An Empirical Study of Computation Equivalence as Determined by
Decomposition Slice Equivalence

Keith Gallagher & David Binkley
Computer Science Department
Loyola College in Maryland
4501 N. Charles St. Baltimore, MD. 21210 USA
{kbg|binkley }@cs.loyola.edu

Abstract

In order to further understand and assess decompo-
sition slicing we characterize and evaluate the size of
reductions obtained by computing equivalent decompo-
sition slices from the perspective of the comprehender,
maintainer, tester and researcher. The analysis was
performed on 68 C language systems of sizes 100 to
50,000 lines. All decomposition slices were computed
and compared for simple equality. From this data, we
were able to determine with 95% confidence that the
true mean percentage of equivalent decomposition slices
1s between 50.0% and 60.8%, with a p-value < 0.005.

This has clear and significant impact for software
testing, as any coverage method used for one of the
variables used in an equivalence will apply to all vari-
ables in the class; for software comprehension as the
number of items (variables) used for the understander
is substantially reduced; for the software maintenance,
as the number computational relationships is reduced;
and for the researcher, in attempting to ascertain the
underlying cause of this phenomena.

1. Introduction

Consider two of standard problems that confront a
software engineer in an comprehension or maintenance
task “How is the computation embodied in a variable
that I am looking at related to the other computations
(variables) of the program? And what will happen if
I change it?” The solution to this class of problems is
one of the myriad applications of program slicing.

Now suppose that the engineer examines another
computation (variable) and poses the same questions,
and gets the same answer by using program slicing.
That is, the two program slices obtained by looking at

evidently different computations are exactly the same.
What is the underlying cause?

Two possible solutions arise. First, the computa-
tions are related by textual proximity and a straight-
forward comprehension task. For example, a couple of
different computations are captured in one for state-
ment.

In a more complicated scenario, the two computa-
tions have been combined by the original engineer in an
unexpected way that is crucial to the solution at hand.
Thus, there is conceptual relationship between the two
evidently different computations such that one cannot
be considered without reference to the other. This in-
sight is important to the engineer. For now, changes to
one subpart of the computation are known to effect the
whole. When one computation is considered, an entire
set of equivalent computations must also be considered.

Does this information assist the software engineer?
Before we address that question, we must first deter-
mine if such information is worth the effort to com-
pute, organize and present. First, we examine the size
and percentage of such reductions. Using equivalent
program slices as the reducing technique, we are able
to show statistically significant reductions of 50%-60%
in a collection of programs obtained from the net and
from industry. Thus, we have a significant reduction in
the number of distinct slices that a comprehender must
tackle.

While program slicing is a technique for reducing
the amount of information presented to a software en-
gineer, in this instance, we use it to combine slice-
equivalent computations. In light of our results, this
means that a maintainer /comprehender need only con-
sider approximately half of a program’s computations
to form a conceptual model.

1.1 Approach and Organization

Using the approach presented in the seminal paper
of Basili, Selby, and Hutchens [1] (hereafter referred to
as BSH), for experimentation in software engineering,
we present a definition, plan, operation, and interpre-
tation of the analysis. This paper is organized into 5
sections. Section 2 provides background and problem
motivation; Section 3 describes the experimentation
definition and plan of the empirical process; Section 4
presents the operation and interpretation of the analy-
sis; and Section 5 concludes.

2 Background

A program slice, SLICE,) (p), of program p on
variable, or set of variables, v, at statement n yields the
portions of the program that contributed to the value
of v just before statement n is executed [12]. The pair
(v,m) is called a slicing criterion. Surveys of program
slicing may be found in [2, 4, 11].

A decomposition slice [7] does not depend on state-
ment numbers. It is the union of a collection of slices,
which is still a program slice [12]. A decomposition slice
captures all relevant computations involving a given
variable and is defined as follows:

Definition 1 (Decomposition Slice) DS(v, p)
Let
1. Out(p,v) be the set of statements in program p that
output variable v,
2. last be the last statement of p,
3. N = Out(p,v) U {last}.
The statements in DS(v,p) = U, cn SLICE(,) (p)
form the decomposition slice on v.

We take the decomposition slice for each variable in
the program and form a graph,! using the partial or-
dering induced by proper subset inclusion. The graph
of decomposition slices was originally intended to give
software maintainers a method for visual impact anal-
ysis [6, 8]. The decomposition slice graph provides in-
formation to a software engineer about dependences
that exist between variables in a system. It shows, for
all variables, which decomposition slices are included
in the decomposition slices of other variables. This in-
formation is useful to a software engineer in trying to
gain an understanding of a system as it can be used to
track the data-flow for a variable, and it can be used to
identify the data that impacts on a particular variable
(those variables on which it depends) and the impact
of a variable (those variables which depend on it).

IThe term “lattice” was used in [7].

2.1 Motivating Example

We produced the decomposition slice graph of a dif-
ferencing program shown in Figure 1. It has 95 nodes
and 364 edges. Every variable or programmer defined
constant (enum or typedef value) generates a slice, as
do unused global variables included in library header
files. This caused a “fan out” at the bottom of the
graph. These decomposition slices do not have any
executable statements. There were 29 such “empty”
slices. Removing them and the incident edges lowers
the count to 66 nodes and 161 edges. This graph is not
shown.

To further reduce the visual clutter and make the
graph more readable for the software comprehender,
we output only one node for each equivalent decomposi-
tion slice, using simple set equality. That is, those vari-
ables with identical statements constituting their de-
composition slices were represented by one node. The
reduced graph, shown in Figure 2, has 34 nodes and 43
edges.

Due to the vagaries of the layout algorithm, the re-
duced graph is rotated about the vertical axis with re-
spect to the graph of Figure 1. The five upper leftmost
nodes of Figure 1 are the five upper rightmost nodes of
Figure 2. The three nodes to the upper right of Figure 1
are collapsed to the single node in the upper left of Fig-
ure 2. Following the edges from these nodes downward
in Figure 1 leads to the “fan-out” in the lower center
of the figure. This fan-out of 14 nodes is reduced to
two nodes in Figure 2; and the node reduction induces
a drastic reduction in the number of edges.

So in this small example we reduce a graph of 95
nodes and 364 edges to one of 34 nodes and 43 edges,
a reduction of 62% in the node count by merely noting
that some slices are the same. This, and other initial
observations, was reported in another venue [5]. In
this work, we attempt to ascertain whether or not this
phenomena is a property of most software systems, or
just an artifact of the examples.

3 Evaluation Definition and Plan

Following BSH, we define our experiment with six el-
ements: motivation, object, purpose, perspective, do-
main, and scope. Table 1 summarizes: [To] under-
stand and assess [the] reductions obtained by comput-
ing equivalent decomposition slices, [we] characterize
and evaluate [for the] comprehender, maintainer, tester
and researcher 68 systems [in the] C language.

For experiment planning BSH recommends:

The design of an experiment couples the
study scope with analytical methods and in-

Figure 1. The decomposition slice graph of a differencing program.

Definition Element | Activity |

Motivation Understand and Assess

Object Reductions Obtained by
Computing Equivalent
Decomposition Slices

Purpose Characterize and Evaluate

Perspective Comprehender, Maintainer,
Tester and Researcher

Scope 61 Systems

Domain C language

Table 1. Framework Definition

dicates the domain samples to be examined.
... Different [experimental activities] require
the examination of different criteria. ... The
concrete manifestations of the [experimental]
aspects examined are captured through mea-
surement.

We are attempting to ascertain whether or not re-
duction by equivalent decomposition slices is a statisti-
cally significant property of C software systems. Once
we have obtained the data, we will do a simple regres-
sion analysis to determine if significance exists. We will
also need to verify that the sample population is nor-
mal. To do this, we selected a number of systems from
the GNU/Linux utility set: file search utilities; calcu-
lators; editors; terminal management; language pro-
cessors; debuggers; internet utilities; databases; and
games. We are searching for the existence of a phe-
nomena. Thus, our examination criteria will be indi-

rect: statistical significance. The measurement will be
quite simple: the number of decomposition slices and
the number of equivalent ones.

4 Operation and Interpretation

For experiment operation and interpretation BHS
recommends:

The operation of the experiment consists of
1) preparation, 2) execution, and 3) analysis.
... The interpretation of the experiment con-
sists of 1) interpretation context, 2) extrapo-
lation, and 3) impact.

In this instance, the preparation included a pilot
study [5]. Seven programs of size 350-4500 lines of
code were analyzed using Unravel[10]. The results were
promising: computing equivalent decomposition slices
reduced the number of different slices by 51-81%. The
sample and results, shown in Table 2 was not large
enough, nor were the systems large enough to infer sta-
tistical significance.

For the collection of the data for this study, both
Unravel and CodeSurfer[3] were used. The Unravel
suite has a preprocessor which can be used to calcu-
late all slices; a graph drawing back-end gives the full
and reduced data. For CodeSurfer, the all slices are
saved to a file; the same back-end computes the equiv-
alences. It turns out that we did not need the graph to
be drawn for the analysis; we just needed the node and
equivalent node counts. This shortened the computa-
tion time considerably, as a computationally intensive

Reunadap1ing ‘Scanh! ocks toldfront,
size: 94 size: 213

aquiv: 0

quiv: 2

Scanbiocks meulast
01

Scanb] ocks mewl ne.
200

equiv: 0

size:

Tineofeynba | paynbal
117
equiv: 0

SymboT Teuniqua ipeymbal
13
0

1

equiv: L

nebuffer| [atobal oidinfa.maxtine] [cransform:oldmax,
siza: 8 iza: 1
equi

Trputecan:Tinatan
£

oquiv: 1 aquiv: 0 aquiv: 0

opentila:Fitanana] [globalinauinte.file
size: B size: B
oquiv: 0

globat soldinta. F11a.
size: B

rputecanzpinfo
size: 8

Figure 2. The reduced decomposition slice graph of Figure 1.

Original Reduced Reduced

System Slice Count | Slice Count | Percentage

dif.c 95 34 62%

lattice.c 168 83 51%

unravel.c 482 129 73%

analyzer.c 817 198 76%

parser.c 788 198 75%
Pl.c 344 76 78% Original Reduced Reduced
P2.c 315 61 81% System Slice Count | Slice Count | Percentage
] _) replace 936 622 33%
Ta}ble 2. Pilot study reduction by equivalent which 1230 363 20%
slices time-1.7 1093 910 16%
compress 1234 823 33%
wdiff 2852 1812 36%
edge removal function could was avoided. Table3 show termutils 3275 2315 29%
selected results. barcode 4419 2122 51%
The analysis was also straightforward; we placed the indent 9430 3642 61%
data .in a spreadshee.t and used the least—sql.lares fit be 6494 3259 49%
.fllIICtIOIl over the pairs and pr.oduce.d some interest- copia 4705 2548 5%
ing results. A strong correlation exists betweep .the gce.cpp 8938 3942 55%
number 9f. reduced nod2es and the number of or¥g1naél acct 9358 5327 37%
nodes,‘ giving us an'R' v‘a,lue of 70.9%. As ‘thls R byace 14185 7654 6%

value is above 0.65, it indicates a strong relation. We
’ e gnubg-0.0 10119 5727 43%
test the null hypothesis, Hp : § = 0, to determine if the Alox0-A7 15214 7984 7%
number of reduced nodes is independent of the number & - .
. . . findutils 15710 7684 51%

of original nodes using a t-test. We receive a p-value
. - ed 28560 7518 73%

< 0.005, therefore we reject the null hypothesis and
conclude that the two variables are dependent. This EPWIC-1 13659 9944 27%
conclusion, plus the high R? value, indicates that, by userv-0.95 15495 7361 52%
knowing the number of nodes in the original graph, we space 11338 10142 10%
can predict with confidence the number of nodes in the flex2-5-4 20706 9764 52%
corresponding reduced graph. tile-forth 17579 5416 69%
We would also like to characterize the percentage prepro 11759 10602 9%
of node reduction over the total population of decom- oracolo2 11829 10635 10%
position slice graphs. To do so, we first perform a diffutils 19513 10575 45%
Kolmogorov-Smirnov (KS) test to ensure the popula- gnuchess 21531 6906 67%
tion is normal. The KS-test tries to determine if two cadp 19488 12372 36%
datasets differ significantly and has the advantage of ctags 48210 9100 81%
making no assumption about the distribution of data. wpst 38997 14100 63%
Performing this test on the sample population, we re- ijpeg 29432 9224 68%
ceive a significance value of 0.189. Since this value is ftpd 30707 17308 43%
greater than 0.005, we can conclude that the sample espresso 45968 16670 63%
population does not deviate from a normal population. go 41651 5118 7%

We now conduct our ttest. From this data, we were
able to determine with 95% confidence that the true
mean percentage of node reduction is between 50.0%
and 60.3%.

4.1 Interpretation and Application
The purpose of this study were two-fold: an evalu-

ation of existing systems to determine if reduction by
equivalent decomposition slices was more than a mere

Table 3. Selected Data

artifact of a few sample systems; and characterization
of these systems to determine the sized of such reduc-
tions. Both were successful: the reduction is more than
an artifact and it is statistically significant.

There are a number of interesting applications of
these observations. The first is that any test-coverage
method used for one of the variables in an equivalence
class will apply to all variables in the class. One of
the problems faced by a tester attempting any cover-
age technique is that of redundant tests, those which
do not increase coverage. If the tester attempts to in-
crease coverage by targeting a variable that is in the
equivalence class, no further coverage will be obtained.
On the other hand, a coverage tester can get many
variables covered through one test.

Second, for software comprehenders the size of the
reduction hints at the difficulty of the task ahead. For
instance, in Table 3, the go system (on the last line
of the table) reduces by 87%. While there are still
approximately 5000 slices to comprehend this is an im-
provement over the 41,000 originally obtained. More-
over, this analysis does not show the relationships that
would be uncovered by a visual examination of the
graph, which could further aid the comprehender. On
the other side of this coin is the system prepro (11
lines from the bottom of Table 3) which has only a
9% reduction. This hints at difficulty of the task. It
would seem that the graph is the only hope of finding
meaningful relationships between the computations.

Third, software maintenance effort is reduced as the
number of computations is reduced. One way to view
the general idea of slicing is the attempt to find all
the “pieces of the puzzle.” This is why program slic-
ing is a powerful maintenance tool. The equivalent
decomposition slices give a straightforward abstraction
mechanism that can be used in all phases of evolution.
Alternatively, a small percentage reduction may be an
indicator of difficulties ahead.

Fourth, this reduction poses interesting questions for
the researcher, in attempting to ascertain the underly-
ing cause(s) of this phenomena. The size and signifi-
cance of the reductions may argue that we are currently
programming with the wrong idioms. For instance, a
simple swap operation need not evidence an intermedi-
ate variable. Linger, et al. [9] suggested a simple a, b
= b, a; for a variable swap in 1979. We need simpler
and more direct ways to embody computational defini-
tions, that is not achievable with today’s technologies.
However, this is not an argument for object orientation.
While objects give analysis and design insight, they are
still written much like C. And slicing objects is not
easy. This approach is also too fine-grained for today’s

gigantic, complicated and critical systems.2 Perhaps
these new idioms, whatever they are, will not even be
sliceable.

While performing the program analysis, we discov-
ered another apparently significant method to combine
equivalent slices. This came about when examining
some of the intermediate data. We first output all
slices. Before we combined the slices into decompo-
sition slices, we did the same equivalence reduction on
the entire set that we did after we formed the decom-
position slices. It appeared that we were getting signif-
icant reductions here also, but the data has not been
carefully analyzed. Thus, it seems that combining by
equivalent slices (not just decomposition slices) may be
of interest. This discovery merits further investigation.
A simple application of this would to provide the the
engineer (maintainer, tester, comprehender, reuser, re-
engineer, etc.) with all the data (all the slices) to be
formed into equivalence classes according to the task
at hand, in an interactive process.

5. Conclusion

In the current computational milieu, many variables
and objects are “glued” together to form computa-
tional entities. These entities create new programming
idioms by the unique and clever ways in which they
are assembled. It is precisely this activity that creates
a system. When these entities are assembled, they be-
come intertwined in ways that are eminently suited to
discovery by program slicing. It is these coherent enti-
ties that of primary interest to the engineer. One way
to reduce the information overload that the engineer
sees is to use program slicing to combine and highlight
the inter-connected entities. We have shown that com-
bined decomposition slices, under simple equivalence
gives a large and statistically significant reduction.

References

[1] V. Basili, R. Selby, and D. Hutchens. Experimenta-
tion in software engineering. IEEE Transactions on
Software Engineering, 12(7):733-743, July 1986.

[2] D. Binkley and K. Gallagher. A survey of program
slicing. In M. Zelkowitz, editor, Advances in Comput-
ers. Academic Press, 1996.

[3] CodeSurfer. GrammaTech, Inc.
http://www.grammatech.com/products/codesurfer.

[4] A. DeLucia. Program slicing: Methods and applica-
tions. In Proceedings of the First IEEE International
Workshop on Source Code Analysis and Manipulation,
Florence, Italy, 2001.

2We have no suggestion as to what these new idioms might
be. [AUTHORS’ (kg) note: A lively discussion would ensue!]

[5]

[6]

[9]

[10]

[11]

[12]

K. Gallagher and L. O’Brien. Analyzing programs via
decomposition slicing. In Proceedings of International
Workshop on Empirical Studies of Software Mainte-
nance, WESS, 2001.

K. B. Gallagher. Visual impact analysis. In Pro-
ceedings of the Conference on Software Maintenance
- 1996, 1996.

K. B. Gallagher and J. R. Lyle. Using program slic-
ing in software maintenance. IEEE Transactions on
Software Engineering, 17(8):751-761, August 1991.
K. B. Gallagher and L. O’Brien. Reducing visualiza-
tion complexity using decomposition slices. In Pro-
ceedings of the 1997 Software Visualization Workshop,
SoftVis97, number ISBN 0725806303, Dec 1997.

R. Linger, H. Mills, and B. Witt. Structured Program-
ming: Theory and Practice. Addison-Wesley, Reading,
Massachusetts, 1979.

J. Lyle, D. Wallace, J. Graham, K. Gallagher, J. Poole,
and D. Binkley. A CASE tool to evaluate functional
diversity in high integrity software. U.S. Depart-
ment of Commerce, Technology Administration, Na-
tional Institute of Standards and Technology, Com-
puter Systems Laboratory, Gaithersburg, MD, 1995.
http://hissa.ncsl.nist.gov/” jimmy/unravel.html.

F. Tip. A survey of programming slicing techniques.
Journal Of Programming Languages, 13(3):121-189,
1995.

M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10:352-357, July 1984.

