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Abstract 

There are many reasons why reverse engineering re-
search tools often fail to be evaluated or adopted in indus-
try. Their rough user interfaces and poor interoperability 
are just two frequently mentioned issues. The aim of the 
ACSE (Adoption-Centric Software Engineering) project, 
conducted at the University of Victoria, is to investigate 
how some of these impediments can be overcome by build-
ing software engineering tools on top of Commercial Off-
The-Shelf (COTS) products. 

This paper outlines how to leverage Microsoft Visio for 
a software visualization and metrics tool. Software devel-
opers familiar with Visio only have to learn the reverse 
engineering specific functions introduced by our tools and 
can take advantage of their existing, domain-independent 
Visio knowledge. Thus, compared to a stand-alone appli-
cation, this Visio-based tool leverages the cognitive sup-
port previously acquired by developers using Visio. 

1. Introduction 

As software systems grow older, software engineers 
increasingly find themselves faced with maintaining, ex-
tending or re-engineering largely undocumented legacy 
applications. Before any of these tasks can be attempted, 
an understanding of the software at a higher level of ab-
straction must be gained. Reverse engineering tools can 
help with this challenge, yet sport a surprisingly low 
adoption (and even evaluation) rate in the software indus-
try. This low penetration can be partially attributed to a 
lack of polish in user interfaces and weak support for in-
tegration with other tools, comparing poorly to main-
stream packages such as the Microsoft Office suite. 

One way to overcome these impediments is by grafting 
reverse engineering functionality onto entrenched tools, a 
facet of an approach dubbed adoption-centric reverse en-
gineering [1]. The base tools could be integrated software 
development environments (IDEs), but in general need 
not be related to programming, and include such applica-
tions as editors, shells, browsers, word processors, and 
personal information managers [2]. Some of these tools 
offer built-in extension facilities or development kits, 
making it easier to repurpose them. 

One such flexible tool is Microsoft Visio. It is a mem-
ber of Microsoft’s Office suite so users can embed Visio 
drawings into other documents, customize its user inter-
face in standard ways, and benefit from a widespread 
support base for that application. Visio is particularly well 
suited to our endeavor since it is built around a powerful 
diagramming engine to which it provides full program-
matic access, though other office applications have their 
own attractions [1]. In this paper we illustrate how do-
main-independent, native Visio operations (such as pan-
ning, zooming, and automatic layouts), integrate seam-
lessly with end-user programmed, domain-specific opera-
tions (such as filtering or metrics), to provide reverse en-
gineering functionality. 

The paper is organized as follows. We describe Visio 
and its customization facilities in Section 2. In Section 3 
we show how REVisio, our reverse engineering applica-
tion, takes advantage of Visio’s features to simplify de-
velopment and lower the adoption barrier. Section 4 con-
cludes the paper. 

2. Microsoft Visio 

Microsoft Visio, a member of the Microsoft Office 
suite, is an advanced drawing tool for all kinds of dia-
grams: flowcharts, block diagrams, building plans, maps, 
etc. While users can create diagram from scratch, Visio 
also provides a number of predefined templates that re-
configure the application for specific diagram types. Tem-
plates usually include stencils (though the latter can also 
be loaded independently), which are coordinated collec-
tions of master shapes. Master shapes are presented in a 
palette to be dragged by the user onto the canvas auto-
matically instantiating the corresponding shape, allowing 
the users to focus on the content of the diagram rather 
than their drawing skills (or lack thereof). Visio also pro-
vides a variety of other shortcuts, wizards and navigation 
tools that further ease the user’s cognitive workload. 

2.1. Customization Options 

Visio allows users (and developers) to customize its 
operation on many levels [3][4]. At the most basic level, 
users can employ their own masters, stencils and tem-
plates to customize the work environment. Fundamental 



drawing and transformation tools can be used to create or 
modify shapes, controlling their geometry, color and style. 
Any shape can then be promoted to a master and included 
in a stencil or template. 

For more advanced customization, Visio exposes the 
masters’ ShapeSheets. A ShapeSheet is a special-purpose 
spreadsheet whose cells are connected to the shape’s 
properties, giving full control over the shape’s geometry 
and behavioral constraints. ShapeSheets support formulas 
allowing complex relationships to be formed between 
cells, and provide limited access to certain operations de-
fined on the Visio object model. However, each 
ShapeSheet is attached to a single shape, so it is impossi-
ble to write formulas that take other shapes on the canvas 
into account. 

Finally, Visio is an automation server, exposing its ob-
ject model for other software to use. The object model 
encompasses almost all data in Visio, including canvas 
and shape information, ShapeSheets, menus and dialogs, 
giving client applications full control over all aspects of 
Visio. They are able to modify existing elements in any 
way, as well as add new ones, or simply access informa-
tion about the canvas’ current contents. One popular use 
of automation is to construct a diagram according to some 
higher-level information provided by the user. 

Automation clients can be written in any language that 
supports automation (or COM), including Visual Basic 
for Applications (VBA), Visual Basic (VB), C, and C++. 
Visio includes a VBA development environment and 
VBA macros can be embedded directly into Visio docu-
ments, thus simplifying both development and distribution. 

A Visio solution brings together all the customized 
items that may be needed in the pursuit of a specific dia-
gramming goal. Solutions combine templates, stencils, 
masters, customized ShapeSheets and various scripts and 
macros that use the automation facilities [5]. A typical 
solution maintains the original Visio paradigm of drag-
and-drop diagram assembly from a palette of master 
shapes, while augmenting the shapes with “smarts” ap-
propriate to the specific application. Users can indirectly 
affect the solution’s shapes’ properties through menus or 
data entry to automate the tedious or complex manual 
manipulation that would normally be required. 

3. REVisio 

REVisio is a partial adaptation of Rigi [6] (augmented 
with metrics) as a Visio application, in pursuit of the 
adoption-centric approach to reverse engineering tools. 
Rigi is a reverse engineering tool that extracts information 
from software source code, displays it in an interactive 
graph-like visualization, and allows it to be manipulated 
(manually or automatically) to discover the software’s 
structure. Rigi has been under development at the Univer-
sity of Victoria for over a decade and is a feature-rich tool, 

yet its rate of adoption in the industry is lower than might 
be expected. 

Visio, on the other hand, is widely used by software 
developers for design and analysis tasks. Our hypothesis 
is that those developers would hence be more likely to 
evaluate and adopt a Visio reverse engineering application 
due to its ease of installation and lower learning curve. 
Building on Visio also allowed us to shorten the devel-
opment time of REVisio by reusing Visio’s extensive 
diagramming facilities. 

This section discusses how REVisio acquires informa-
tion about software systems, visualizes the software’s 
structure, and calculates and displays metrics. All applica-
tion functions are implemented using a combination of 
automation, ShapeSheets and customized masters, and 
can be controlled from a customized tool-bar that inte-
grates smoothly with Visio’s user interface (Figure 2). 

3.1. Data Import and Statistics 

While REVisio is a Visio solution, it does not follow 
the typical drag-and-drop process for creating diagrams. 
Rather, drawings are initially automatically derived from 
imported data, and can then be navigated and modified by 
users with Visio’s usual assortment of tools. The base 
data is first extracted from source code with established 
Rigi parsers and saved in Rigi Standard Format (RSF), 
Rigi View Graph (RVG) or Graph Exchange Language 
(GXL) files. 

When a model is read in, REVisio presents the user 
with some statistics allowing them to estimate the com-

Figure 1. Node and arc pie charts 



Figure 2. REVisio showing a Rigi graph
Figure 4. Tree layout of a small graph 

plexity of the system. Rigi models are attributed typed 
directed graphs. Components of the model are represented 
as nodes (or vertices), and relationships between compo-
nents are represented as directed edges (or arcs). A simple 
example is a call graph of a software system: procedures 
are reified with nodes and calls between procedures are 
represented with arcs. To provide an overview of the 
graph’s contents, REVisio displays annotated pie charts 
that show the total numbers of nodes and arcs of different 
types as well as their relative proportions (Figure 1). From 
these charts, the user can quickly intuit the model’s size, 
the number of different types used in the model, and 
which ones are used most often. 

3.2. Structure Visualization 

Beyond these simple statistics, REVisio can display 
the graph read in from an RSF, RVG or GXL file. RSF 
files hold only structural information extracted from the 
target system, while RVG and GXL files are often aug-
mented with view-specific attributes (e.g. displayed node 
location and color) that REVisio tries to preserve as much 
as possible. The nodes and arcs are shown using Visio 
shapes and dynamic connectors, Visio’s automatically 

routed rectilinear paths (see Figure 2). The resulting dia-
gram can be extended and manipulated with all the stan-
dard Visio tools; two particularly useful ones are pan & 
zoom and automatic layout.  

Visio’s pan & zoom feature, shown in use in Figure 3, 
provides the user with a context view that lets them focus 
on diagram details while maintaining an overview of the 
structure. The context view also gives the user direct con-
trol over the focus of the zoomed-in view, allowing them 
to navigate large diagrams with ease. 

Visio can also automatically lay out graphs according 
to a number of common algorithms, improving the or-
ganization of complex diagrams. For example, Figure 4 
shows the previous diagram laid out in a tree style using 
straight connectors, with the page automatically resized to 
hold the resulting drawing. Larger graphs can be auto-
matically laid out as well (see Figure 5), but the operation 
is not every efficient and its running time may quickly 
become prohibitive. (The graph in Figure 5 took about 10 
minutes to lay out on a reasonably equipped machine, but 
we have not yet made detailed performance measurements 
or attempted to optimize the operations.) 

 Figure 3. Pan & Zoom tool in action Figure 5. Radial layout of a large graph 
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Similarly to our approach, the authors used Visio to visu-
alize software artifacts in a graph. 

Systa et al. have extended Rigi with support to calcu-
lat

5. Conclusion 

By building REVisio on top of Microsoft Visio, we not 
onl

 our approach. 
Vi

er work is necessary to validate our claims of 
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e and visualize various object-oriented metrics (among 
them RFC and CBO; see Section 3.3) [12]. Metrics data 
can be exported to Microsoft Excel spreadsheets. The 
spreadsheet is then used to visualize the metrics data with 
line diagrams similar to our approach. They also use an 
Excel macro to generate a correlation matrix for the met-
rics. 

y saved development effort but also lowered the bar-
rier to adoption that reverse engineering tools face. Users 
can leverage previously acquired cognitive support and 
take advantage of widespread training opportunities, flat-
tening the learning curve. Integration with other office 
tools is enhanced, resulting in a uniform user interface 
and the ability to easily embed diagrams into other docu-
ments. Finally, Visio (and thus REVisio) supports script-
ing in the popular Visual Basic language. Ad hoc script-
ing is critical to reverse engineering activities, and VBA 
may prove easier to adopt than Rigi’s Tcl. 

Naturally, there are some tradeoffs to
sio’s diagramming engine was originally meant for 

interactive use, so some aspects of it can be difficult to 
automate. For example, some masters automatically pop 
up dialog boxes or are limited to some small number of 
nested elements. These limitations can for the most part 
be circumvented with careful programming and shape 
customization. Performance, however, may prove to be a 
serious stumbling block. While VBA is usually fast 
enough for ad hoc scripting tasks, Visio itself was clearly 
not designed to scale gracefully to the thousands of shapes 
required to display models of even moderately large sys-
tems. Low performance is a factor in tool adoption and 
may negate any gains made by basing REVisio on a popu-
lar tool. 

 Furth
ered adoption barrier, as well as to improve the usabil-

ity and performance of REVisio. Nonetheless, we believe 
that REVisio explores an interesting and potentially 
worthwhile avenue of research, and demonstrates the 
promise of the adoption-centric reverse engineering ap-
proach. 
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