

Identification of Software Instabilities

Jennifer Bevan and E. James Whitehead, Jr.
University of California, Santa Cruz

{jbevan, ejw}@cs.ucsc.edu

Abstract

As software evolves, maintenance practices require a
process of accommodating changing requirements while
minimizing the cost of implementing those changes. Over
time, incompatibilities between design assumptions and
the operational environment become more pronounced,
requiring some regions of the implementation to require
repeated modification. These regions are considered to
be “unstable”, and may benefit from targeted
restructuring efforts as a means of realigning these
assumptions and the environment.

An analysis of these regions that identifies and
classifies these instabilities can be used to prioritize and
direct structural maintenance efforts. To this end, we
present an identification approach that augments static
dependence graphs with data retrieved from
configuration management (CM) systems. This approach
avoids the assumption that artifacts changing within the
same CM transaction are related, without requiring
sophisticated change management data. We also
describe our work-to-date in validating the underlying
assumptions and identifying instabilities.

1. Introduction

Successful software projects are frequently long-lived.
Once software has proven its utility, there is substantial
incentive to modify it to accommodate changes in its
operational domain and to add functionality to increase its
usefulness. Without proactive structural maintenance,
however, the layering of change upon change leads to
increasing system complexity [14]. This “decay” causes
the system to become more intractable to change, forcing
necessary modifications to take longer and be more costly
to implement [16].

One manifestation of decay is the development of
software “instabilities” within a software artifact. We
define an instability as a set of related artifact elements
that have changed together many times. Each element
could be a file, a method, a code block at a particular
scope, or any similar entity contained within a software

system. Two artifact elements are considered to have
changed together when modifications to each are archived
to a CM repository within the same transaction; however,
this temporal relationship is not used to imply a
dependence relationship. Two common examples of
software instabilities are interfaces that are not well
defined and data structures that are repeatedly found to be
insufficient. Because a highly complex region that
requires little to no maintenance is stable, software
instabilities are not identifiable through local code
complexity measures. They are also not correlated with
fault localization techniques, as “correct” artifacts can still
exhibit structural decay. Instabilities cannot be
characterized solely by change complexity measures, such
as the number of files in each CM archiving transaction
that affected them, because a single commit into a
configuration management repository can affect multiple
unrelated instabilities.

We present an approach for software instability
identification that augments the edges of a static
dependence graph with change data aggregated over the
entire change history. This approach avoids assumptions
about the data in each CM archiving transaction, without
requiring more sophisticated change management data
that relates specific repository transactions to specific
modification tasks. It also avoids the false positives
associated with considering only the changing nodes (the
software artifacts) in the graph.

Not all of the discovered instabilities will require
targeted refactoring. For example, an approved
evolutionary design that requires certain files and methods
be modified for every new feature addition would result in
intentional instabilities. Instability identification and
analysis is meant to inform project managers about
potentially problematic code regions, which can then be
subjected to an informed decision about future
restructuring. The ensuing reduction in maintenance
uncertainty is the contribution of instability analysis.

This paper presents our approach in greater detail,
along with our planned methods for validation and
analysis. We will also describe the preliminary results,
current state, and future plans for IVA (Instability
Visualization and Analysis), which implements this

approach.

2. Proposed Identification Approach

Our goal is to precisely locate instabilities within

existing systems that have only used a basic CM system
such as CVS. Data from bug tracking or software process
support systems should be used if available, but should
not be required.

Any logical change, or modification task, can be
committed into a CM repository in a single transaction, in
several transactions each representing incremental
completion of the task, or in several transactions each
containing a subset of the total files changed for the task.
Structural analyses using logical coupling techniques have
required the use of change reports to eliminate the false
positives created by the CM commit pattern [8]. System
decay measures have used “modification requests” that
specify which modifications belong to the same task, to
relate archived changes to each other [7]. While these
approaches have been successful with systems developed
using an enforced software process, many systems do not
have this type of historical data available. Therefore, to
ensure broad applicability of our approach, we require
another means of correlating archived modifications that
uses only the data available in a basic CM system for
instability identification.

Figure 1. A dependence graph with attributed edges
indicating which artifact elements changed within a
single CM repository transaction.

Our approach for instability identification uses static

dependence graphs and static slicing to isolate
independent instabilities. This use of dependence graphs
is already common in change impact analysis, which
estimates the cost of effecting a proposed change. During
change impact analysis, the dependencies of a proposed
change induce a subgraph from the complete dependence
graph, the characteristics of which can be used to estimate
cost. We use a similar approach, but instead augment the
edges of the dependence graph of the changed system with
data that indicates which nodes (artifact elements) were
changed. An example of such attribution is shown in
Figure 1 where, for every pair of changed nodes (artifact
elements) that are connected by an edge (dependence
relation), the connecting edge is noted as having changed
once. The subgraphs induced by the “changed” nodes and
the subgraphs induced via change impact analysis are
expected to be identical, assuming that the change impact
estimation process is accurate. Because the data for this
approach are almost universally stored by CM systems,
we do not require more sophisticated change management
data such as modification requests.

Figure 2. The same dependence graph attributed with
the change data from several CM repository
transactions now shows isolated instability regions
as subgraphs (indicated by thicker edges).

Isolating changed subgraphs is only part of the

process, however, because software instabilities are
defined as sets of artifacts that change together repeatedly.
Therefore, our approach attributes the dependence graph
edges with aggregated change data from the entire
revision history. A basic thresholding filter identifies

candidate instabilities by finding the subgraphs that have
changed significantly more than the rest of the graph. The
boundary of each candidate is then refined; however,
whether a simple transitive closure is sufficient or if static
slicing is necessary remains to be seen. Figure 2 shows
two emerging instability candidates that show a detectably
higher change count.

The following sections describe in more detail the
process of change data extraction and instability
identification. Some of the known issues for instability
analysis are also presented.

2.1. Change Data Extraction

Our approach to instability identification requires only

the minimal data stored within any software configuration
management (CM) system: what changed, and when it
changed. Optional data, such as who committed the
change, why the change was performed, traceability data,
and bug tracking data are extracted if available and used
during analysis and presentation activities.

We look to the definition of a software instability to
determine what data are necessary for identification. Two
data characteristics must be linked: repeated modifications
and related artifact elements. The what and when data
stored within every CM system give us the change history
at the atomic commit level, which is required to determine
repeated modifications to versioned resources. The ability
of every CM system to reconstruct views of specified
revisions into a virtual or local filesystem allows the reuse
of existing dependence graph generation tools to construct
element relations for their supported specification
languages.

Other change management data are useful in improving
instability analysis activities. Many CM systems can
record who committed a modification and some indication
of why a modification was made in the form of developer
log messages. More sophisticated systems will also
archive tracing data between specific repository commits
and software maintenance task identifiers. The quality of
this data is dependent upon the extent to which a formal
maintenance process is implemented, enforced, and
followed. To improve the applicability of our approach,
this optional data is extracted and applied if it is available.

The data extraction phase of our instability
identification approach performs three main activities:
change history extraction, static dependence graph
generation, and optional change data extraction. These
activities impose several requirements on the necessary
interface to an abstract CM repository. Differences
between consecutive revisions must be retrievable,
accounting for the possibility that a given revision might
have multiple ancestors. Internally consistent revisions
must be extractable from the CM system onto the local

filesystem via an unambiguous configuration
specification, in order to provide the type of input
expected by existing static dependence graph generation
tools. Lastly, the types of optional change data that a
given CM repository can provide must be determined and
methods for retrieving them provided.

Because dependence graph generation is
computationally expensive, the performance of this phase
can be improved if data extraction is conducted
asynchronously from analysis activities such as
normalization and classification, which require user
direction. The use of a dedicated repository in which
intermediate results (such as the dependence graphs) can
be stored reduces the impact of performing instability
analysis on the user and on the active CM repository.

2.2. Instability Identification

Instability identification must result in a specification
of those regions that exhibit unstable behavior that can be
presented in an easily understandable manner. We
therefore add hierarchical containment information to the
static dependence graph in order to identify instabilities at
varying degrees of resolution.

A hierarchical dependence graph is a static dependence
graph that has been augmented with containment
information such that a node at one level in the hierarchy
references the subgraph induced by the nodes that
comprise it at the next lower level. This containment
relation is based upon the scoping specification of the
artifact type; within object-oriented source code a “class”
node would reference the contained subgraph of “method”
nodes, which in turn would reference the contained
subgraph of brace-enclosed code block nodes, and vice
versa. This model requires that the nodes and edges
within the dependence graph are attributed by type (i.e.,
containment vs. data or control dependence) and that
graph navigation methods operate on a virtual attribute-
induced subgraph. It also requires that edges at one level
of the hierarchy are reflected at higher levels; if an edge of
a given type exists between line-level nodes A and B,
which are respectively contained by different method-
level nodes C and D, then there must exist an edge of the
same type reflected between C and D.

For each node that is detected to have been changed,
added, or deleted, the node that contains the changed node
in its subgraph is considered to have changed. Edges are
attributed as changed if and only if both endpoints are
changed nodes. This process allows instabilities that are
unrelated at low resolution (such as at the single statement
line level) to be grouped at a higher level (such as the
method level). This grouping is necessary because
localized code regions that contain one strong instability

or many small instabilities should both be identifiable as
unstable. During analysis, investigating the lower
hierarchical levels can identify the type of instability, and
the appropriate decision about possible refactoring can be
made.

Our approach identifies repeated modifications to sets
of related artifact elements by mapping and aggregating
change history data onto the dependence edges of the
hierarchical dependence graph of that artifact. The
resulting graph is called the instability graph. Instability
graphs are not computed for every revision, but are
instead separated by a minimal time interval set by the
system analyst. This “sampling” of the system’s
instabilities along its evolution allows time-series based
instability analyses to calculate useful metrics without
unnecessary storage requirements.

The iterative portion of the algorithm to accomplish
change data aggregation and mapping is as follows:

• Compute the static dependence graph for the target

revision, and augment with hierarchical containment
edges.

• Retrieve the “previous” instability graph from the
repository holding precomputed data. This graph is
associated with the revision along the target
revision’s development branch that is both different
from the target revision and existed at least one time
interval prior to the target revision’s time.

• Retrieve the time series of CM repository commit
transactions and the associated code deltas for all
revisions that occurred after the instability graph’s
time until the target revision’s time. Also retrieve
any associated optional change management data.

• For all dependence edges that exist in both the target
hierarchical dependence graph and the previous
instability graph, the edge in the hierarchical
dependence graph inherits all change management
attributes from the corresponding edge in the
instability graph

• Identify which artifact elements were changed from
the CM repository commit transactions, and mark
the corresponding nodes and their hierarchical
ancestors in the target hierarchical dependence
graph. These elements should be specified at the
lowest hierarchical level available in both the change
data and the hierarchical dependence graph. Each
transaction is handled in sequence to properly
aggregate changes.

• Update the attributes on all dependence edges in the
target hierarchical dependence graph that relate two
changed nodes to incorporate the new change
management data.

• Save the resulting graph as the target revision’s
instability graph.

This algorithm can be extended to handle multiple

ancestor paths, the data for which are archived in some
commercial CM systems to represent multiple system
variants. It results in a set of instability graphs, each of
which contains all relevant change management data up to
and including the time of the corresponding revision. The
mapping occurs at the lowest common level of granularity
provided by the atomic commit delta and the dependence
graph generator output.

Instability candidates are identified from the instability
graph using a three-step process. First, the time series of
changes on each dependence edge is filtered in order to
remove the expected “spike” in the number of changes
when an artifact element is first added to revision control.
These changes are considered to be a normal part of
software development and are therefore ignored. Next, a
“background noise” level of change is then determined
among all of the dependence edges. Finally, a
thresholding filter is then applied, which will identify the
edges with the highest level of change. The system
analyst can adjust this filter; a higher threshold will
identify fewer instability candidates, which can help to
focus initial analysis efforts. Dependence edges that have
changed enough to pass through the filter are then used to
induce a set of subgraphs from the instability graph: these
are the instability candidates. The candidate subgraphs
then undergo boundary refinement. Simple techniques
such as a transitive closure may be used, but are expected
to be too imprecise. Static program slicing techniques on
the data dependence edges are expected to produce better
boundaries. The resulting subgraphs are the software
instabilities.

The specification of the location of these instabilities
can be improved by using the hierarchical containment
terminology. For example, the specification “File
foo.java, line 125, in Method toString()” is easier to
understand than a specification at the lowest granularity,
such as “File foo.java, characters 19,235 through 19,276”.
Because this terminology is contained within the
instability graphs, we can provide understandable
specifications at varying degrees of resolution.

2.3. Instability Analysis Issues

In order to produce a valid classification of a system’s
instabilities, change data characteristics from different
maintenance time intervals must be comparable. Data
variations that stem from different developer styles or
development phases will need to be normalized.
Otherwise, if Developer A makes twice as many commits
as Developer B while enacting a similar change, the

instability analysis would report that those regions of code
modified by Developer A would be significantly more
unstable than those modified by Developer B, when in
fact they may be equally unstable. In organizations where
maintenance processes require and enforce that a single
repository commit is made for a specific modification
request, normalizing for the different styles of different
developers may potentially be bypassed. The extent to
which this phase can be performed is limited by the
optional change management data available.

Another source of error in instability analysis can come
from considering all of the change data regardless of its
context. A common development pattern for new feature
additions is a set of file additions followed by rapid
changes over a fairly limited time span, usually on the
order of days. These changes can bias instability analysis,
causing it to rate a static code region that had a lot of
change activity only at the beginning of its existence at the
same level of severity as an instability with repeated
modifications throughout its existence. A weighted filter
that considers rapid change in a short period of time less
important than intermittent change over a longer period of
time may be required. Another approach could combine
several changes that occurred very close to each other into
a single change, thereby smoothing the change data. If
data such as who committed a change or an identification
of for what task a change was committed, the smoothing
algorithm can be better directed. For example, if
developer identifiers are available, a smoothing algorithm
could choose to aggregate bursty data within each
developer’s time stream or aggregate all single-developer
data within a fixed time interval. Similarly, if type of
modification data (e.g. fixative, adaptive) is available, a
different algorithm could be used on feature additions than
that applied to defect corrections.

In order to prioritize structural maintenance activities,
instabilities must be ranked in order of their importance,
or severity. Different classification metrics will result in
different prioritizations. Coupling metrics between the
instability and the rest of the system and LOC-related
metrics such as cyclomatic complexity are sufficient for
maintenance activities that target system complexity.
Size-based metrics, such as Eick’s FILES metric or the
effective span of the instability, are better for targeting
system decay [7]. Metrics that emphasize recent activity
over past activity, such as Graves’ weighted time damp
fault prediction metric, will assist in the early detection of
developing instabilities [11].

Instability analysis will need a modular approach to
severity classification that facilitates the integration of
existing and newly developed metric calculation
algorithms. The system analyst should be given control
over the selection and emphasis of any number of
incorporated severity classification metrics, which will

result in a customizable prioritization.

3. Approach Validation

Several assumptions have been made in the formulation of
this approach, all of which appear reasonable but need to
be empirically validated. They are as follows:

1. Instability candidates will be detectable with respect

to the rest of the instability graph.
2. Counting changes on the edges of the dependence

graph instead of on the nodes will reduce the number
of incorrectly identified instabilities (false positives).

3. The approach is robust enough to withstand
occasional undecidable situations during change data
aggregation.

4. Instability boundaries can be refined without a loss
of accuracy: some instability candidates should be
combined during boundary refinement, but not
others.

5. Collecting changes at lower levels of the system
hierarchy in nodes at higher levels will benefit
instability identification and analysis efforts; the
reduction in the amount of data presented at high
levels should increase system understanding.

6. The disruption of change data aggregation caused by
system restructuring will not adversely affect
instability identification or analysis; that it is indeed
essential to showing how instabilities do or do not
survive across restructuring efforts.

7. This approach is applicable across all application
domains and development environments that have an
archived change history of at least a yet-to-be-
determined minimal duration and of at least the level
of detail as CVS.

We intend to validate our instability identification

approach by running the IVA (Instability Visualization
and Analysis) tool on multiple large software systems,
with varying sizes and languages. Our initial validation
plans are targeting four different software systems: itself,
Apache 2 [2], Subversion [22], and the CTAS system [6]
in the NASA/AMES high-dependability computing
testbed. However, except for the IVA system itself, we
have not yet run IVA on any other of our planned systems.
IVA is currently very immature, and is now moving from
a pathfinding development environment to a design-driven
environment. Apache 2 and Subversion are both open-
source programs that were recently officially released.
Subversion, a CM repository designed to replace CVS,
uses the Apache 2 web server, an application that was
being developed at the same time as Subversion. They are
not expected to show instabilities on an evolutionary time
scale, but are expected to show a series of structural

modifications as the evolution of Apache 2 forced changes
in Subversion. Subversion also changed its branching
design after initial users were unsatisfied with its usability.
CTAS has undergone eight years of evolution driven by
new types of scientific data and new feature requests.

3.1 Detectability

Assumption 1 has been initially supported by using
IVA upon itself. Table 1 shows, for a portion of the
rudimentary instability graph for revision 70 of IVA, the
change count on each edge that connects the nodes listed
in each row. Two of the edges that contain the node for
the Repository class, which is known to have undergone
numerous design changes, do show a significantly higher
count than the other edges; enough such the first two
edges listed can be isolated from the rest of the graph.
Only one developer was working on IVA up to revision
70, so normalization between different programmers was
not necessary. The changes occurred throughout the 70
revisions available, and are therefore not considered to be
directly related to the initial addition of the class. The
Repository class was expected to be identified as
belonging to an unstable region, an expectation that was
fulfilled.

Table 1: IVA severity classification of IVA revision 70.
Only those edges that changed more than three times
are shown.

3.2 Counting edges vs. nodes

The definition of a software instability is based upon
artifact elements that change together. The edges in the
instability graph are used to indicate the number of times
the artifacts at their ends have changed together.
Assumption 2 implies that change data aggregation on the
nodes alone loses this relationship, which results in
overcounting and false positives. For example, consider
the case where support for a new subclass requires an
addition to a specific data structure, as shown in Figure 3.

Regardless of the number of new subclasses added, each
edge between a new subclass and the core data structure
will only be counted as having changed once; however,
the core data structure will have changed as many times as
there are new subclasses.

Figure 3. Node and edge change counts shown for
two added subclasses in a hypothetical system.

This situation, however, may not be common enough
in existing software systems to consider Assumption 2
empirically valid. We plan to validate this assumption by
preserving the node change counts in the instability graph
and applying the thresholding filter that identifies
instability candidates first to edges, then to nodes. We
will compare the resulting candidate sets against each
other and a known set of instabilities. If we find that
counting nodes alone results in more illegitimate
candidates than does edge counting, we will consider this
assumption validated.

3.3 Robustness with undecidablility

We have stated that the use of static dependence
graphs isolates changes in unrelated code regions even if
those changes are archived in the CM repository during
the same transaction. The possibility still exists that two
artifacts with a dependence relation between them will be
changed in the same CM commit transaction even though
the changes belong to different maintenance tasks. For
example, if two methods that share a data dependence are
both modified, but the data dependence relation does not
change, then at the method level in the instability graph’s
hierarchy the two changes are considered to be related.
We do not expect this type of inaccuracy to be
problematic, however, because of the aggregation of
change data and the subsequent threshold filtering.
Individual erroneous classifications will decrease in
importance as the number of repeated modifications
characteristic of an instability increase. We also expect

Edge Source Edge Destination Changed
SubversionRepository Repository 17

SoftFlow Repository 10
DependenceGraph AttributedNode 7

VizManager Repository 5
IvaRepository DependenceGraph 5

DependenceGraph AttributedEdge 5
AttributedNode AttributedEdge 5
AttributedEdge AttributedNode 5

SubversionRepository BranchSelectWin 4
BranchSelectWin Repository 4

that the boundary refinement algorithms will be able to
reduce the number of such misclassifications.

We plan to validate Assumption 3 by forcing this type
of situation and determining the effect upon the instability
candidate set. In order to increase the number of
unrelated dependencies in the CM commit transactions,
we will combine n consecutive CM commit transactions
into a single transaction after every j individual
transactions are handled. By varying n and j we should
determine how robust this approach is under undecidable
conditions.

3.4 Accuracy of boundary refinement

We have not yet determined which method of

boundary refinement to use: our current plan is to try a
simple transitive closure method and if that is not
sufficient, to move to a more sophisticated program
slicing type of approach, where control and data
dependence edges are treated differently. Regardless of
the method finally chosen, we will still need to validate
the assumption that we can perform boundary refinement
without combining instability candidates that should not
be combined.

We will validate Assumption 4 by using a set of known
instabilities, a set of instability candidates, and a series of
boundary refinement algorithms with varying levels of
edge inclusion. We will apply each algorithm to the
candidate set and compare the results with the known
instabilities. If we can find a refinement algorithm that
returns a set of instabilities that fully contain the known
instabilities, without incorrectly combining instability
candidates, we will consider this assumption validated.

3.5 Use of hierarchical data

Assumption 5 is primarily a usability assumption,

because the use of hierarchical data is strictly additive: no
data that can be used in analysis is deleted. Validation of
the usability aspect of this assumption will require an
adequate presentation method, such as the planned IVA
instability visualization, and user case studies.

3.6 Robustness with system restructuring

Change data is aggregated and mapped onto the

dependence edges of a hierarchical dependence graph for
a particular revision of the system being analyzed. This
causes the change data that existed in subgraphs that have
been modified or deleted to disappear, because there is no
place to store it. Assumption 6 states that this will not
adversely affect instability identification or analysis.

Because instability identification is only defined within
the context of a particular revision, the loss of such data in

any given instability graph is irrelevant. Instability
analysis, on the other hand, includes the analysis of the
growth and severity of instabilities within the system as a
whole. We expect the structural differences between two
instability graphs to assist instability analysis in
characterizing what structural changes occurred.

We plan to validate Assumption 6 by identifying
maintenance tasks that were specifically aimed at
restructuring existing code and performing instability
identification on revisions just prior to each change. We
will then monitor the restructured regions for new
instabilities over the remaining archived maintenance
history. If the instability analysis of these regions does
not suffer because of the lack of data from before the
restructuring, we will consider this assumption validated.

3.7 Applicability

Software instability analysis is meant as a tool to

identify and classify code regions that have proven to be
unsuitable for the evolving operational environment. We
therefore expect that the time necessary to show these
instabilities will be on the same time scale as the changes
in the environment. Some systems will have a very rapid
evolutionary cycle, while others may exhibit a much
slower evolution.

We will validate Assumption 7 by using IVA on each
of our four validating testbeds. The long history of the
CTAS project will provide us with an evolutionary time
scale. The much shorter histories of IVA, Subversion,
and Apache 2 are expected to show fewer evolutional
instabilities, although some structural instabilities are
known to have occurred. If we can show that IVA
correctly identifies instabilities in each system, we will
consider this assumption validated. If we can only show
instabilities in CTAS using a history length longer than
the entire histories of the other systems, we will need to
validate Assumption 7 using other systems with similar
histories.

4. IVA: Current status

We are developing a tool called IVA (Instability
Visualization and Analysis) that implements our approach
for instability identification. The following sections
discuss the design and implementation decisions in IVA.

4.1. IVA Architecture

Due to the computationally expensive dependence
graph calculations and change data aggregation, IVA is
designed as a two-phase process. An asynchronous
preprocessor handles data extraction and instability

CM
Repos
-itory

IVA
Repos
-itory

Preprocessor
Daemon
- Data Extraction
- Instability

Identification

Instability Analyzer
- Normalization
- Filtering
- Metric

Calculation
- Severity

Classification

Visualization
Engine

Report Generator

identification. This data is stored into a dedicated “IVA
repository”, which is updated by the preprocessor on a
scheduled basis. The user interacts with a visualization
engine that calculates and presents the instability severity
classification results that are specific to the user’s
normalization and classification metric selections. The
results of the severity classification can also be stored into
the IVA repository as a report. Figure 4 shows the IVA
data flow model.

Figure 4. Data flow architecture of IVA.

4.2. Data Extraction

At present, IVA can extract change data from
Subversion CM repositories and build dependence graphs
from Java source code. Subversion was chosen as our
first target CM system for three primary reasons: it is
likely to become a replacement for CVS; it assigns
revision numbers to a given system configuration instead
of on a per-file basis; and revision identifiers are easily
determined for previous or subsequent revisions. These
latter features greatly simplify the process of extracting an
internally consistent system revision, since time-based
per-file comparisons are not required. Java was chosen as
the first language for which to build dependence graphs
primarily because IVA is written in Java and was intended
to be initially tested upon itself.

The dependence graph generation currently
implemented is extremely simplistic. ANTLR is used to
generate a parser that builds a dependence graph based on
Java “import” statements, using the publicly available
Java 1.2 ANTLR language grammar and a modified
version of the Java 1.2 tree walker grammar as input [1].
The hierarchical containment information used to augment

the dependence graphs is limited to package and
outermost class inclusion, which matches the granularity
of the “import” dependence relation. This limitation
means that IVA is not yet able to perform instability
analysis at a granularity below file level.

The change history deltas extracted from the
repositories are the raw diff outputs. None of the optional
change management data that Subversion is capable of
archiving is extracted. Branch handling is not yet
supported; while the goal is to merge the aggregated
change data from each ancestor path, only a single
previous ancestor is currently supported.

4.3. Instability Identification

After building the static dependence graph for a

specific source revision, the IVA preprocessor uses the
augmented dependence graph from the previous revision
and the change history delta in order to sum the number of
times individual edges have changed. Because we can at
best support class-level granularity during instability
identification, the change history deltas are only parsed to
identify which files changed in that commit.

Every dependence-attributed edge that exists within the
current dependence graph is checked for existence within
the previous dependence graph. If the edge exists and if
both endpoints of that edge represent modified files, the
count for the number of times the edge has changed is
incremented.

The referential contained-subgraph/containing-node
portion of the hierarchical dependence graph data model
has not yet been implemented. The resulting inability to
map changes at file level of the hierarchy to the package
level means that this implementation will only show
instability data at the file level. For example, if instability
analysis were to be performed on a source code revision
after restructuring efforts removed several files (thereby
deleting the corresponding nodes), the package-level
nodes would not show package-level change activity.
IVA does not yet address the issue of bounding subgraphs
into instability regions, and therefore it also does not yet
produce a specification of the set of identified instabilities.

5. Related Work

5.1. Static Dependence Graph Generation

Current abstract static dependence graph construction
techniques stem from the work of Podgurski and Clarke,
who first defined formal graph constructors for data
dependence graphs [17]. Cheng introduced a concurrent
system dependence paradigm, and Reps, Horowitz, and
Sagiv developed a performance-improving algorithm for

calculating interprocedural data dependencies [5,18].
Sinha, Harrold, and Rothermel later defined and
introduced an algorithm for calculating interprocedural
control dependence [19]. Many tools targeted towards
specific static analysis problems such as compiling and
optimization have used these dependence graph
construction methods, such as Aristotle and SOOT [3,20].
Stafford and Wolf expanded dependence analysis from
source code to system architecture, using an approach that
used a formal architecture description language [21].

Our approach does not extend static dependence graph
construction research; rather, we use existing
implementations to provide a starting point for instability
graph construction. We will compare the usability of the
different types of dependence relations and construction
methods for instability analysis, and will incorporate new
techniques as they develop. Our current simplistic
implementation uses none of the existing graph
construction implementations, and awaits a component-
based analysis that will define an appropriate abstract
interface we can use to integrate existing static
dependence graph generators.

5.2. Change Management Data Analysis

Change management data has historically been

analyzed for two main purposes: to understand at a
process level how specific types of software evolve, and
to understand and characterize how the structure of
software decays over time. While instability analysis is
more closely related to the latter purpose, several of its
principles stem from software evolution research.

Belady and Lehman proposed several laws of software
evolution after analyzing change data from the evolution
of the OS/360 operating system [4,13]. Lehman and
Ramil followed this with the FEAST projects, which
resulted in a refined model of software evolution [12].
Lehman and Ramil later looked at component-based
evolution data as a means of further ensuring the
applicability of these laws [14]. Mockus, Weiss and
Zhang have more recently used change data to model
systems as a means of effort estimation [15].

Parnas coined the term “decay” as a means of
describing the increasing inability of an evolving software
system to operate in its environment over time [16]. Eick
and Graves et al. have defined several metrics by which
code decay, as predicted by Lehman, can be
measured [7,11]. The most successful of these metrics are
the FILES metric, which indicates the “span” of a change,
and a weighted time-damp fault prediction metric, which
emphasizes recent changes over older changes. Their
work used a module-level (i.e. directory-level) granularity
and relied on modification requests, a process-level
change artifact. Gall et al. created a means of using

change sequence analysis to identify “logical coupling”
between subsystem components, which used change
reports to distinguish between actual and coincidental (i.e.
temporal) dependencies [8].

Our instability identification approach extends current
software evolution research by removing the dependence
on high-quality change management data such as accurate
and informative modification requests. It also introduces
the novel idea of aggregating change data on the
dependence relationships within a software system instead
of on the software artifacts themselves, which removes
any assumptions about the data in each CM repository
transaction.

6. Future Work

In the immediate future we will be adding support for
CVS and ClearCase, using the command line APIs for
each. We plan to use German’s CVS data mining front
end to rebuild transaction data from the CVS logs [9].
Support for C is underway with the use of Grammatech’s
Codesurfer [10], which can provide dependence relations
at a program-point level. This improved level of
granularity will improve the quality of our validation
results.

There are several longer-term projects to improve IVA.
A domain analysis of current free and commercial CM
systems will yield a set of repository “feature flags”,
which will improve the IVA repository interface and allow
it to more effectively use the archived data. Existing
dependence graph generation tools will be analyzed for
efficacy with respect to both granularity and dependence
type, and a component-level interface will be defined in
order to allow IVA to reuse that technology as it matures.
Because the identification approach can be applied to any
set of archived data for which dependence graphs can be
constructed, this component-based approach will allow
IVA to eventually handle versioned formal design
documents or formal requirements specifications once a
dependence graph generator is developed.

 More sophisticated data filtering and graph theory
techniques will be applied to improve the instability
candidate selection and boundary refinement. We will
also collect several of the existing system complexity and
change complexity metrics and integrate them into the
severity classification stage. The graph layout and
visualization phases are also far from finished. Initial
validation, assessment, and comparative processes will be
performed with the help of the CTAS developer group.

7. Conclusion

Software maintenance is expensive, and it is just as

necessary to maintain the structure of a system as it is to
adapt it to a changing environment [4]. Given the limited
resources of every software development organization,
methods that assist in reducing the cost of structural
maintenance will make it more likely to be performed.

With this in mind, we have introduced the concept of
software instability and linked its presence to structural
software decay. We presented an approach and validation
plan for instability identification that will begin to provide
data that can be analyzed to benefit structural maintenance
efforts. Our approach leverages historical revision
histories against static dependence analysis, allowing us to
combine existing and developing research in both fields.

As our implementation matures, it will validate this
correlation between software instability and software
decay. Side effects of implementing this approach include
an analysis API for CM repositories and a component-
level analysis of existing static dependence graph
generation techniques.

8. Acknowledgements

A USENIX Student Research Grant funded the

pathfinding work for this approach and for IVA during the
2001-2002 academic year. Current work on IVA is
funded by NSF Grant CCR-01234603.

9. References

[1] “ANTLR website,” (2003). http://www.antlr.org/

[2] “The Apache HTTP Server Project,” (2003).
http://httpd.apache.org/

[3] “Aristotle Research Group,” (2002).
http://www.cc.gatech.edu/aristotle/

[4] L. A. Belady and M. M. Lehman, “A Model of Large
Program Development,” IBM Systems Journal, vol. 15, no. 3
(1976), pp. 225-252.

[5] J. Cheng, “Slicing Concurrent Programs - A Graph
Theoretical Approach,” Proc. Automated and Algorithmic
Debugging, 1993, pp. 223-240.

[6] “Center-TRACON Automation System (CTAS) for Air
Traffic Control,” (2003). http://www.ctas.arc.nasa.gov/

[7] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron and A.
Mockus, “Does Code Decay? Assessing the Evidence from
Change Management Data,” IEEE Transactions of Software
Engineering, vol. 27, no. 1 (2001), pp. 1-13.

[8] H. Gall, K. Hajek and M. Jazayeri, “Detection of Logical
Coupling Based on Product Release History,” Proc.

International Conference on Software Maintenance, November
16-20, 1998, pp. 190-198.

[9] D. German. ICSE 2003.

[10] “Grammatech, Inc. -- Products -- Codesurfer,” (2003).
http://www.grammatech.com/products/codesurfer/

[11] T. L. Graves, A. F. Karr, J. S. Marron and H. Siy,
“Predicting Fault Incidence Using Software Change History,”
IEEE Transactions of Software Engineering, vol. 26, no. 7
(2000), pp. 653-661.

[12] M. M. Lehman, “Rules and Tools for Software Evolution
Planning and Management,” Proc. FEAST 2000 Workshop,
Imperial College, London, July 10-12, 2000, 2000.

[13] M. M. Lehman and L. A. Belady, Program Evolution:
Processes of Software Change: Academic Press, 1985.

[14] M. M. Lehman and J. F. Ramil, “EpiCS: Evolution
Phenomenology in Component-Intensive Software,” Proc.
Seventh IEEE Workshop on Empirical Studies of Software
Maintenance (WESS 2001), November, 2001, 2001.

[15] A. Mockus, D. Weiss and P. Zhang, “Understanding and
Predicting Effort in Software Projects,” Proc. 25th International
Conference on Software Engineering (ICSE 2003), Portland,
Oregon, May 3-10, 2003, 2003, pp. 274-284.

[16] D. L. Parnas, “Software Aging,” Proc. 16th International
Conference on Software Engineering, Sorrento, Italy, May 16-
21, 1994, 1994, pp. 279-287.

[17] A. Podgurski and L. Clarke, “A Formal Model of Program
Dependencies and its Implications for Software Testing,
Debugging, and Maintenance,” IEEE Transactions of Software
Engineering, vol. 16, no. 9 (1990), pp. 965-979.

[18] T. Reps, S. Horwitz and M. Sagiv, “Precise Interprocedural
Dataflow Analysis via Graph Reachability,” Proc. 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'95), 1995, pp. 49-61.

[19] S. Sinha, M. Harrold and G. Rothermel, “Interprocedural
Control Dependence,” ACM Transactions on Software
Engineering and Methodology, vol. 10, no. 2 (2001), pp. 209-
254.

[20] “Soot: A Java Optimization Framework,” (2003).
http://www.sable.mcgill.ca/soot/

[21] J. Stafford and A. Wolf, “Architecture-Level Dependence
Analysis for Software Systems,” Int'l Journal of Software
Engineering and Knowledge Engineering, vol. 11, no. 4 (2001),
pp. 431-451.

[22] “Subversion project home page,” (2003).
http://subversion.tigris.org/

