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Abstract 
 

Many reverse-engineering tools have been developed 
to derive abstract representations from existing source 
code. Graphic visuals derived from reverse engineered 
source code have long been recognized for their impact on 
improving the comprehensibility of the structural and 
behavioral aspects of software systems and their source 
code. As programs become more complex and larger, the 
sheer volume of information to be comprehended by 
developers becomes daunting. In this paper, we combine 
dynamic source analysis to selectively identify source code 
that is relevant at any point and combine it with 3D 
visualization techniques to reverse engineer and analyze 
source code, program executions, and program structures. 
For this research, we focus particularly on the use of 
metaballs, a 3D modeling technique that has already 
found extensive use representing complex organic shapes 
and structural relationships in biology and chemistry, to 
provide suitable 3D visual representations for software 
systems. 
 
Keywords: software visualization, program slicing, 3D 
modeling, metaballs, visual mapping. 
 
1. Introduction 
 

Reverse engineering as part of program 
comprehension can be described as the process of 
analyzing subject system components and their 
interrelationships to create a higher level of abstraction 
and to understand the program execution and the sequence 
in which it occurred. The goal of software visualization is 
to acquire sufficient knowledge about a software system 
by identifying program artifacts and understanding their 
relationships.  As programs become more complex and 
larger, the sheer volume of information to be 
comprehended by the developers becomes daunting. It 
would be ideal to be able to simultaneously view and 
understand detailed information about a specific activity in 
a global context at all times for any size of program. As 

Ben Shneiderman explains in [25,26], the main goal of 
every visualization technique is “Overview first, zoom and 
filter, then details on demand”. This means that 
visualization should first provide an overview of the whole 
set of data then let the user restrict the set of data on which 
the visualization is applied, and finally give more details 
on the part of interest to the user. Software visualization of 
source code can be further categorized in static views and 
dynamic views. The static views are based on a static 
analysis of the source code and its associated information 
and provide a more generic high-level view of the system 
and its source code. The dynamic view is from analysis of 
monitored program execution. Based on their available 
run-time information, dynamic views can provide a more 
detailed and insightful view of the system with respect to a 
particular program execution. Compared to the static 
views, the dynamic nature of the information requires 
additional overhead while gathering the required data. As 
Mayhauser [16] illustrated, dynamic and static views 
should be regarded as complementary views rather than 
being mutually exclusive. 

Typically, a program performs a large set of 
functions/outputs. Rather than trying to comprehend all of 
a program’s functionality, programmers will focus on 
selected functions (outputs) with the goal of identifying 
which parts of the program significantly influence those 
particular functions. One approach is to apply program 
slicing that allows for a reduction of data to be displayed 
by including only those software entities (files, modules, 
classes, functions, statements and objects) that are relevant 
with respect to the computation of a specific program 
function of interest. Program slicing is a well-known 
decomposition technique that transforms a large program 
into a smaller one that contains only statements relevant to 
the computation of a selected program function (output). 
This is particularly of interest for the analysis and 
comprehension of large software systems and program 
executions associated with them.   

Visual representations of programs, primarily based 
on some diagrammatic notation, have been evolved right 
from the early days of computing [27]. However, for large, 
complex software systems, the comprehension of such 
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diagrammatic depictions is restricted by the resolution 
limits of the visual medium (2D computer screen) and the 
limits of user’s cognitive and perceptual capacities. One 
approach to overcome or reduce the limitations of the 
visual medium is to make  use of a third dimension by 
mapping source code structures and program executions to 
a 3D space. Mapping these program artifacts into the 3D 
space allows users to identify common shapes or common 
configurations that may become apparent, and which 
could then be related directly to design features in the 
code. In this paper, we focus on the use of metaballs, often 
also referred to as metablobs, soft objects, point clouds or 
more generally implicit surfaces, a 3D modeling technique 
that has found extensive use in representing and 
visualizing complex organic shapes and structural 
relationships such as the DNA, humans, animals and other 
molecular surfaces [4,5,32,33,34]. In this research, we 
extend the application domain of metaballs to include the 
visualization and comprehension of very large program 
artifacts. The extent of their applicability in other domains 
has been such that virtually every significant 
commercially available 3D modeling software 
incorporates metaball modeling and rendering in some 
fashion or the other. Correspondingly, there are a large 
number of free software sites for packages supporting this 
technology [1]. However, to the best of our knowledge, 
ours is the first such attempt to apply the metaball 
metaphor in software visualization. 

The rest of this paper is organized as follows: Section 
2 introduces background related to 2D and 3D 
visualization techniques and program slicing. Section 3 
discusses application of metaballs in combination with 
program slicing for typical software comprehension tasks. 
Section 4 presents a summary and some possible 
extensions. 
 
2. Background 

Program Comprehension 
The increasing size and complexity of software 

systems introduces new challenges in comprehending the 
overall program structure, their artifacts and the behavioral 
relationships among these artifacts. Numerous theories 
have been formulated and empirical studies conducted to 
explain and document the problem solving behavior of 
software engineers engaged in program comprehension 
[6,7,11,16,22]. The bottom-up approach reconstructs a 
high level of abstraction that can be derived through 
reverse engineering of source code. The top-down 
approach applies a goal-oriented method by utilizing 
domain/application specific knowledge to identify parts of 
the program that are necessary for identifying the relevant 
source code artifacts. Both top-down and bottom-up 
comprehension models have been used in an attempt to 
defined how a software engineer understands software 

systems. Studies have shown that, in reality, software 
engineers switch between these different models 
depending on the problem-solving task [16]. This 
opportunistic approach can be described best as exploiting 
both top-down and bottom-up.  

When it comes to comprehension of very large 
programs, humans are limited in the density of textual 
information they can resolve and comprehend 
[2,16,17,18,24].  Visualization in the form of reverse 
engineered 2D diagrams (e.g., collaboration diagrams, 
call-graphs, etc.) and models (UML class models) are 
suggested in the literature [References] to provide users 
with higher abstraction views on the software under 
investigation.  For large software systems it becomes 
increasingly difficult to comprehend these diagrams for 
several reasons: (1) the diagram complexity is increased 
because of the large amount of information to be 
displayed, (2) the awkward layout techniques provided by 
the visualization approach,  
(3) their non-intuitive navigation, and (4) often their very 
specialized scope in depicting only certain program 
artifacts and their relationships. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Sequence diagram to visualize program 

executions 

3D versus 2D Visualization 
As previously mentioned, software visualization of 

source code structure and execution behavior could consist 
of both static views and dynamic views [3,23,30] 
Compared to static views, dynamic views are based on 
information from the analysis of recorded or monitored 
program executions. During the recording of a program 
execution, a large amount of data may be collected. 
Although this is not a new problem, the rapid increases in 
the quantity of information available and a growing need 
for more highly optimized solutions have both added to 
the pressure to make good and effective use of this 
information [19]. This leads to new challenges in 
visualization, navigation and generally coping with the 
complexity of the dynamic information.  
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Three-dimensional visual representations are often 
suggested and presented as a solution to provide just this 
required extra space and resulting ease of use in 
navigation and abstraction level. While the advantages of 
adding a third dimension are initially quite obvious, these 
are realizable only if truly distinct and effective use is 
made of the added dimension. However, most of the 
current approaches are just transforming established 2D 
visualizing techniques into a 3D space. 3D software 
structure visualizations are still centered on creating 
standard call graphs within a 3D space. For example, the 
usage of 3D call-graphs does offer a greater working 
volume for the graphs thus increasing the capacity for 
readability. However, at the same time, they introduce 
undesirable effects that significantly affect the gain from 
the added dimension. Problems that might be introduced 
by 3D visualization techniques include significant objects 
being obscured, disorientation, and spatial complexity. To 
some limited extent, these issues can be resolved by 3D 
interaction techniques where the viewpoint of the 3D 
graph is actually within the graph structure; otherwise, the 
3D visualization is limited to merely a 2D picture of a 3D 
structure. Ultimately, for 3D visualizations to be effective, 
other techniques than just mapping 2D models into the 3D 
space are required. These techniques have to introduce a 
more meaningful and abstract program representation that 
makes full use of the 3D environment and thus the 
engineer’s natural intuition and perceptual skills [20].  

Figure 2. Mapping 2D sequence diagram notation into 
3D space. 

 
Program slicing 

As mentioned earlier, given the large set of 
functions/outputs of a large program, in the process of 
program comprehension, programmers tend to focus on 

selected functions (outputs) and those parts of a program 
that are directly related to that function. Program slicing, a 
program reduction technique, allows one to narrow down 
the size of the source code of interest by identifying only 
those parts of the original program that are relevant to the 
computation of a particular function/output (Figure 3 and 
Figure 4).  

Figure 3. Sample program 
 
Through reverse engineering, it is possible to derive data 
and control dependencies that can be utilized for 
algorithmic source code analysis.  

The source code analysis provides users with 
additional insight in the dependencies and relationship 
among the different program artifacts. Static slicing [31] 
derives its information through the analysis of the source 
code. A static program slice consists of all statements in 
program P that may potentially affect the value of variable 
v at some point p [8,9]. That is, a static slice preserves a 
program’s behavior with respect to variable v for all 
possible program inputs. Static slicing reduces the size of 
the original program, but frequently still leads to slices 
that are rather large and difficult to analyze. Slicing has 
been shown to be useful in program debugging, testing, 
program understanding, and software maintenance 
[8,9,21,31].  

 
Figure 4.  Slice criterion, lastdep at position 8 
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{
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3. while (amt > 0) 
{
4.  lastdepact.Deposit(amt,acct);
5. act.PrintBalance(acct,lastdep);
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7.  cin>> amt>>acct;
}
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int Deposit (int amt, acct)
{
10.     balance[acct]+= amt;
11.     last_deposit = amt;
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}
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}
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     The strength of static slicing lies in the following areas: 
(a) the computation of a static slice is relatively 
inexpensive (compared to dynamic slicing) in that only the 
static analysis of the source code and no program 
execution is required, and (b) it is useful to gain a general 
understanding of the program parts that contribute to the 
computation of a selected function with respect to all 
possible program executions. However, static slicing also 
has some major drawbacks: (1) for programs containing 
conditional statements or dynamic language constructs 
like polymorphism, pointers, aliases, etc., static slicing has 
to make conservative assumptions with respect to their 
run-time contribution and their relevance for the slice 
computation, (2) based on its static nature, static slicing 
does not provide any information with respect to the 
analysis of the program execution, and (3) frequently, 
static slicing produces larger program slices than dynamic 
slicing algorithms. 

Dynamic slicing can be regarded as a refinement of 
the static slice by only preserving a program's behavior for 
a specific program data input rather than all possible 
program data inputs [13]. Several different techniques for 
the computation of dynamic slices have been proposed, 
e.g., [13,21]. For programmers, it is often not feasible to 
comprehend the programs without observing a particular 
program execution. Dynamic slicing allows a programmer 
to focus on a particular program execution (program 
input), rather than all possible program executions. This is 
achieved by using data based on an actual program flow, 
which also leads to accurate handling of dynamic and 
conditional language constructs. Frequently dynamic 
program slices are smaller than the ones computed by 
static slicing algorithms. One of the major drawbacks of 
dynamic slicing, compared to static slicing, is that it 
requires the identification of relevant input conditions and 
a program execution for that particular input. The 
identification of input conditions and the recording of 
program executions require an additional system 
overhead. Figure 5 summarizes the trade-offs between 
static and dynamic approaches  

Figure 5. Dynamic versus static approaches 

The dynamic approaches provide additional insights 
with respect to program structures and their executions, 
but at the same time they also create new challenges: (1) 
effective methods to visualize these large amounts of 
information, (2) development of “dynamic” visualization 
approaches that allow showing of the dynamic changes in 
the data. Static approaches, on the other hand, provide 
more generic, less detailed view on the data and its 
comprehension support. 
 
3.  The metaball metaphor to visualize source 

code 

 One aid to improve the understanding of large 
programs is to reduce the amount of detail a programmer 
sees by using a higher level of abstraction to represent a 
program. Over the last decade, programs became larger 
and more complex, causing new challenges to the 
programmer in visualizing these complex and large source 
code structures. Different techniques and approaches have 
been developed and validated with users. Providing 
different levels of abstraction might not be sufficient since 
users might be still dealing with a large amount of 
information and data. Not every visualization technique is 
equally usable in displaying a particular dataset. The 
visualization technique might lack an appropriate 
navigation support or may not allow the effective 
reduction of the amount of information displayed through 
a choice of distinct views. The disadvantages of most of 
the commonly used high-level abstractions such as call-
graph, UML class models, collaboration diagrams, etc. 
have already been discussed before. 
 Metaballs, also known as metablobs, soft objects, 
point clouds or more generally implicit surfaces, are a 3D 
object modeling technique which blends and transforms an 
assembly of particles with associated shapes into a more 
complex 3D shape, whose use is most suitable for animal 
and other organic forms. This technique models particles 
in 3D space, which have energy (strength) and have a well 
defined, parametrically controlled influence over the 
surrounding and neighboring particles. A metaball is 
defined by a so-called three-dimensional variable density 
field, radiating from a given center point. The value of the 
field can vary linearly with distance from the center, or in 
any other way expressible via a mathematical formula. For 
example, a field can have a negative density distribution, 
or even an eccentric distribution. A point on a metaball 
surface is constructed at all points in the field with the 
same density value, which is given by the modeler or 
derived from the modeling context. 
 If two or more metaballs are constructed in close 
proximity to one another so that they overlap, they 
coalesce and their fields are added in a process called 
fusion to produce a composite field, which is then 
evaluated to produce a composite surface. Metaball fields 

Dynamic views and algorithms

Specialization Data volume

+ +

- -

Static views and algorithms

Dynamic views and algorithms

Specialization Data volume

+ +

- -

Static views and algorithms
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can be transformed in a variety of ways to produce organic 
shapes necessary to represent, for example, the human 
form. Metaball surfaces are usually rendered as polygons. 
Metaballs have found extensive use in representing and 
visualizing complex organic shapes and structural 
relationships such as DNA, humans, animals, and other 
molecular surfaces. Extensions include grouping of 
particles, selective influence over other particles, hiding 
particles, etc. 
 

 

 

 

 
In this paper, we propose to apply the metaball 

metaphor1 to visualize software entities and their dynamic 
influence over other entities. By defining visually intuitive 
mappings between the entities or parameters in the 
software slices, and metaball models, we can create a 3D 
virtual environment in which it is possible to walk around 
these entities, see what significantly influences the entity 
of interest, hide insignificant influences or zoom into 
entity-groups for understanding more detailed interactions. 

                                                 
1 Other 3D metaphors that have been for software visualization include 
cone-trees [27], immersive VR [15], human agent [10] and world cities 
[12]. However each has its own specific comprehension objectives and 
its own advantages/disadvantages. 

Mapping different entities in multiple views, say object 
oriented or functional, it becomes possible to use the same 
3D metaphor to help understand software from different 
viewpoints. Mapping entity type to shape gives us the 
potential to visually differentiate, for example, free 
functions from member functions in a C++ program. 
Interacting with a complex metaball model, by moving an 
entity of interest closer to clusters of other entities and 
seeing the animated response from these further helps in 
visualizing the more dynamic aspects of a large software 
program. In short, the metaball metaphor gives us a 
constantly moving micro-universe of entities (metaballs), 
which can be dynamically altered to model program 
parameters and can be interactively walked through for 
various reverse engineering purposes, such as design 
evaluation, maintenance, testing, etc.  

 
Mapping metaballs to program structures 
 Difficulties in understanding of OO programs are 
caused by the relationships that exist between classes and 
other parts of the program. Furthermore, in the case of 
very large programs, programmers face difficulties in 
comprehending the resulting highly complex 
diagrammatic representations of these relationships. Thus, 
UML based static and dynamic visualization techniques 
such as class models, sequence and collaboration diagrams 
can be applied for smaller software systems to provide an 
overview of the relationships in a program. However, for 
large software systems these diagrams will not provide 
adequate abstraction to visualize all the dependencies.  
 Particles in the metaball metaphor can be mapped to 
software structures, with blobs representing an object or a 
function (distinguished by different shapes for particles) 
that are created dynamically during a program execution. 
The potential energy surrounding blobs has traditionally 
been used to indicate the influence amongst blobs. This 
can be very intuitively used to visualize the strength of the 
coupling among program artifacts. For example, the 
number of function   invocations performed among objects 
could be one of the parameters used to indicate the 
relationship (coupling) among the blobs (cf Figure 6).  
 The dimensions or size of a blob can be used to 
indicate a desired measure of the software entity, for 
example, and number of statements in a function. Blobs 
will be spatially located in clusters with spatial nearness 
indicating an identifiable association between the software 
entities that are mapped. We expect that a programmer 
preferred spatial configuration of entities is maintained in 
a persistent manner. This will enable the programmer to 
retain the visual association with software entities with 
very little effort.  
 

a) DNA structure (www.scripps.edu/pub/olson-web) 
b) Organic visual (www.visualparadox.com) 
c) Molecular Images (The Scripps Research Institute.) 
Figure 6: Traditional applications of metaballs 
 

a b

c

a b

c
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 Dynamically changing associations are visually 
depicted by animating changes in appearance properties of 
blobs/connections. Collapsing particle clusters enables us 
to visualize abstraction at different hierarchical levels. 
Similarly, hiding or dimming blobs that are insignificant 
or less significant to a particular comprehension task gives 
us the ability to present only details that matter. 
Transparency and blob inclusion may be used to depict 
encapsulation. Table 1 shows the visual mappings that 
have been defined to use the metaball metaphor for 
software visualization. 
 

Program Artifact Metaball property 
Software Entities Particles 
Entity Types Blob Shape 
Entity measure (eg.  no. of 
statements in  function) 

Blob dimensions 

Entity association Particle clustering 
Entity relationship (eg. 
coupling) 

Energy potential amongst 
particles.  

Hierarchic levels of 
abstraction 

Particle collapsing 

Different dynamic 
behavioral aspects 

Blob colors, brightness, 
shininess, animated change 
in connections, etc. 

Table 1. Visual Mappings 
 
 Clearly, the metaball metaphor provides us with a 
visually rich environment to depict entities in a software 
system along with visual techniques that enable mapping 
of software structure and dynamic behavior onto highly 
intuitive visual renderings. 
 
Mappings for program slices  
 In what follows, we will discuss further extensions to 
the previously introduced metaball metaphor in visualizing 
software structures, based on program slicing techniques. 
For larger software systems, the metaball visualization 
technique faces similar problems as more traditional 
visualization techniques in its ability to scale for large 
amount of information and in providing guidance during 

the comprehension and analysis of dynamic dependencies 
that exist within large software system (cf Fig 8).   
 

Figure 8. Two different views of a complex metaball  
environment 

 
 Not only can program slicing be used to identify 
dependencies with respect to a function of interest within 
the given program and its execution, but also, it allows for 
a reduction of the amount of information that has to be 
displayed. This enables a programmer to focus attention 
on those parts of a program that are relevant with respect 
to a particular function or feature. An object/function is 
included in the slice if at least one statement within this 
program artifact is included in a program slice. Similarly, 
a call relationship connecting line between two modules 
M1 and M2 (where M1 calls M2) is included in the slice if 
at least one "call M2" statement inside of module M1 
belongs to the program slice. One approach to display a 
slice is by highlighting the modules (blobs) and call 
relationships that belong to the slice in the original 
metaball diagram, showing the complete program.  
Another approach is to display a metaball sub-diagram 
that is constructed from the original metaball diagram by 
hiding all modules (blobs) and their calling relationships 
that do not belong to the slice. The metaball metaphor can 
be further extended to visualize slicing related information 
through the introduction of different types of shading, 
texture and lighting techniques. Shading can be used to 
indicate, for example, the percentage of statements 
included in the slice. Focused lightning can be used to 
create a focal point for indicating the current execution 
position or to highlight objects that gained influence 
during a step-wise program re-execution. 
 
Enhancing dynamic views through the notion of 
relevancy 

The notion of relevancy is derived from the 
computation of a dynamic slice. Relevancy is based on the 
fact that it is possible for a statement that is part of a slice 
to be executed several times, however only a subset of 
these executions might be relevant to the computation of a 
selected function. In other words, it is possible for one 
action of call X to be relevant to the computation of the 
selected function but a different action of the same call X 
in the same execution trace is not relevant to the 
computation of this function. In many situations, a 

 left: shows low coupling between two similar type entities 
 middle: shows high coupling between two similar type entities  
 right: shows medium coupling between two different type entities  
Figure 7: Metaballs in visualizing software interaction 
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programmer may be interested in analyzing only program 
executions (execution of the dynamic slice) that are 
relevant to the computation of the function of interest. 
Figure 9 shows this visual for the slice last_dep (shown in 
Figure 3). Only the second execution of the member 
function Deposit will be relevant, hence the second 
execution overwrites the previous value of the variable 
last_dep. Therefore, the notion of relevancy allows for 
reduction in the information complexity of the execution 
trace to be observed.  

 
Another program slicing extension is the concept of 

influencing program artifacts. Influencing program 
artifacts allow a user to identify those program parts that 
currently influence a variable/function of interest. For a 
programmer, it is almost impossible to determine during 
the analysis process which program artifacts are currently 
influencing the computation of a particular function. The 
concept of an influencing program artifact is similar to the 
concept of the relevant program artifact based on dynamic 
slicing related information that is normally discarded after 
a slice computation. The difference between relevant and 
influencing artifacts is that relevant artifacts identify 
program executions that are relevant for the computation 
of a particular function. Influencing artifacts, on the other 
hand, provide information about which program artifacts 
are influencing at a current execution position in the 
computation of a selected function. One possible 
visualization approach is to highlight the influencing parts 
and dim the rest. 
 

Additional visualization enhancements 
Another approach to reducing the amount of data is to 

allow the user to select the granularity of a particular view. 
For a visualization technique to be scalable to represent 
large amounts of data, the metaphor has to support 
techniques such as collapsing, hiding, and expanding parts 
of the diagram, therefore giving the user the ability to 
select the view granularity and consequently the amount of 
information that has to be displayed. 
 
Clustering/grouping 

Frequently, it is advantageous to reduce the number of 
visible elements at any time. Limiting the number of 
visual elements to be displayed both improves the clarity 
and simultaneously increases performance of layout and 
rendering [14]. Various “abstraction” and “reduction” 
techniques have been applied by researchers in order to 
reduce the visual complexity of graph like structures. One 
approach is to perform clustering. 

Clustering can be described as the process of 
discovering groupings or classes in data based on chosen 
semantics. Clustering techniques have been referred to in 
the literature as cluster analysis, grouping, clumping, 
classification, and unsupervised pattern recognition [14]. 
The use of the semantic data associated with metaballs to 
perform clustering could be termed content–based 
clustering. Content–based clustering can yield groupings 
that are most appropriate for a particular application and 
can even be combined with structure–based clustering. 
Content–based clustering requires application–specific 
data and knowledge. It is important to note that clustering 
can be used for functions such as filtering and search. In 
visualization terms, filtering usually refers to the de–
emphasis or removal of elements from the view, while 
searching usually refers to the emphasis of an element or 
group of elements. Both filtering and search can be 
accomplished by partitioning elements into two or more 
groups, and then emphasizing one of the groups.  

We apply clustering of metaballs to provide users 
mainly with an option to summarize and analyze a 
program structure or a program execution. The clustering 
techniques are less applicable in visualizing dynamic 
changes (in particular for large software systems), because 
of navigation or orientation issues. Grouping, and 
therefore, changing the layout dynamically will distort a 
user’s ability to correlate the clusters with a particular 
program structure or content.  
 
Applying the metaball metaphor in program 
comprehension 

One basic requirement to enhance acceptance of 
visualization techniques is to provide programmers with 
navigation techniques that provide easy navigation and a 
clear perspective regarding how the current program part 
under investigation relates to the overall structure of the 
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software system. Enhancing the maintainability requires 
software developers and designers to enhance the quality 
and the design of existing systems. The metaball metaphor 
can be applied to provide programmers with an intuitive 
technique that visually guides programmers during typical 
maintenance tasks. Maintenance tends to degrade the 
structure of software, ultimately making maintenance 
more costly. The longer object oriented systems are in use, 
the more likely that these systems have to be maintained. 
They have to be changed to reflect new features 
(perfective maintenance), fix identified defects (corrective 
maintenance), and adjusted for a changing environment 
(adaptive maintenance).  In what follows, we describe the 
potential use of metaballs in connection with program 
slicing and its application in software maintenance. 

 
Design evaluation 

Software systems have to be flexible in order to cope 
with evolving requirements [6,16,29]. Although good 
software engineering practice encourages programmers to 
plan for future modifications, not every future design 
change can be predicted. User requests for changes are 
often a consequence of using the system after delivery. 
Well-designed modules should exhibit a high degree of 
cohesion and a low degree of coupling, such that each 
module addresses a specific, well-defined sub-function 
from a system structure view.  As we have already seen, 
the metaball visualization metaphor allows one to identify 
and analyze in an intuitive way the coupling among 
different program artifacts. In combination with program 
slicing, the metaball metaphor enables the creation of 
several logical views of the system, representing the slice 
specific couplings that exist in a particular system. A 
hotspot approach can be applied to identify units of 
viability, called hotspots, by highlighting those parts of the 
diagrams that do not meet a user pre-specified quality 
criteria. After analyzing a program execution, the system 
will display hotspots to visualize locations in the current 
design where the system does not meet the selected design 
quality (with respect to coupling interaction). 
 
Testing 

Program slicing has already been shown to be useful 
for software testing [8,9,13,31]. The metaball visualization 
techniques can further provide a very intuitive high-level 
interface in identifying the test coverage of a particular 
modules/classes. In particular, for regression testing 
performed after modifying a program part, the metaball 
approach combined with program slicing can help to 
improve the testing process. The reduced program 
complexity/size of the slice in combination with the 
metaball visualization allows for further reduction in the 
time and effort required to test program parts. 
Additionally, by applying clustering and grouping of the 
metaballs in the system that are highly coupled with each 

other, problem areas can already be identified at a very 
high level of visual abstraction.  
 
Debugging 

For the visualization of long program executions, one 
has to apply different levels of granularity within the 
metaball visualization. A metaball can represent a variety 
of programming constructs, like a file, a class/module a 
loop, etc [30]. It is essential that the user have the option 
to collapse and expand each node to select an appropriate 
view. Moreover, the color and/or the shape of the nodes 
could be used to visually help separate types of files 
(headers, sources). Metaballs can be used in connection 
with program slicing to re-execute a program (based on a 
record of program execution) and to highlight the objects 
that are influencing the computation of a variable of 
interest at a current execution position. Therefore, the user 
can dynamically identify those parts of a program 
execution that are influencing the computation of a 
selected variable at a current execution position.  
 
Performance Analysis 

In typical performance analysis tools, program 
executions are analyzed and associated to resource 
requirements. During performance analysis it would be 
desirable not only to identify program artifacts that were 
executed but also their frequencies. For a programmer, it 
is more important to distinguish between executions that 
are relevant and those executions that are not relevant. 
Metaballs can be applied to guide visually the analysis of 
programs and their executions, providing a summary view 
(and analysis) of a program execution. By combining the 
size property and the notion of relevancy, one can not only 
visually identify places of those executions that have no or 
a very low relevancy with respect to a particular dynamic 
slice, but also it is possible to cluster and group these 
objects based on their relevancy. This information not 
only provides guidance during performance analysis but 
also guides the user during the process of locating places 
with non-optimized source code. 
 
4. Conclusions 
 

It is a well-known fact that a major share of systems 
development effort goes into the comprehension of large 
systems and their source code, about which we usually 
know usually very little. The large and complex programs 
developed and maintained in current software 
environments are the ones that can most benefit from the 
visualization and source code analysis techniques 
presented in this research. Our paper presents a novel 
approach of applying the metaball metaphor to visualize 
source code and source code analysis information. 
Specifically, in combination with program slicing, this 
technique provides a rich, powerful and intuitive method 
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of visual presentations that can considerably enhance and 
speed program comprehension. Along with program 
slicing it not only allows for a reduction of the information 
to be displayed, but also enable us to provide additional 
source code insights that can be applied for a variety of 
source code based comprehension tasks (e.g. debugging, 
testing, performance analysis, etc.). 

Given the complexity of software and the different 
problem solving characteristics of programmers, it is now 
well recognized that there is unlikely to be any one single 
visualization metaphor that can be considered most 
optimal for software visualization. Instead, different 
metaphors may be better suited to specific program 
comprehension purposes and for particular types of 
analyses results. In our opinion, the metaball metaphor is 
rich and has the potential to be a very good candidate for a 
number of software reverse engineering tasks. This is in 
no small part due to it being highly effective in visually 
capturing the relationships between software entities such 
as coupling, relevancy, and influence. Relationships that 
play a vital role in virtually all program comprehension 
and reverse engineering tasks. While there is a large body 
of powerful software available for this technology, both 
commercial and public domain, all of this software is 
tailored towards application in domains such as molecular 
modeling, animation, and electronic gaming. Our use of 
metaballs is similar but not identical to those domains. It is 
important to develop metaball visualization software 
specifically tailored to producing the kind of visuals and 
3D interactions that have been elaborated upon in earlier 
sections. With such software, it should be possible to 
experiment with real large software systems to acquire 
feedback that could then be used to further refine software 
visualization methods using the metaball metaphor. 
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