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Abstract 
 

As software evolves, maintenance practices require a 
process of accommodating changing requirements while 
minimizing the cost of implementing those changes.  Over 
time, incompatibilities between design assumptions and 
the operational environment become more pronounced, 
requiring some regions of the implementation to require 
repeated modification.  These regions are considered to 
be “unstable”, and may benefit from targeted 
restructuring efforts as a means of realigning these 
assumptions and the environment. 

An analysis of these regions that identifies and 
classifies these instabilities can be used to prioritize and 
direct structural maintenance efforts.  To this end, we 
present an identification approach that augments static 
dependence graphs with data retrieved from 
configuration management (CM) systems.  This approach 
avoids the assumption that artifacts changing within the 
same CM transaction are related, without requiring 
sophisticated change management data.  We also 
describe our work-to-date in validating the underlying 
assumptions and identifying instabilities. 
 
 

1. Introduction 
 

Successful software projects are frequently long-lived.  
Once software has proven its utility, there is substantial 
incentive to modify it to accommodate changes in its 
operational domain and to add functionality to increase its 
usefulness.  Without proactive structural maintenance, 
however, the layering of change upon change leads to 
increasing system complexity [14].  This “decay” causes 
the system to become more intractable to change, forcing 
necessary modifications to take longer and be more costly 
to implement [16]. 

One manifestation of decay is the development of 
software “instabilities” within a software artifact.  We 
define an instability as a set of related artifact elements 
that have changed together many times.  Each element 
could be a file, a method, a code block at a particular 
scope, or any similar entity contained within a software 

system.  Two artifact elements are considered to have 
changed together when modifications to each are archived 
to a CM repository within the same transaction; however, 
this temporal relationship is not used to imply a 
dependence relationship.  Two common examples of 
software instabilities are interfaces that are not well 
defined and data structures that are repeatedly found to be 
insufficient.  Because a highly complex region that 
requires little to no maintenance is stable, software 
instabilities are not identifiable through local code 
complexity measures.  They are also not correlated with 
fault localization techniques, as “correct” artifacts can still 
exhibit structural decay.  Instabilities cannot be 
characterized solely by change complexity measures, such 
as the number of files in each CM archiving transaction 
that affected them, because a single commit into a 
configuration management repository can affect multiple 
unrelated instabilities. 

We present an approach for software instability 
identification that augments the edges of a static 
dependence graph with change data aggregated over the 
entire change history.  This approach avoids assumptions 
about the data in each CM archiving transaction, without 
requiring more sophisticated change management data 
that relates specific repository transactions to specific 
modification tasks.  It also avoids the false positives 
associated with considering only the changing nodes (the 
software artifacts) in the graph. 

Not all of the discovered instabilities will require 
targeted refactoring.  For example, an approved 
evolutionary design that requires certain files and methods 
be modified for every new feature addition would result in 
intentional instabilities.  Instability identification and 
analysis is meant to inform project managers about 
potentially problematic code regions, which can then be 
subjected to an informed decision about future 
restructuring.  The ensuing reduction in maintenance 
uncertainty is the contribution of instability analysis. 

This paper presents our approach in greater detail, 
along with our planned methods for validation and 
analysis.  We will also describe the preliminary results, 
current state, and future plans for IVA (Instability 
Visualization and Analysis), which implements this 



approach. 
 

2. Proposed Identification Approach 
 
Our goal is to precisely locate instabilities within 

existing systems that have only used a basic CM system 
such as CVS.  Data from bug tracking or software process 
support systems should be used if available, but should 
not be required.   

Any logical change, or modification task, can be 
committed into a CM repository in a single transaction, in 
several transactions each representing incremental 
completion of the task, or in several transactions each 
containing a subset of the total files changed for the task.  
Structural analyses using logical coupling techniques have 
required the use of change reports to eliminate the false 
positives created by the CM commit pattern [8].  System 
decay measures have used “modification requests” that 
specify which modifications belong to the same task, to 
relate archived changes to each other [7].  While these 
approaches have been successful with systems developed 
using an enforced software process, many systems do not 
have this type of historical data available.  Therefore, to 
ensure broad applicability of our approach, we require 
another means of correlating archived modifications that 
uses only the data available in a basic CM system for 
instability identification. 

 

 

Figure 1.  A dependence graph with attributed edges 
indicating which artifact elements changed within a 
single CM repository transaction. 

 
Our approach for instability identification uses static 

dependence graphs and static slicing to isolate 
independent instabilities.  This use of dependence graphs 
is already common in change impact analysis, which 
estimates the cost of effecting a proposed change.  During 
change impact analysis, the dependencies of a proposed 
change induce a subgraph from the complete dependence 
graph, the characteristics of which can be used to estimate 
cost.  We use a similar approach, but instead augment the 
edges of the dependence graph of the changed system with 
data that indicates which nodes (artifact elements) were 
changed.  An example of such attribution is shown in 
Figure 1 where, for every pair of changed nodes (artifact 
elements) that are connected by an edge (dependence 
relation), the connecting edge is noted as having changed 
once.  The subgraphs induced by the “changed” nodes and 
the subgraphs induced via change impact analysis are 
expected to be identical, assuming that the change impact 
estimation process is accurate.  Because the data for this 
approach are almost universally stored by CM systems, 
we do not require more sophisticated change management 
data such as modification requests. 

 

 

Figure 2.  The same dependence graph attributed with 
the change data from several CM repository 
transactions now shows isolated instability regions 
as subgraphs (indicated by thicker edges). 

 
Isolating changed subgraphs is only part of the 

process, however, because software instabilities are 
defined as sets of artifacts that change together repeatedly.  
Therefore, our approach attributes the dependence graph 
edges with aggregated change data from the entire 
revision history.  A basic thresholding filter identifies 



candidate instabilities by finding the subgraphs that have 
changed significantly more than the rest of the graph.  The 
boundary of each candidate is then refined; however, 
whether a simple transitive closure is sufficient or if static 
slicing is necessary remains to be seen.  Figure 2 shows 
two emerging instability candidates that show a detectably 
higher change count. 

The following sections describe in more detail the 
process of change data extraction and instability 
identification.  Some of the known issues for instability 
analysis are also presented.  
 
2.1. Change Data Extraction 

 
Our approach to instability identification requires only 

the minimal data stored within any software configuration 
management (CM) system: what changed, and when it 
changed.  Optional data, such as who committed the 
change, why the change was performed, traceability data, 
and bug tracking data are extracted if available and used 
during analysis and presentation activities.   

We look to the definition of a software instability to 
determine what data are necessary for identification.  Two 
data characteristics must be linked: repeated modifications 
and related artifact elements.  The what and when data 
stored within every CM system give us the change history 
at the atomic commit level, which is required to determine 
repeated modifications to versioned resources.  The ability 
of every CM system to reconstruct views of specified 
revisions into a virtual or local filesystem allows the reuse 
of existing dependence graph generation tools to construct 
element relations for their supported specification 
languages. 

Other change management data are useful in improving 
instability analysis activities.  Many CM systems can 
record who committed a modification and some indication 
of why a modification was made in the form of developer 
log messages.  More sophisticated systems will also 
archive tracing data between specific repository commits 
and software maintenance task identifiers.  The quality of 
this data is dependent upon the extent to which a formal 
maintenance process is implemented, enforced, and 
followed.  To improve the applicability of our approach, 
this optional data is extracted and applied if it is available. 

The data extraction phase of our instability 
identification approach performs three main activities: 
change history extraction, static dependence graph 
generation, and optional change data extraction.  These 
activities impose several requirements on the necessary 
interface to an abstract CM repository.  Differences 
between consecutive revisions must be retrievable, 
accounting for the possibility that a given revision might 
have multiple ancestors.  Internally consistent revisions 
must be extractable from the CM system onto the local 

filesystem via an unambiguous configuration 
specification, in order to provide the type of input 
expected by existing static dependence graph generation 
tools.  Lastly, the types of optional change data that a 
given CM repository can provide must be determined and 
methods for retrieving them provided. 

Because dependence graph generation is 
computationally expensive, the performance of this phase 
can be improved if data extraction is conducted 
asynchronously from analysis activities such as 
normalization and classification, which require user 
direction.  The use of a dedicated repository in which 
intermediate results (such as the dependence graphs) can 
be stored reduces the impact of performing instability 
analysis on the user and on the active CM repository. 

 
2.2. Instability Identification 
 

Instability identification must result in a specification 
of those regions that exhibit unstable behavior that can be 
presented in an easily understandable manner.  We 
therefore add hierarchical containment information to the 
static dependence graph in order to identify instabilities at 
varying degrees of resolution.   

A hierarchical dependence graph is a static dependence 
graph that has been augmented with containment 
information such that a node at one level in the hierarchy 
references the subgraph induced by the nodes that 
comprise it at the next lower level.  This containment 
relation is based upon the scoping specification of the 
artifact type; within object-oriented source code a “class” 
node would reference the contained subgraph of “method” 
nodes, which in turn would reference the contained 
subgraph of brace-enclosed code block nodes, and vice 
versa.  This model requires that the nodes and edges 
within the dependence graph are attributed by type (i.e., 
containment vs. data or control dependence) and that 
graph navigation methods operate on a virtual attribute-
induced subgraph.  It also requires that edges at one level 
of the hierarchy are reflected at higher levels; if an edge of 
a given type exists between line-level nodes A and B, 
which are respectively contained by different method-
level nodes C and D, then there must exist an edge of the 
same type reflected between C and D.   

For each node that is detected to have been changed, 
added, or deleted, the node that contains the changed node 
in its subgraph is considered to have changed.  Edges are 
attributed as changed if and only if both endpoints are 
changed nodes.  This process allows instabilities that are 
unrelated at low resolution (such as at the single statement 
line level) to be grouped at a higher level (such as the 
method level).  This grouping is necessary because 
localized code regions that contain one strong instability 



or many small instabilities should both be identifiable as 
unstable.  During analysis, investigating the lower 
hierarchical levels can identify the type of instability, and 
the appropriate decision about possible refactoring can be 
made. 

Our approach identifies repeated modifications to sets 
of related artifact elements by mapping and aggregating 
change history data onto the dependence edges of the 
hierarchical dependence graph of that artifact.  The 
resulting graph is called the instability graph.  Instability 
graphs are not computed for every revision, but are 
instead separated by a minimal time interval set by the 
system analyst.  This “sampling” of the system’s 
instabilities along its evolution allows time-series based 
instability analyses to calculate useful metrics without 
unnecessary storage requirements. 

The iterative portion of the algorithm to accomplish 
change data aggregation and mapping is as follows: 
 
• Compute the static dependence graph for the target 

revision, and augment with hierarchical containment 
edges. 

• Retrieve the “previous” instability graph from the 
repository holding precomputed data.  This graph is 
associated with the revision along the target 
revision’s development branch that is both different 
from the target revision and existed at least one time 
interval prior to the target revision’s time. 

• Retrieve the time series of CM repository commit 
transactions and the associated code deltas for all 
revisions that occurred after the instability graph’s 
time until the target revision’s time.  Also retrieve 
any associated optional change management data. 

• For all dependence edges that exist in both the target 
hierarchical dependence graph and the previous 
instability graph, the edge in the hierarchical 
dependence graph inherits all change management 
attributes from the corresponding edge in the 
instability graph 

• Identify which artifact elements were changed from 
the CM repository commit transactions, and mark 
the corresponding nodes and their hierarchical 
ancestors in the target hierarchical dependence 
graph.  These elements should be specified at the 
lowest hierarchical level available in both the change 
data and the hierarchical dependence graph.  Each 
transaction is handled in sequence to properly 
aggregate changes. 

• Update the attributes on all dependence edges in the 
target hierarchical dependence graph that relate two 
changed nodes to incorporate the new change 
management data. 

• Save the resulting graph as the target revision’s 
instability graph. 

 
This algorithm can be extended to handle multiple 

ancestor paths, the data for which are archived in some 
commercial CM systems to represent multiple system 
variants.  It results in a set of instability graphs, each of 
which contains all relevant change management data up to 
and including the time of the corresponding revision.  The 
mapping occurs at the lowest common level of granularity 
provided by the atomic commit delta and the dependence 
graph generator output.   

Instability candidates are identified from the instability 
graph using a three-step process.  First, the time series of 
changes on each dependence edge is filtered in order to 
remove the expected “spike” in the number of changes 
when an artifact element is first added to revision control.  
These changes are considered to be a normal part of 
software development and are therefore ignored.  Next, a 
“background noise” level of change is then determined 
among all of the dependence edges.  Finally, a 
thresholding filter is then applied, which will identify the 
edges with the highest level of change.  The system 
analyst can adjust this filter; a higher threshold will 
identify fewer instability candidates, which can help to 
focus initial analysis efforts.  Dependence edges that have 
changed enough to pass through the filter are then used to 
induce a set of subgraphs from the instability graph: these 
are the instability candidates.  The candidate subgraphs 
then undergo boundary refinement.  Simple techniques 
such as a transitive closure may be used, but are expected 
to be too imprecise.  Static program slicing techniques on 
the data dependence edges are expected to produce better 
boundaries.  The resulting subgraphs are the software 
instabilities. 

The specification of the location of these instabilities 
can be improved by using the hierarchical containment 
terminology.  For example, the specification “File 
foo.java, line 125, in Method toString()” is easier to 
understand than a specification at the lowest granularity, 
such as “File foo.java, characters 19,235 through 19,276”.  
Because this terminology is contained within the 
instability graphs, we can provide understandable 
specifications at varying degrees of resolution.   

 
2.3. Instability Analysis Issues 
 

In order to produce a valid classification of a system’s 
instabilities, change data characteristics from different 
maintenance time intervals must be comparable.  Data 
variations that stem from different developer styles or 
development phases will need to be normalized.  
Otherwise, if Developer A makes twice as many commits 
as Developer B while enacting a similar change, the 



instability analysis would report that those regions of code 
modified by Developer A would be significantly more 
unstable than those modified by Developer B, when in 
fact they may be equally unstable.  In organizations where 
maintenance processes require and enforce that a single 
repository commit is made for a specific modification 
request, normalizing for the different styles of different 
developers may potentially be bypassed.  The extent to 
which this phase can be performed is limited by the 
optional change management data available. 

Another source of error in instability analysis can come 
from considering all of the change data regardless of its 
context.  A common development pattern for new feature 
additions is a set of file additions followed by rapid 
changes over a fairly limited time span, usually on the 
order of days.  These changes can bias instability analysis, 
causing it to rate a static code region that had a lot of 
change activity only at the beginning of its existence at the 
same level of severity as an instability with repeated 
modifications throughout its existence.  A weighted filter 
that considers rapid change in a short period of time less 
important than intermittent change over a longer period of 
time may be required.  Another approach could combine 
several changes that occurred very close to each other into 
a single change, thereby smoothing the change data.  If 
data such as who committed a change or an identification 
of for what task a change was committed, the smoothing 
algorithm can be better directed.  For example, if 
developer identifiers are available, a smoothing algorithm 
could choose to aggregate bursty data within each 
developer’s time stream or aggregate all single-developer 
data within a fixed time interval.  Similarly, if type of 
modification data (e.g. fixative, adaptive) is available, a 
different algorithm could be used on feature additions than 
that applied to defect corrections. 

In order to prioritize structural maintenance activities, 
instabilities must be ranked in order of their importance, 
or severity.  Different classification metrics will result in 
different prioritizations.  Coupling metrics between the 
instability and the rest of the system and LOC-related 
metrics such as cyclomatic complexity are sufficient for 
maintenance activities that target system complexity.  
Size-based metrics, such as Eick’s FILES metric or the 
effective span of the instability, are better for targeting 
system decay [7].  Metrics that emphasize recent activity 
over past activity, such as Graves’ weighted time damp 
fault prediction metric, will assist in the early detection of 
developing instabilities [11].   

Instability analysis will need a modular approach to 
severity classification that facilitates the integration of 
existing and newly developed metric calculation 
algorithms.  The system analyst should be given control 
over the selection and emphasis of any number of 
incorporated severity classification metrics, which will 

result in a customizable prioritization. 
 

3. Approach Validation 
 
Several assumptions have been made in the formulation of 
this approach, all of which appear reasonable but need to 
be empirically validated.  They are as follows: 
 
1. Instability candidates will be detectable with respect 

to the rest of the instability graph.   
2. Counting changes on the edges of the dependence 

graph instead of on the nodes will reduce the number 
of incorrectly identified instabilities (false positives).   

3. The approach is robust enough to withstand 
occasional undecidable situations during change data 
aggregation.  

4. Instability boundaries can be refined without a loss 
of accuracy: some instability candidates should be 
combined during boundary refinement, but not 
others. 

5. Collecting changes at lower levels of the system 
hierarchy in nodes at higher levels will benefit 
instability identification and analysis efforts; the 
reduction in the amount of data presented at high 
levels should increase system understanding. 

6. The disruption of change data aggregation caused by 
system restructuring will not adversely affect 
instability identification or analysis; that it is indeed 
essential to showing how instabilities do or do not 
survive across restructuring efforts. 

7. This approach is applicable across all application 
domains and development environments that have an 
archived change history of at least a yet-to-be-
determined minimal duration and of at least the level 
of detail as CVS. 

 
We intend to validate our instability identification 

approach by running the IVA (Instability Visualization 
and Analysis) tool on multiple large software systems, 
with varying sizes and languages. Our initial validation 
plans are targeting four different software systems: itself, 
Apache 2 [2], Subversion [22], and the CTAS system [6] 
in the NASA/AMES high-dependability computing 
testbed.  However, except for the IVA system itself, we 
have not yet run IVA on any other of our planned systems. 
IVA is currently very immature, and is now moving from 
a pathfinding development environment to a design-driven 
environment.  Apache 2 and Subversion are both open-
source programs that were recently officially released.  
Subversion, a CM repository designed to replace CVS, 
uses the Apache 2 web server, an application that was 
being developed at the same time as Subversion.  They are 
not expected to show instabilities on an evolutionary time 
scale, but are expected to show a series of structural 



modifications as the evolution of Apache 2 forced changes 
in Subversion.  Subversion also changed its branching 
design after initial users were unsatisfied with its usability.  
CTAS has undergone eight years of evolution driven by 
new types of scientific data and new feature requests. 

 
3.1 Detectability 
 

Assumption 1 has been initially supported by using 
IVA upon itself.  Table 1 shows, for a portion of the 
rudimentary instability graph for revision 70 of IVA, the 
change count on each edge that connects the nodes listed 
in each row.  Two of the edges that contain the node for 
the Repository class, which is known to have undergone 
numerous design changes, do show a significantly higher 
count than the other edges; enough such the first two 
edges listed can be isolated from the rest of the graph.  
Only one developer was working on IVA up to revision 
70, so normalization between different programmers was 
not necessary.  The changes occurred throughout the 70 
revisions available, and are therefore not considered to be 
directly related to the initial addition of the class.  The 
Repository class was expected to be identified as 
belonging to an unstable region, an expectation that was 
fulfilled.   

 
Table 1: IVA severity classification of IVA revision 70.  
Only those edges that changed more than three times 
are shown. 

 
3.2 Counting edges vs. nodes 
 

The definition of a software instability is based upon 
artifact elements that change together.  The edges in the 
instability graph are used to indicate the number of times 
the artifacts at their ends have changed together.  
Assumption 2 implies that change data aggregation on the 
nodes alone loses this relationship, which results in 
overcounting and false positives.  For example, consider 
the case where support for a new subclass requires an 
addition to a specific data structure, as shown in Figure 3.  

Regardless of the number of new subclasses added, each 
edge between a new subclass and the core data structure 
will only be counted as having changed once; however, 
the core data structure will have changed as many times as 
there are new subclasses. 

 

 

Figure 3.  Node and edge change counts shown for 
two added subclasses in a hypothetical system. 

This situation, however, may not be common enough 
in existing software systems to consider Assumption 2 
empirically valid.  We plan to validate this assumption by 
preserving the node change counts in the instability graph 
and applying the thresholding filter that identifies 
instability candidates first to edges, then to nodes.  We 
will compare the resulting candidate sets against each 
other and a known set of instabilities.  If we find that 
counting nodes alone results in more illegitimate 
candidates than does edge counting, we will consider this 
assumption validated. 

 
3.3 Robustness with undecidablility 
 

We have stated that the use of static dependence 
graphs isolates changes in unrelated code regions even if 
those changes are archived in the CM repository during 
the same transaction.  The possibility still exists that two 
artifacts with a dependence relation between them will be 
changed in the same CM commit transaction even though 
the changes belong to different maintenance tasks.  For 
example, if two methods that share a data dependence are 
both modified, but the data dependence relation does not 
change, then at the method level in the instability graph’s 
hierarchy the two changes are considered to be related.  
We do not expect this type of inaccuracy to be 
problematic, however, because of the aggregation of 
change data and the subsequent threshold filtering.  
Individual erroneous classifications will decrease in 
importance as the number of repeated modifications 
characteristic of an instability increase.  We also expect 

Edge Source Edge Destination Changed 
SubversionRepository Repository 17 

SoftFlow Repository 10 
DependenceGraph AttributedNode 7 

VizManager Repository 5 
IvaRepository DependenceGraph 5 

DependenceGraph AttributedEdge 5 
AttributedNode AttributedEdge 5 
AttributedEdge AttributedNode 5 

SubversionRepository BranchSelectWin 4 
BranchSelectWin Repository 4 



that the boundary refinement algorithms will be able to 
reduce the number of such misclassifications. 

We plan to validate Assumption 3 by forcing this type 
of situation and determining the effect upon the instability 
candidate set.  In order to increase the number of 
unrelated dependencies in the CM commit transactions, 
we will combine n consecutive CM commit transactions 
into a single transaction after every j individual 
transactions are handled.  By varying n and j we should 
determine how robust this approach is under undecidable 
conditions. 

 
3.4 Accuracy of boundary refinement 

 
We have not yet determined which method of 

boundary refinement to use: our current plan is to try a 
simple transitive closure method and if that is not 
sufficient, to move to a more sophisticated program 
slicing type of approach, where control and data 
dependence edges are treated differently.  Regardless of 
the method finally chosen, we will still need to validate 
the assumption that we can perform boundary refinement 
without combining instability candidates that should not 
be combined. 

We will validate Assumption 4 by using a set of known 
instabilities, a set of instability candidates, and a series of 
boundary refinement algorithms with varying levels of 
edge inclusion.  We will apply each algorithm to the 
candidate set and compare the results with the known 
instabilities.  If we can find a refinement algorithm that 
returns a set of instabilities that fully contain the known 
instabilities, without incorrectly combining instability 
candidates, we will consider this assumption validated. 

 
3.5 Use of hierarchical data 

 
Assumption 5 is primarily a usability assumption, 

because the use of hierarchical data is strictly additive: no 
data that can be used in analysis is deleted.  Validation of 
the usability aspect of this assumption will require an 
adequate presentation method, such as the planned IVA 
instability visualization, and user case studies. 

 
3.6 Robustness with system restructuring 

 
Change data is aggregated and mapped onto the 

dependence edges of a hierarchical dependence graph for 
a particular revision of the system being analyzed.  This 
causes the change data that existed in subgraphs that have 
been modified or deleted to disappear, because there is no 
place to store it.  Assumption 6 states that this will not 
adversely affect instability identification or analysis. 

Because instability identification is only defined within 
the context of a particular revision, the loss of such data in 

any given instability graph is irrelevant.  Instability 
analysis, on the other hand, includes the analysis of the 
growth and severity of instabilities within the system as a 
whole.  We expect the structural differences between two 
instability graphs to assist instability analysis in 
characterizing what structural changes occurred. 

We plan to validate Assumption 6 by identifying 
maintenance tasks that were specifically aimed at 
restructuring existing code and performing instability 
identification on revisions just prior to each change.  We 
will then monitor the restructured regions for new 
instabilities over the remaining archived maintenance 
history.  If the instability analysis of these regions does 
not suffer because of the lack of data from before the 
restructuring, we will consider this assumption validated. 

 
3.7 Applicability 

 
Software instability analysis is meant as a tool to 

identify and classify code regions that have proven to be 
unsuitable for the evolving operational environment.  We 
therefore expect that the time necessary to show these 
instabilities will be on the same time scale as the changes 
in the environment.  Some systems will have a very rapid 
evolutionary cycle, while others may exhibit a much 
slower evolution. 

We will validate Assumption 7 by using IVA on each 
of our four validating testbeds.  The long history of the 
CTAS project will provide us with an evolutionary time 
scale.  The much shorter histories of IVA, Subversion, 
and Apache 2 are expected to show fewer evolutional 
instabilities, although some structural instabilities are 
known to have occurred.   If we can show that IVA 
correctly identifies instabilities in each system, we will 
consider this assumption validated.  If we can only show 
instabilities in CTAS using a history length longer than 
the entire histories of the other systems, we will need to 
validate Assumption 7 using other systems with similar 
histories. 

 
4. IVA:  Current status 
 

We are developing a tool called IVA (Instability 
Visualization and Analysis) that implements our approach 
for instability identification.  The following sections 
discuss the design and implementation decisions in IVA.  
 
4.1. IVA Architecture 
 

Due to the computationally expensive dependence 
graph calculations and change data aggregation, IVA is 
designed as a two-phase process.  An asynchronous 
preprocessor handles data extraction and instability 
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identification.  This data is stored into a dedicated “IVA 
repository”, which is updated by the preprocessor on a 
scheduled basis.  The user interacts with a visualization 
engine that calculates and presents the instability severity 
classification results that are specific to the user’s 
normalization and classification metric selections.  The 
results of the severity classification can also be stored into 
the IVA repository as a report.  Figure 4 shows the IVA 
data flow model. 
 

Figure 4.  Data flow architecture of IVA. 

 
4.2. Data Extraction 
 

At present, IVA can extract change data from 
Subversion CM repositories and build dependence graphs 
from Java source code.  Subversion was chosen as our 
first target CM system for three primary reasons: it is 
likely to become a replacement for CVS; it assigns 
revision numbers to a given system configuration instead 
of on a per-file basis; and revision identifiers are easily 
determined for previous or subsequent revisions.  These 
latter features greatly simplify the process of extracting an 
internally consistent system revision, since time-based 
per-file comparisons are not required.  Java was chosen as 
the first language for which to build dependence graphs 
primarily because IVA is written in Java and was intended 
to be initially tested upon itself. 

The dependence graph generation currently 
implemented is extremely simplistic.  ANTLR is used to 
generate a parser that builds a dependence graph based on 
Java “import” statements, using the publicly available 
Java 1.2 ANTLR language grammar and a modified 
version of the Java 1.2 tree walker grammar as input [1].  
The hierarchical containment information used to augment 

the dependence graphs is limited to package and 
outermost class inclusion, which matches the granularity 
of the “import” dependence relation.  This limitation 
means that IVA is not yet able to perform instability 
analysis at a granularity below file level. 

The change history deltas extracted from the 
repositories are the raw diff outputs.  None of the optional 
change management data that Subversion is capable of 
archiving is extracted.  Branch handling is not yet 
supported; while the goal is to merge the aggregated 
change data from each ancestor path, only a single 
previous ancestor is currently supported. 
 
4.3. Instability Identification 

 
After building the static dependence graph for a 

specific source revision, the IVA preprocessor uses the 
augmented dependence graph from the previous revision 
and the change history delta in order to sum the number of 
times individual edges have changed.  Because we can at 
best support class-level granularity during instability 
identification, the change history deltas are only parsed to 
identify which files changed in that commit.   

Every dependence-attributed edge that exists within the 
current dependence graph is checked for existence within 
the previous dependence graph.  If the edge exists and if 
both endpoints of that edge represent modified files, the 
count for the number of times the edge has changed is 
incremented.   

The referential contained-subgraph/containing-node 
portion of the hierarchical dependence graph data model 
has not yet been implemented.  The resulting inability to 
map changes at file level of the hierarchy to the package 
level means that this implementation will only show 
instability data at the file level.  For example, if instability 
analysis were to be performed on a source code revision 
after restructuring efforts removed several files (thereby 
deleting the corresponding nodes), the package-level 
nodes would not show package-level change activity.  
IVA does not yet address the issue of bounding subgraphs 
into instability regions, and therefore it also does not yet 
produce a specification of the set of identified instabilities. 
 
5. Related Work 
 
5.1. Static Dependence Graph Generation 
 

Current abstract static dependence graph construction 
techniques stem from the work of Podgurski and Clarke, 
who first defined formal graph constructors for data 
dependence graphs [17].  Cheng introduced a concurrent 
system dependence paradigm, and Reps, Horowitz, and 
Sagiv developed a performance-improving algorithm for 



calculating interprocedural data dependencies [5,18].  
Sinha, Harrold, and Rothermel later defined and 
introduced an algorithm for calculating interprocedural 
control dependence [19].  Many tools targeted towards 
specific static analysis problems such as compiling and 
optimization have used these dependence graph 
construction methods, such as Aristotle and SOOT [3,20].  
Stafford and Wolf expanded dependence analysis from 
source code to system architecture, using an approach that 
used a formal architecture description language [21]. 

Our approach does not extend static dependence graph 
construction research; rather, we use existing 
implementations to provide a starting point for instability 
graph construction.  We will compare the usability of the 
different types of dependence relations and construction 
methods for instability analysis, and will incorporate new 
techniques as they develop.  Our current simplistic 
implementation uses none of the existing graph 
construction implementations, and awaits a component-
based analysis that will define an appropriate abstract 
interface we can use to integrate existing static 
dependence graph generators. 

 
5.2. Change Management Data Analysis 

 
Change management data has historically been 

analyzed for two main purposes: to understand at a 
process level how specific types of software evolve, and 
to understand and characterize how the structure of 
software decays over time.  While instability analysis is 
more closely related to the latter purpose, several of its 
principles stem from software evolution research.   

Belady and Lehman proposed several laws of software 
evolution after analyzing change data from the evolution 
of the OS/360 operating system [4,13].  Lehman and 
Ramil followed this with the FEAST projects, which 
resulted in a refined model of software evolution [12].  
Lehman and Ramil later looked at component-based 
evolution data as a means of further ensuring the 
applicability of these laws [14].  Mockus, Weiss and 
Zhang have more recently used change data to model 
systems as a means of effort estimation [15]. 

Parnas coined the term “decay” as a means of 
describing the increasing inability of an evolving software 
system to operate in its environment over time [16].  Eick 
and Graves et al. have defined several metrics by which 
code decay, as predicted by Lehman, can be 
measured [7,11].  The most successful of these metrics are 
the FILES metric, which indicates the “span” of a change, 
and a weighted time-damp fault prediction metric, which 
emphasizes recent changes over older changes.  Their 
work used a module-level (i.e. directory-level) granularity 
and relied on modification requests, a process-level 
change artifact.  Gall et al. created a means of using 

change sequence analysis to identify “logical coupling” 
between subsystem components, which used change 
reports to distinguish between actual and coincidental (i.e. 
temporal) dependencies [8]. 

Our instability identification approach extends current 
software evolution research by removing the dependence 
on high-quality change management data such as accurate 
and informative modification requests.  It also introduces 
the novel idea of aggregating change data on the 
dependence relationships within a software system instead 
of on the software artifacts themselves, which removes 
any assumptions about the data in each CM repository 
transaction. 
 
6. Future Work 
 

In the immediate future we will be adding support for 
CVS and ClearCase, using the command line APIs for 
each.  We plan to use German’s CVS data mining front 
end to rebuild transaction data from the CVS logs [9].  
Support for C is underway with the use of Grammatech’s 
Codesurfer [10], which can provide dependence relations 
at a program-point level.  This improved level of 
granularity will improve the quality of our validation 
results. 

There are several longer-term projects to improve IVA.  
A domain analysis of current free and commercial CM 
systems will yield a set of repository “feature flags”, 
which will improve the IVA repository interface and allow 
it to more effectively use the archived data.  Existing 
dependence graph generation tools will be analyzed for 
efficacy with respect to both granularity and dependence 
type, and a component-level interface will be defined in 
order to allow IVA to reuse that technology as it matures.  
Because the identification approach can be applied to any 
set of archived data for which dependence graphs can be 
constructed, this component-based approach will allow 
IVA to eventually handle versioned formal design 
documents or formal requirements specifications once a 
dependence graph generator is developed. 

   More sophisticated data filtering and graph theory 
techniques will be applied to improve the instability 
candidate selection and boundary refinement.  We will 
also collect several of the existing system complexity and 
change complexity metrics and integrate them into the 
severity classification stage.  The graph layout and 
visualization phases are also far from finished.  Initial 
validation, assessment, and comparative processes will be 
performed with the help of the CTAS developer group. 

 

7. Conclusion 
 
Software maintenance is expensive, and it is just as 



necessary to maintain the structure of a system as it is to 
adapt it to a changing environment [4].  Given the limited 
resources of every software development organization, 
methods that assist in reducing the cost of structural 
maintenance will make it more likely to be performed.  

With this in mind, we have introduced the concept of 
software instability and linked its presence to structural 
software decay.  We presented an approach and validation 
plan for instability identification that will begin to provide 
data that can be analyzed to benefit structural maintenance 
efforts.  Our approach leverages historical revision 
histories against static dependence analysis, allowing us to 
combine existing and developing research in both fields. 

As our implementation matures, it will validate this 
correlation between software instability and software 
decay.  Side effects of implementing this approach include   
an analysis API for CM repositories and a component-
level analysis of existing static dependence graph 
generation techniques. 
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