
Leveraging Visio for Adoption-Centric Reverse Engineering Tools

Qin Zhu Yu Chen Piotr Kaminski Anke Weber Holger Kienle Hausi A. Müller
Department of Computer Science, University of Victoria

{qinzhu,yuchen}@csc.uvic.ca {pkaminsk,anke,kienle,hausi}@cs.uvic.ca

Abstract

There are many reasons why reverse engineering re-
search tools often fail to be evaluated or adopted in indus-
try. Their rough user interfaces and poor interoperability
are just two frequently mentioned issues. The aim of the
ACSE (Adoption-Centric Software Engineering) project,
conducted at the University of Victoria, is to investigate
how some of these impediments can be overcome by build-
ing software engineering tools on top of Commercial Off-
The-Shelf (COTS) products.

This paper outlines how to leverage Microsoft Visio for
a software visualization and metrics tool. Software devel-
opers familiar with Visio only have to learn the reverse
engineering specific functions introduced by our tools and
can take advantage of their existing, domain-independent
Visio knowledge. Thus, compared to a stand-alone appli-
cation, this Visio-based tool leverages the cognitive sup-
port previously acquired by developers using Visio.

1. Introduction

As software systems grow older, software engineers
increasingly find themselves faced with maintaining, ex-
tending or re-engineering largely undocumented legacy
applications. Before any of these tasks can be attempted,
an understanding of the software at a higher level of ab-
straction must be gained. Reverse engineering tools can
help with this challenge, yet sport a surprisingly low
adoption (and even evaluation) rate in the software indus-
try. This low penetration can be partially attributed to a
lack of polish in user interfaces and weak support for in-
tegration with other tools, comparing poorly to main-
stream packages such as the Microsoft Office suite.

One way to overcome these impediments is by grafting
reverse engineering functionality onto entrenched tools, a
facet of an approach dubbed adoption-centric reverse en-
gineering [1]. The base tools could be integrated software
development environments (IDEs), but in general need
not be related to programming, and include such applica-
tions as editors, shells, browsers, word processors, and
personal information managers [2]. Some of these tools
offer built-in extension facilities or development kits,
making it easier to repurpose them.

One such flexible tool is Microsoft Visio. It is a mem-
ber of Microsoft’s Office suite so users can embed Visio
drawings into other documents, customize its user inter-
face in standard ways, and benefit from a widespread
support base for that application. Visio is particularly well
suited to our endeavor since it is built around a powerful
diagramming engine to which it provides full program-
matic access, though other office applications have their
own attractions [1]. In this paper we illustrate how do-
main-independent, native Visio operations (such as pan-
ning, zooming, and automatic layouts), integrate seam-
lessly with end-user programmed, domain-specific opera-
tions (such as filtering or metrics), to provide reverse en-
gineering functionality.

The paper is organized as follows. We describe Visio
and its customization facilities in Section 2. In Section 3
we show how REVisio, our reverse engineering applica-
tion, takes advantage of Visio’s features to simplify de-
velopment and lower the adoption barrier. Section 4 con-
cludes the paper.

2. Microsoft Visio

Microsoft Visio, a member of the Microsoft Office
suite, is an advanced drawing tool for all kinds of dia-
grams: flowcharts, block diagrams, building plans, maps,
etc. While users can create diagram from scratch, Visio
also provides a number of predefined templates that re-
configure the application for specific diagram types. Tem-
plates usually include stencils (though the latter can also
be loaded independently), which are coordinated collec-
tions of master shapes. Master shapes are presented in a
palette to be dragged by the user onto the canvas auto-
matically instantiating the corresponding shape, allowing
the users to focus on the content of the diagram rather
than their drawing skills (or lack thereof). Visio also pro-
vides a variety of other shortcuts, wizards and navigation
tools that further ease the user’s cognitive workload.

2.1. Customization Options

Visio allows users (and developers) to customize its
operation on many levels [3][4]. At the most basic level,
users can employ their own masters, stencils and tem-
plates to customize the work environment. Fundamental

drawing and transformation tools can be used to create or
modify shapes, controlling their geometry, color and style.
Any shape can then be promoted to a master and included
in a stencil or template.

For more advanced customization, Visio exposes the
masters’ ShapeSheets. A ShapeSheet is a special-purpose
spreadsheet whose cells are connected to the shape’s
properties, giving full control over the shape’s geometry
and behavioral constraints. ShapeSheets support formulas
allowing complex relationships to be formed between
cells, and provide limited access to certain operations de-
fined on the Visio object model. However, each
ShapeSheet is attached to a single shape, so it is impossi-
ble to write formulas that take other shapes on the canvas
into account.

Finally, Visio is an automation server, exposing its ob-
ject model for other software to use. The object model
encompasses almost all data in Visio, including canvas
and shape information, ShapeSheets, menus and dialogs,
giving client applications full control over all aspects of
Visio. They are able to modify existing elements in any
way, as well as add new ones, or simply access informa-
tion about the canvas’ current contents. One popular use
of automation is to construct a diagram according to some
higher-level information provided by the user.

Automation clients can be written in any language that
supports automation (or COM), including Visual Basic
for Applications (VBA), Visual Basic (VB), C, and C++.
Visio includes a VBA development environment and
VBA macros can be embedded directly into Visio docu-
ments, thus simplifying both development and distribution.

A Visio solution brings together all the customized
items that may be needed in the pursuit of a specific dia-
gramming goal. Solutions combine templates, stencils,
masters, customized ShapeSheets and various scripts and
macros that use the automation facilities [5]. A typical
solution maintains the original Visio paradigm of drag-
and-drop diagram assembly from a palette of master
shapes, while augmenting the shapes with “smarts” ap-
propriate to the specific application. Users can indirectly
affect the solution’s shapes’ properties through menus or
data entry to automate the tedious or complex manual
manipulation that would normally be required.

3. REVisio

REVisio is a partial adaptation of Rigi [6] (augmented
with metrics) as a Visio application, in pursuit of the
adoption-centric approach to reverse engineering tools.
Rigi is a reverse engineering tool that extracts information
from software source code, displays it in an interactive
graph-like visualization, and allows it to be manipulated
(manually or automatically) to discover the software’s
structure. Rigi has been under development at the Univer-
sity of Victoria for over a decade and is a feature-rich tool,

yet its rate of adoption in the industry is lower than might
be expected.

Visio, on the other hand, is widely used by software
developers for design and analysis tasks. Our hypothesis
is that those developers would hence be more likely to
evaluate and adopt a Visio reverse engineering application
due to its ease of installation and lower learning curve.
Building on Visio also allowed us to shorten the devel-
opment time of REVisio by reusing Visio’s extensive
diagramming facilities.

This section discusses how REVisio acquires informa-
tion about software systems, visualizes the software’s
structure, and calculates and displays metrics. All applica-
tion functions are implemented using a combination of
automation, ShapeSheets and customized masters, and
can be controlled from a customized tool-bar that inte-
grates smoothly with Visio’s user interface (Figure 2).

3.1. Data Import and Statistics

While REVisio is a Visio solution, it does not follow
the typical drag-and-drop process for creating diagrams.
Rather, drawings are initially automatically derived from
imported data, and can then be navigated and modified by
users with Visio’s usual assortment of tools. The base
data is first extracted from source code with established
Rigi parsers and saved in Rigi Standard Format (RSF),
Rigi View Graph (RVG) or Graph Exchange Language
(GXL) files.

When a model is read in, REVisio presents the user
with some statistics allowing them to estimate the com-

Figure 1. Node and arc pie charts

Figure 2. REVisio showing a Rigi graph
Figure 4. Tree layout of a small graph

plexity of the system. Rigi models are attributed typed
directed graphs. Components of the model are represented
as nodes (or vertices), and relationships between compo-
nents are represented as directed edges (or arcs). A simple
example is a call graph of a software system: procedures
are reified with nodes and calls between procedures are
represented with arcs. To provide an overview of the
graph’s contents, REVisio displays annotated pie charts
that show the total numbers of nodes and arcs of different
types as well as their relative proportions (Figure 1). From
these charts, the user can quickly intuit the model’s size,
the number of different types used in the model, and
which ones are used most often.

3.2. Structure Visualization

Beyond these simple statistics, REVisio can display
the graph read in from an RSF, RVG or GXL file. RSF
files hold only structural information extracted from the
target system, while RVG and GXL files are often aug-
mented with view-specific attributes (e.g. displayed node
location and color) that REVisio tries to preserve as much
as possible. The nodes and arcs are shown using Visio
shapes and dynamic connectors, Visio’s automatically

routed rectilinear paths (see Figure 2). The resulting dia-
gram can be extended and manipulated with all the stan-
dard Visio tools; two particularly useful ones are pan &
zoom and automatic layout.

Visio’s pan & zoom feature, shown in use in Figure 3,
provides the user with a context view that lets them focus
on diagram details while maintaining an overview of the
structure. The context view also gives the user direct con-
trol over the focus of the zoomed-in view, allowing them
to navigate large diagrams with ease.

Visio can also automatically lay out graphs according
to a number of common algorithms, improving the or-
ganization of complex diagrams. For example, Figure 4
shows the previous diagram laid out in a tree style using
straight connectors, with the page automatically resized to
hold the resulting drawing. Larger graphs can be auto-
matically laid out as well (see Figure 5), but the operation
is not every efficient and its running time may quickly
become prohibitive. (The graph in Figure 5 took about 10
minutes to lay out on a reasonably equipped machine, but
we have not yet made detailed performance measurements
or attempted to optimize the operations.)

 Figure 3. Pan & Zoom tool in action Figure 5. Radial layout of a large graph

Inheriting these familiar diagram tools from Visio si-
mu

nadequate
for

3.3. Metrics Visualization

REVisio counterbalances the often overwhelming de-
tai

trics in REVisio:
•

• ethods per Class) counts the

• ng Between Objects) counts the number

•
counting the number of foreign methods invoked by a

R
the formation read in from an RSF file. Figure
6 s

h is to craft software engineering
functionality on top of COTS products that offer end-user
pro

y coupled components [9]. One of these com-
po

are artifacts
[10

nt in implementing a software visualization
an

nadequate
for

3.3. Metrics Visualization

REVisio counterbalances the often overwhelming de-
tai

trics in REVisio:
•

• ethods per Class) counts the

• ng Between Objects) counts the number

•
counting the number of foreign methods invoked by a

R
the formation read in from an RSF file. Figure
6 s

h is to craft software engineering
functionality on top of COTS products that offer end-user
pro

y coupled components [9]. One of these com-
po

are artifacts
[10

nt in implementing a software visualization
an

class, and its value may therefore exceed the CBO
value [8].
EVisio computes and displays the metrics based on

structural in

class, and its value may therefore exceed the CBO
value [8].
EVisio computes and displays the metrics based on

structural in

ltaneously makes REVisio easier to learn and use and
shortens its development time. However, to support re-
verse engineering, REVisio introduces a few custom op-
erations accessible through a toolbar menu. We allow the
user to select nodes by type and to selectively hide them
to reduce clutter. We also provide basic graph traversal
operations, highlighting all parents or children of a given
set of nodes based on a given relationship type.

These rudimentary functions are obviously isly i

hows a sample CBO bar chart, with the class names on
the X axis, and the CBO values on the Y axis. The chart
was quickly implemented by scripting existing Visio mas-
ters and takes advantage of Visio’s pan & zoom feature to
provide an overview and quick navigation. Other metrics,
even ad hoc ones customized to the user’s target system
or tasks, should be equally easy to implement.

4. Related Work

hows a sample CBO bar chart, with the class names on
the X axis, and the CBO values on the Y axis. The chart
was quickly implemented by scripting existing Visio mas-
ters and takes advantage of Visio’s pan & zoom feature to
provide an overview and quick navigation. Other metrics,
even ad hoc ones customized to the user’s target system
or tasks, should be equally easy to implement.

4. Related Work

 all but the simplest reverse engineering tasks. They
serve merely as a proof of concept, to demonstrate that it
is easy to script automated operations on the graph. We
expect users to be familiar with Visual Basic and to write
their own ad hoc scripts as the need arises.

 all but the simplest reverse engineering tasks. They
serve merely as a proof of concept, to demonstrate that it
is easy to script automated operations on the graph. We
expect users to be familiar with Visual Basic and to write
their own ad hoc scripts as the need arises. Our proposed approacOur proposed approac

grammability through either a scripting language or a
more general automation API. In related projects in our
group we extend Lotus Notes and PowerPoint to visualize
and manipulate Rigi graphs [1]. Other research has lever-
aged COTS products as well to build software engineer-
ing tools.

Desert is an open tool environment consisting of sev-
eral loosel

grammability through either a scripting language or a
more general automation API. In related projects in our
group we extend Lotus Notes and PowerPoint to visualize
and manipulate Rigi graphs [1]. Other research has lever-
aged COTS products as well to build software engineer-
ing tools.

Desert is an open tool environment consisting of sev-
eral loosel

l provided by software structure graphs with a variety
of software metrics. We focus on classic metrics that pro-
duce numbers characterizing properties of software code
[7]. A good metric can aid a reverse engineer to better
assess certain characteristics of the subject software sys-
tem and decide where to focus their attention. For exam-
ple, metrics can indicate which parts of a software system
have a high complexity or tight coupling.

We have initially implemented four me

l provided by software structure graphs with a variety
of software metrics. We focus on classic metrics that pro-
duce numbers characterizing properties of software code
[7]. A good metric can aid a reverse engineer to better
assess certain characteristics of the subject software sys-
tem and decide where to focus their attention. For exam-
ple, metrics can indicate which parts of a software system
have a high complexity or tight coupling.

We have initially implemented four me

nents is a specialized editor for source code and archi-
tecture documentation. This editor is based on Adobe
FrameMaker and uses a wide variety of FrameMaker's
functionality, such as syntax highlighting with fonts and
colors, graphic insets, and hypertext links. FrameMaker is
extended via the Frame Developer's Kit API.

Riva and Yang have developed a software documenta-
tion process that uses Rigi to visualize softw

nents is a specialized editor for source code and archi-
tecture documentation. This editor is based on Adobe
FrameMaker and uses a wide variety of FrameMaker's
functionality, such as syntax highlighting with fonts and
colors, graphic insets, and hypertext links. FrameMaker is
extended via the Frame Developer's Kit API.

Riva and Yang have developed a software documenta-
tion process that uses Rigi to visualize softw

 LOC (Lines of Code) counts the lines of code for LOC (Lines of Code) counts the lines of code for
each method or class.
NMC (Number of M
each method or class.
NMC (Number of M
number of methods for each class, thus indicating a
class’s size.
CBO (Coupli

number of methods for each class, thus indicating a
class’s size.
CBO (Coupli

]. They used Rigi's scripting capabilities to export this
information to Visio as a UML model. The exporter
writes files in Visio's XML vocabulary employing prede-
fined UML master shapes. The authors take advantage of
Visio's ability to produce HTML renderings to web-
enable the documentation. It is interesting to note that
their approach uses Rigi's scripting to write Visio XML
files whereas our approach uses Visio's scripting to read
in Rigi files.

Tilley and Huang report on their experiences with an
industrial clie

]. They used Rigi's scripting capabilities to export this
information to Visio as a UML model. The exporter
writes files in Visio's XML vocabulary employing prede-
fined UML master shapes. The authors take advantage of
Visio's ability to produce HTML renderings to web-
enable the documentation. It is interesting to note that
their approach uses Rigi's scripting to write Visio XML
files whereas our approach uses Visio's scripting to read
in Rigi files.

Tilley and Huang report on their experiences with an
industrial clie

of foreign classes referenced, either through field ac-
cess or method calls. A large CBO value indicates
that a class is highly dependent on other classes. [8]
RFC (Response For a Class) extends the CBO by

of foreign classes referenced, either through field ac-
cess or method calls. A large CBO value indicates
that a class is highly dependent on other classes. [8]
RFC (Response For a Class) extends the CBO by

d documentation system in Visio [11]. Visio was se-
lected after evaluating the visualization capabilities of
several candidate tools. The authors were constrained in
their technology choices by the client's policies. For ex-
ample, "the company reasonably requested that profes-
sional support be available for whichever tools were se-
lected. This requirement immediately ruled out almost all
academic and research tools." Among the identified bene-
fits of Visio was that the client already employed Visio in
their development process and had a set of custom-
developed stencils to represent their software artifacts.

d documentation system in Visio [11]. Visio was se-
lected after evaluating the visualization capabilities of
several candidate tools. The authors were constrained in
their technology choices by the client's policies. For ex-
ample, "the company reasonably requested that profes-
sional support be available for whichever tools were se-
lected. This requirement immediately ruled out almost all
academic and research tools." Among the identified bene-
fits of Visio was that the client already employed Visio in
their development process and had a set of custom-
developed stencils to represent their software artifacts. Figure 6. CBO bar chart

Similarly to our approach, the authors used Visio to visu-
alize software artifacts in a graph.

Systa et al. have extended Rigi with support to calcu-
lat

5. Conclusion

By building REVisio on top of Microsoft Visio, we not
onl

 our approach.
Vi

er work is necessary to validate our claims of
low

e and visualize various object-oriented metrics (among
them RFC and CBO; see Section 3.3) [12]. Metrics data
can be exported to Microsoft Excel spreadsheets. The
spreadsheet is then used to visualize the metrics data with
line diagrams similar to our approach. They also use an
Excel macro to generate a correlation matrix for the met-
rics.

y saved development effort but also lowered the bar-
rier to adoption that reverse engineering tools face. Users
can leverage previously acquired cognitive support and
take advantage of widespread training opportunities, flat-
tening the learning curve. Integration with other office
tools is enhanced, resulting in a uniform user interface
and the ability to easily embed diagrams into other docu-
ments. Finally, Visio (and thus REVisio) supports script-
ing in the popular Visual Basic language. Ad hoc script-
ing is critical to reverse engineering activities, and VBA
may prove easier to adopt than Rigi’s Tcl.

Naturally, there are some tradeoffs to
sio’s diagramming engine was originally meant for

interactive use, so some aspects of it can be difficult to
automate. For example, some masters automatically pop
up dialog boxes or are limited to some small number of
nested elements. These limitations can for the most part
be circumvented with careful programming and shape
customization. Performance, however, may prove to be a
serious stumbling block. While VBA is usually fast
enough for ad hoc scripting tasks, Visio itself was clearly
not designed to scale gracefully to the thousands of shapes
required to display models of even moderately large sys-
tems. Low performance is a factor in tool adoption and
may negate any gains made by basing REVisio on a popu-
lar tool.

 Furth
ered adoption barrier, as well as to improve the usabil-

ity and performance of REVisio. Nonetheless, we believe
that REVisio explores an interesting and potentially
worthwhile avenue of research, and demonstrates the
promise of the adoption-centric reverse engineering ap-
proach.

6. References

[1] H. Müller, M.-A. Storey, K. Wong, “Adoption-Centric Soft-
ware Engineering”, http://www.acse.cs.uvic.ca.
[2] A. Walenstein, “Improving Adoptability by Preserving, Lev-
eraging, and Adding Cognitive Support To Existing Tools and
Environments”, 3rd International Workshop on Adoption-Centric
Software Engineering, 2003.
[3] Microsoft Corporation, Developing Microsoft Visio Solutions,
Microsoft Press, 2001.
[4] Microsoft Corporation, “Can Visio be customized?”,
http://www.microsoft.com/office/visio/faq.asp.
[5] D. A. Edson, Professional Development with Visio 2000,
SAMS, 2000.
[6] H. Müller, K. Wong, S. R. Tilley, “Understanding Software
Systems Using Reverse Engineering Technology”, The 62nd
Congress of L'Association Canadienne Française pour l'Avance-
ment des Sciences (ACFAS ‘94), 1994.
[7] N. Fenton and M. Neil, “Software Metrics: Roadmap”, The
Future of Software Engineering track, 22nd International Con-
ference on Software Engineering, pages 359-370, 2002.
[8] S. R. Chidamber and C. F. Kemerer, "Towards a metrics suite
for object oriented design", 6th ACM Conference OOPSLA '91,
pp. 197-211, 1991.
[9] S. P. Reiss, “Simplifying Data Integration: The Design of the
Desert Software Development Environment”, 18th International
Conference on Software Engineering (ICSE '96), pp. 398-407,
May 1996.
[10] C. Riva and Y. Yang, “Generation of Architectural Docu-
mentation Using XML”, 9th Working Conference on Reverse
Engineering (WCRE 2002), pp. 161-169, October 2002.
[11] S. Tilley and S. Huang, “On Selecting Software Visualiza-
tion Tools for Program Understanding in an Industrial Context”,
10th International Workshop on Program Comprehension (IWPC
2002), pp. 285-288, June 2002.
[12] T. Systa, P. Yu, and H. Muller, “Analyzing Java software by
combining metrics and program visualization”, Fourth Euro-
pean Conference on Software Maintenance and Reengineering,
pages 199-208, 2000.

	Introduction
	Microsoft Visio
	Customization Options

	REVisio
	Data Import and Statistics
	Structure Visualization
	Metrics Visualization

	Related Work
	Conclusion
	References

