A., Fracchia F. and Müller H.., “Cognitive
Design Elements to support the Construction of a Mental
Model During Software Exploration, Journal of Software
Systems, special issue on Program Comprehension, v 44,
pp.171-185, 1999.

29. Van Deursen A., Kuipers T.,” Building Documentation
Generators”, In Proceedings International Conference on
Software Maintenance (ICSM'99), IEEE Computer Society,
1999, 40-49.

30. Walker, R.J., Murphy, G.C., Freeman-Benson, B., Wright,
D., Swanson, D., Isaak, J., “Visualizing Dynamic Software
System Information through High-level Models”,
Proceedings of OOPSLA'98, pp. 271-283, SIGPLAN
Notices 33(10), October 1998.

31. Weiser M., “Program slicing”, IEEE Transactions on
Software Eng., SE-10, No. 4, 1982, pp. 352-357.

32. Wyvill, G. and McPheeters, C. and Wyvill, B., "Data
Structure for Soft Objects", The Visual Computer, Vol. 2,
No 4, August 1986, pp 227-234.

33. Wyvill, G. and McPheeters, C. and Wyvill, B., "Animating
Soft Objects", The Visual Computer, Vol. 2, No 4, August
1986, pp 235-242.

34. Wyvill, B. and Wyvill, G., "Field Functions for Implicit
Surfaces", Visual Computer, Vol. 5, 1989, pp 75-82.

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

