
A Reverse Engineering Approach to Support Software Maintenance:
Version Control Knowledge Extraction

Xiaomin Wu
University of Victoria

xwu@cs.uvic.ca

Adam Murray
University of Ottawa

amurray@site.uottawa.ca

Margaret-Anne Storey
 University of Victoria

mstorey@uvic.ca

Rob Lintern
University of Victoria

rlintern@uvic.ca

Abstract

Most traditional reverse engineering tools focus on
abstraction and analysis of source code, presenting a
visual representation of the software architecture. This
approach can be both helpful and cost effective in
software maintenance tasks. However, where large
software teams are concerned, with moderate levels of
employee turnover, traditional reverse engineering tools
can be inadequate. To address this issue, we examine the
use of software process data, such as software artifact
change history and developer activities. We propose the
application of this data confers additional information
developers need to better understand, maintain and
develop software in large team settings. To explore this
hypothesis, we evaluate the use of a tool, Xia, in the
navigation of both software artifacts and their version
history. This paper introduces Xia, reveals the results of
our evaluation and proposes directions for future
research in this area.

1. Introduction

Reverse engineering is concerned with the analysis of
existing software systems, with the aim of supporting
software understanding, maintenance, reengineering and
evolution activities through improved program
comprehension. To facilitate understanding, traditional
reverse engineering tools extract knowledge from source
code and software documentation. However, this
approach is rather limiting as often information
concerning how the code was developed and the rationale
for its design are lacking. Moreover, a piece of source
code may be cryptic due to a lack of developer comments.

The traditional reverse engineering approach involves
analysis of source code and related software artifacts; yet,
this approach is both time consuming and may not be able
to solve the problem without communication between
maintainer and original developer. However, it is difficult
to tell who the original developer was through source
code analysis alone. To find out who last worked on the
code the maintainer must turn to the version log of the
software. Therefore, we believe the vast information

generated in the software development process, which is
usually stored in an associated version control tool, would
provide useful information to support program
understanding and maintenance.

In this paper, we introduce a reverse engineering
approach that abstracts information from both the source
code and version logs. A tool, called Xia, was developed
to analyze and browse software artifacts and associated
versioning information. Xia has been tightly integrated
with a full-featured IDE, the Eclipse platform[6]. In Xia,
advanced visual user interface techniques are used for
browsing and interactively exploring software artifacts as
well as the data in a CVS repository. A preliminary user
study was conducted to evaluate both the usability and
functionality of this tool.

Section 2 gives some background on version control
systems, and elicits our problems, which are described in
Section 3. Section 4 introduces our approach to the design
and implementation of Xia. The details and results of our
user study are described in Section 5. In Section 6, we
outline our improvements to Xia as a result of lessons
learnt from the user study. Finally, Section 7 concludes
the paper.

2. Background on version control tools

Presently, most medium to large-scale software
projects are developed and maintained in association with
a version control tool. Version control tools contribute to
software projects in the following ways: software artifact
management, change management and team work support.
Software artifact management involves definition and
control of software artifacts (including source files,
additional resources, and documentation). Change
management keeps a record of artifact changes, and
allows distribution of software versions. Teamwork
support allows concurrent development and records team
members’ activities.

Some common features of version control systems can
be summarized as follows:

• Data Repository: A version control system typically
includes a repository, which is a centralized library of
software artifacts. Clients or users of the version

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

control system can get information about any of the
software artifacts by accessing the repository.
• Check-in/Check-out: Users commit their changes by
checking in software artifacts from their personal
workspace to the shared repository, and retrieve
software artifacts from the repository by checking
them out.
• Versioning: After every commit, the version control
tool assigns a new revision number to the changed
artifacts, and records the related information of the
commitment, such as time, author, the author’s
annotation, etc.
• Diff operation: Users may interpret comparisons
between two revisions of selected artifacts using this
operation.
• Get operation: This mechanism is provided for users
to retrieve any revision of an artifact or any version of
a project.
• Report operation: This operation is used to generate
various useful reports about artifacts, such as history of
a file, annotations, etc.

3. Problem statement

As a result of operations we discussed in Section 2, a
large amount of information is generated and stored in the
repository. The following questions are of interest, and
are central to our discussion in this paper:

• What can this information mean to the software
understanding and maintenance process?
• Can this information be used in a meaningful way to
help with teamwork in software maintenance?
• If so, how can the presentation of this information
assist software understanding and maintenance?
To investigate these questions, we conducted a survey

of five version control systems. In this survey, we posed
questions related to the functionality and ease of use of
version control systems, as well as users’ concerns related
to programming in a team. Our results highlighted that
although the features of version control systems are
considered adequate to support the maintenance and
development; the interfaces of these systems are not
satisfactory.

We discovered that users find it difficult to understand
and explore the information space of version control
systems. For example, a traditional means of browsing or
querying data from version control systems is through the
command line interface. Command line interfaces incur
overhead for humans because users must remember a
variety of commands, and plain text query results can be
difficult to digest. In addition to command line interfaces,
modern version control tools also have interfaces that
allow people to explore information through a Windows-
based GUI[6][14][25][27]. Such interfaces enable most of

the core functionality by simple mouse-click and menu
use; however, the resulting output is still unsatisfactory.

Besides the complaint of weak representation of
version control systems, users also indicated their
interests on certain information contained in version
control systems. Our survey demonstrated that the most
prominent concerns related to a maintenance or
development task include:

• What happened since a developer last worked on
the project (types of events, such as new file added,
file modified, etc.)?
• Who made this happen?
• Where did this take place (location of the new file,
change, deletion, etc.)?
• When did this happen?
• Why were these changes made (what is the rationale
of the designer(s) who made the change)?
• How has a file changed (exact details of the change,
as well as relationship to other files)?
These questions lead to the problem of understanding

and exploring the version control information. We name
this problem the “5W+H” problem for brevity, referring
to the 5W’s, what, who, where, when, why, and H, how,
above. The presence of additional version control
information assists program understanding, e.g. the
comments committed with a change (answer to “Why”).
Further information is also accessible, e.g. whom should I
talk to about this method (answer to “Who” and “When”).

We believe that reverse engineering should combine
traditional source code analysis with version control
knowledge extraction to further support software
maintenance. In this paper, we elucidate evidence that
version control knowledge improves software
understanding for maintenance, and discuss how to
enhance reverse engineering through this method.

We conjectured that applying information
visualization techniques to a version control system might
resolve problems regarding the understanding and
exploration of version control information. Consequently,
we investigated related research (tools for visualizing and
exploring version control data) and found the following
applications: Seesoft[7], Beagle[24], CVS Activity
Viewer[5], and others[1][8][9]. However, these tools have
rarely been evaluated and hence we are unable to tell how
successful these visualization techniques can be for
understanding and exploring version control information.
In addition, they are not tightly integrated with a full-
featured software development environment and hence
pose a barrier in getting feedback on the benefits they
may provide.

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

4. Approach

In our approach, we elected to focus our tool on the
version control system known as CVS[4]. CVS is freely
available open-source software that is widely used. We
believe the widespread user base will make it easier to
evaluate the effectiveness of our tool, as users will be
easier to find. Our previous experience[10][16] of
plugging a visualization tool, SHriMP[19], into the
Eclipse platform, encouraged us towards an approach of
using the Eclipse platform as a framework for the
integration of:

(1) The Eclipse CVS Plug-in, a CVS interface through
which the CVS repository information could be accessed
and retrieved;

(2) The Eclipse JDT (Java Development Tools) Plug-
in, which provides the workspace information for a
particular Java project and;

(3) The SHriMP visualization engine
Xia is the result of an integration and customization of

these components.
The Eclipse CVS Plug-in[11] and the JDT Plug-in

serve as data backends for Xia. The SHriMP visualization
tool[20] is customized and used by Xia as a visual front-
end for the back-end data. Figure 1 illustrates the
architecture of Xia.

Figure 1. The architecture of Xia

The benefits of building Xia on these existing
environments are three-fold. First, using the Eclipse
platform allows us to share our results with people in the
community. Second, robust visualization techniques of
the existing tool, SHriMP, an achievement of our previous
research in information visualization, could be re-used.
And third, implementation was dramatically reduced as
the developer could focus on improving visualization
rather than struggling with data extraction. Data in a CVS
repository could be retrieved through the API of the
Eclipse CVS Plug-in, rather than direct interaction with
the CVS repository.

In the following subsections, we first give some
background of the supporting tools; then we look into the
data we obtained from a CVS repository. Finally, we
describe how we design the visualization in our tool to
help answer the questions we raised before.

4.1. Supporting tools

4.1.1. The Eclipse CVS Plug-in. The Eclipse Platform
provides a framework that allows third party tools to be
developed as plug-ins to the platform. For example, the
Eclipse CVS Plug-in is one such implementation. The
Eclipse CVS Plug-in contains the most common CVS
features and has a non-public API for accessing the
repository data. The data integration of Xia was
implemented using the CVS data retrieval methods of this
API.

4.1.2. The Eclipse JDT Plug-in. The Eclipse JDT Plug-
in provides a well-documented API, which gives us
access to information about the software artifacts in a Java
project. Software artifacts are organized into an easily
understood hierarchy. For example, the “Children” of a
Java class are fields, methods, and other classes. The
relationships between these artifacts could also be found
through the JDT search engine. This makes it quite easy
to rebuild the software structure without parsing the
source code. Integrating this component with Xia
involved calling the JDT API.

4.1.3. The SHriMP visualization tool. SHriMP is a
domain-independent information visualization tool
developed at the University of Victoria. SHriMP employs
advanced visualization techniques to assist browsing and
exploration of large and complex information spaces. The
component-based architecture of SHriMP enables easy
integration of SHriMP with other tools[2]. As Xia reads
data from CVS repositories, via the Eclipse CVS Plug-in,
SHriMP components provide support for the visualization.

SHriMP provides browsing of data at different levels
of abstraction to present hierarchically structured
information. The Main SHriMP View is a nested graph
with a zoomable interface. A nested graph is useful for
representing parent-child relationships in a hierarchical
structure, as it makes efficient use of space. When a
nested graph is combined with zooming techniques, the
screen space is unlimited to the user; hence, large
information spaces become more manageable for users.
Zoomable nested graphs cover multiple levels of
abstraction, providing a further benefit. By zooming in or
out, users are able to see the highest level of structure as
well as the lowest level of details. Arcs between nodes in
the graph represent relationships between these nodes. For
example, an arc between two “file” nodes may represent

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

the fact that a method in one file calls a method in another
file.

4.2. Data acquisition

The CVS repository is a good resource of information
for helping to answer the 5W+H questions. We believe
that pertinent information can be obtained and visualized.
For instance, the log message in CVS contains the record
of each commitment, including:

• The author who made the commitment;
• The comments made by the author of what was
changed and hopefully why it was changed; and
• The time and date when the file revision was created.
To understand how a change occurs, we propose using

the diff function of CVS. The location of the changed file
in the repository hierarchy helps determine where the
change takes place. In our tool, the information we
required was retrieved directly from both the CVS
repository via the Eclipse CVS Plug-in, and the JDT in
Eclipse, or the information was calculated from the
retrieved data.

4.3. Data analysis and visualization

Data retrieved from a CVS repository and the JDT is
visually represented in Xia, using the visualization
techniques found in SHriMP. In the following subsections,
we describe the visual representation of software artifacts,
and associated revision details. Following this, we outline
our method of interactively exploring this information.
Finally, we summarize how our visualization techniques,
specialized for the CVS domain, can help answer the
5W+H questions for a software maintainer.

4.3.1. Artifacts and attributes. By analyzing data from
the JDT and the CVS repositories, we classified data into
two categories, namely the software artifacts, and
associated revision details. The software artifacts include
file revisions, folders, and other code-level entities (such
as methods) and are represented as nodes in our
visualization. Revision details are handled by associating
revision attributes with “file revision” nodes. (see Table 1.)
These attributes reflect human activities that concern
people in answering the 5W+H questions.

Attributes defined in Table 1 have been classified into
two categories according to their data types, nominal and
ordinal. Nominal attributes are strings whereas ordinal
attributes have numeric or ordinal values. In the
following sections, we discuss the visual representation of
CVS artifacts and attributes.

Table 1. File Revision Node Attributes
Attribute Name Data

Resource
Data
Type

File revision number Retrieved Ordinal
File revision tags Retrieved Nominal
Date of last commitment
(check-in) of a file
revision

Retrieved Ordinal

Author who changed the
file most recently

Retrieved Nominal

Author who changes the
file most times in a
particular time period

Calculated Nominal

Comments associated
with each commitment

Retrieved Nominal

Number of changes
associated with a file
revision

Calculated Ordinal

4.3.2. Visual representation of software artifacts. A
single file revision in the CVS repository is mapped to a
single node in SHriMP. Likewise, a folder containing file
revisions is mapped to a parent node of file revision nodes.
Right clicking on a node brings up a menu with options to
display the source code, attributes, and documentation for
that node.

In the Eclipse CVS Plug-in, software in the repository
is displayed in a tree-like hierarchical structure of folders
and file revisions. This structure corresponds well to
nested graphs in SHriMP, as illustrated in a screen shot of
the CVS data in Figure 2. In Figure 2, parent folder nodes
(shown in dark grey) encompass file revision nodes
(shown in white). The outmost light grey nodes represent
two versions of the same project. Node size relates to the
size of the content (number of children) within the node,
so the version on the left (which is graphically larger)
contains more sub-nodes than the version on the right.
Also, a node’s screen location is based on the size of its
contents – larger nodes to represent larger file revisions
are placed in the left upper-most corner of a folder node,
and smaller nodes are found as you move to the right and
down.

4.3.3. Visual representation of attributes. In addition to
the pre-existing SHriMP visualization techniques, we
developed an Attribute Panel for showing and querying
attributes associated with file revisions (see Fig. 3). The
attribute panel concept, and the widgets it supports, was
originally developed at the University of Maryland, and
combined with the Treemap visualization tool[17]. The
attributes reflect human activities that concern people in
answering the 5W+H questions.

File revision attributes, and their values, are browsed
by two means. The first is by placing a simple table
within each node displaying this node’s attributes

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

(accessed by right-clicking on the node). The alternative
method involves using appropriate visual variables for the
attributes[26]. For instance, using color, intensity, tool
tips, size, and position to highlight nodes and accentuate
their differences.

Figure 2. A nested graph showing two versions
(light grey) of a software project. Versions
contain folders (dark grey), which in turn

encompass files (white) and other folders.

Figure 3. The Attribute Panel in Xia: The user can
change colors associated with developers and
how attributes are mapped to tool tips and can

filter nodes

Tool tips provide instant messages that are easily
perceived during browsing. In Xia, all attributes in the
CVS domain can be viewed with tool tips. The user
selects which of the attributes to show in the tool tips.

Colors may be used for both nominal and ordinal
attributes, though different color schemes are necessary
for each type[3]. For nominal attributes, each of the

values may be assigned a distinct color; whereas ordinal
attributes may use color intensity instead of different
colors (see Figure 4). For example, in Xia, the date of
commitment and number of changes are the two ordinal
attributes that can be visualized using color intensity.
These ordinal attributes are sorted in an old-to-new and
few-to-more order respectively, and then each value is
assigned an intensity of green (the default color). In our
example, a more recent date is assigned a brighter green
color. When assigning a color or intensity to the value of
an attribute, nodes in Xia will change their color
according to the attribute values. Figure 4 shows a screen
shot of coloring nodes according to their ordinal attributes.
The arcs between nodes enable people to focus on a
specific task and keep track of its relationship to other
files in the project. This kind of awareness is very
important for teams to collaborate on maintenance and
development work effectively, especially if there are
many dependencies between the different artifacts that are
being worked on.

Figure 4. The intensity of each node is
determined by the date of the latest commitment.

4.3.4. Interactive Exploration. The Attribute Panel
also supports dynamic exploration using filters. Two
kinds of filtering widgets have been developed for
different attribute types. A checkbox filter, as illustrated
on the right hand of Figure 3 is created for each of the
nominal attributes. A checkbox filter consists of a set of
checkboxes associated with each of the attribute values in
the domain. An unchecked checkbox results in the
corresponding nodes having equal attribute values being
filtered from the screen. The other filtering widget, a
double slider, is designed for ordinal attributes and is
especially useful for dynamic queries. Unlike the
traditional single slider which can only be used to select a
single value, a double slider allows the user to select a
range of values for query by adjusting the minimum and
maximum value of the slider, and can also be used to
select a single value by setting the minimum and
maximum value of the slider to the same value. We
implemented the double slider in Xia to filter two ordinal
attribute values: Date of last commitment and Number of
Changes. These two sliders could be used together to

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

perform a multi-variable query. For example, if a
programmer wants to look at the file that changed most
frequently in the past week, he/she would be able to get
the result by setting the Date of Last Commitment slider
to the corresponding range, and setting the Number of
Change slider to its maximum value.

Figure 5. An ordered Treemap layout in which
the number of changes determines the size of

nodes and the position of nodes are ordered by
their last commit date.

4.3.5. Ordered Treemap Layout. To provide a view that
addresses the 5W+H problem at the entire project level,
we adopted the Ordered Treemap algorithm created by the
HCI lab at the University of Maryland[18]. Treemap is a
2-d space-filling representation designed for traditional
tree structures. Besides the benefit of saving screen space,
Treemap is also useful in that the size and order of the
nodes can be mapped to selected data, an effective means
of showing node attribute. By using the Ordered Treemap
algorithm, we produced a Treemap layout in the SHriMP
visualization environment. The Treemap layout was used
in Xia for the purpose of visually interpreting the
attributes of software artifacts. Two distinct features of
the Treemap layout are the variation of the node size
according to the associated numerical attribute and the
repositioning of nodes according to their associated
ordinal value. Figure 5 demonstrates a screen shot in
which node size was adjusted according to the number of
changes and the position of nodes are ordered by their last
commit date. This ordering feature provides a comparable
view for files in a project, hence answering the When
question at the project level.

4.3.6. Summary of visualization features for CVS. Xia
provides various ways to visualize data or derived data
from the CVS repository and the JDT. In addition,
relationships between files can be determined using
information extracted from the Eclipse JDT.

The 5W+H questions can be answered by interacting
with the features in Xia which includes the double slider
filters, the different layout algorithms (such as the
Treemap layout) effecting size and order of the nodes, the

checkbox filters, tool tips, color and intensity. In addition
to these features, Xia provides easy access to the source
code, documentation (Javadoc) and comments in the CVS
repository. The user can zoom into a node representing a
file revision and switch between these different views. In
Table 2 we summarize how these different features can be
used to answer the 5W+H questions.

Table 2. Map of visualization techniques to
questions of interest when working with CVS
Question Visualization techniques
What The name of the changed file can be

shown using labels on the nodes (which
are visible when users zoom in), or they
can be shown using tool tips when the
user brushes over nodes in the graph with
a mouse.

Who Can be distinguished using different
node colors; filter by name using a
checkbox. Tool tips could also be used to
show the author’s name.

Where Nested within relevant folders in the
layouts

When Date can be shown using color intensity,
tool tips. File revisions can also be
filtered by date

Why Rapid access to the code, CVS comments
(in the attribute table) and documentation
(by right clicking on the nodes, or by
zooming in to an embedded view)

How Access to the code, Javadoc and CVS
comments by zooming on a file revision
node. Tool tips, intensity, size and
location could also be used to show
number of changes to a file.
Relationships between files are shown
using arcs, which could be used to trace
the impact of changes.

5. Evaluation

We conducted a preliminary user study to test both the
functionality and usability of Xia. Before our study, our
conjecture was that Xia could be used to resolve the
5W+H problem at both the file and project levels. We
also expected the tool would properly reflect an overview
of the version history and hence help people to better
understand the software history. In addition, the
effectiveness of visualization techniques for answering
these questions was also of much interest.

A Java project with four versions was chosen as the
dataset for the study. The most recent version of the
project contained approximately 1000 lines of code.
Participants’ background information with version control

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

tools was gathered in a pre-questionnaire. Tasks were
created based on plausible real world scenarios adapted
from a real world project.

We did not compare Xia to other tools in this study.
Although the literature contains references to several tools
that do visualization of CVS information, we were not
able to obtain a mature prototype of any of these tools that
was integrated with a CVS system in an IDE. We did not
compare to the command line interface, as the users we
recruited for our study were already familiar with the
command line interface and could provide us feedback on
it already.

The following subsections describe in detail the
participants, the procedure of the study, the tasks and
general observations.

5.1. Subjects

Five graduate students in the Department of Computer
Science at the University of Victoria participated in the
study. Each participant had programming experience on a
team software project, working with at least one version
control tool. In addition, one subject had experience as a
software project manager. As is the case with
maintainers performing real-life reverse engineering tasks,
the subjects were not part of the original development
team that created the source code used for the study, and
hence were not familiar with this code. We did however
provide an overview explanation of the source code as the
participants may also have lacked knowledge with the
project domain. Since our users already had experience
with other CVS tools we could collect their opinions on
how the tools compared based on their previous
experiences.

5.2. Procedures

Following the pre-study questionnaire (to determine
their previous programming and version control
experience etc.), a fifteen-minute orientation on Xia was
provided to each participant. In this orientation, the
participants were introduced to the basic tool operations,
and the tool’s core features. Following the orientation, a
task list was administered to participants. No time limit
was set for the participants to resolve the tasks, since we
were more interested in observations of how the given
tool would be used in a more realistic setting without time
constraints. As a result of this, the actual time spent to
complete the tasks varied among different participants, in
the range of 30 to 90 minutes. Users were encouraged to
think aloud so we could verify our interpretation of their
actions[12]. Following completion of the tasks, further
inquiry into the user’s opinion of the tool was gathered
through a post-study questionnaire.

5.3. Tasks

Two sets of similar tasks were assigned to participants
corresponding to two different data resources: the data in
the CVS repository and a “working copy” of this data in
the programmer’s own workspace. These two sets of data
constitute a programmer’s data in the real world. The
tasks involved exploring the information space and
answering questions related to teamwork and software
history, including the 5W+H questions.

For example, one of the tasks asked the participant to
name all programmers that have been working on the
project. Another task asked the participant to find out who
was the last person working on a particular file. These two
tasks correspond to the “Who” question on the project and
file levels. In regards to the “What” question, we asked
the user to determine what kind of changes to a particular
file have been made. As per the “When” question, we
encouraged the user to establish which file was changed
most recently. With respect to the “How” question,
participants were asked to discover how a particular file
was changed in the latest commitment. The “Why”
question was explored by asking for the rationale behind a
particular change.

In addition, we also posed some tasks that we believe
are of interest to both project managers and programmers
alike. For example, we asked the user to find the file that
has changed the most times in the project. We
hypothesized this measurement is useful for people
looking for stable or active files in a project.

5.4. General observations

Participants successfully resolved most tasks. Some
general observations were as follows:

• The visualization and exploration techniques
provided by the Attribute Panel were used frequently
to resolve the tasks. Also, participants pointed out in
their post-study questionnaires that they would like to
use features of the Attribute Panel in their everyday
work.
• The tool appeared to be easy to learn and use.
Although only fifteen minutes of orientation was
provided, participants used the tool effectively to
perform the tasks. They were aware of the possible
ways to use the tool to solve problems and did not
require additional assistance or note any significant
difficulties.
• Participants considered the tool informative, from
both the project manager and programmer perspective.
Candidates indicated they believe the Xia tool could
help them solve many problems they encounter in a
work environment.

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

• The tool was also used to answer more sophisticated
questions by making use of a combination of features.
For example, one of the tasks asked the participants to
find out which file is most stable and which file is
most active. The participants all defined “stable” and
“active” in similar ways: a file that has not been
changed for a long time and to which very few changes
were made was considered stable; the opposite held
true for an active file. To answer this question,
participants chose both the last commit date double
slider and number of change double slider to narrow
down the range of candidate nodes, and analyzed the
candidate nodes.
• The visualization features in Xia helped the users
gain more awareness of their teammates activities and
to learn which programmers were working on files in
the past and who was currently working on files.
• The participants were impressed by the immediate
feedback the visualizations provided when they posed
a new query, which was thought not possible in a
command-line environment. For example, some
queries could not even be posed using commands, e.g.
sort the files by their file ages. As to the visualization
techniques, some of the users had special interests in
color schemes while others used filters more often.
• When we asked the participants to explain the
rationale behind a particular change, one of the
participants chose to browse the source code first, as
most programmers usually do. He compared the two
revisions of the source code, read the source code line
by line, and tried to understand why the change was
made. He gave up on the source code exploration after
a few minutes, as he could not find the answer in the
code. Then, he took another approach to look at the
programmer’s comments committed along with the file
changes, and found the answer in the comments where
the programmer who checked in the changes explicitly
stated, “interface changed, more methods to
implement”.

Though the positive feedback is encouraging, we also
noticed some deficiencies of the tool:

• Although the participants thought that the use of
color intensity to interpret ordinal attribute values as
being very useful, they also pointed out that it was hard
to tell which was brighter or darker when two
intensities were very close. In this case, they used tool
tips for assistance.
• Some participants were confused when working
with different revisions of the same file. They
suggested that some kind of mapping between different
revisions of the same file would be helpful.
• Some participants also suggested a time-line
arrangement of project versions.

• Visualization of other attributes was also anticipated
by some of the users. For example, one of the users
was interested in who originally created a particular
file.
• The file revision organization requires a more
elegant display. Currently, the file revisions are
organized by software versions. However, revisions
not belonging to a particular version will not be
considered or displayed in the tool. This may lead to
the loss of information.
• Participants considered the “diff” function – a
comparison of two different file revisions very
important in their everyday work. We considered
displaying the CVS Plug-in’s diff view within Xia,
however, Xia does not currently support this feature on
account of difficulties embedding Xia’s Java Swing[23]
GUI inside of Eclipse’s SWT[13] GUI (a problem
discussed by Rayside et al.[16]). Further investigation
is required for this technical issue. However, as Xia is
a plug-in for the Eclipse platform, we can invoke the
CVS Plug-in’s “diff” view in a separate SWT window
as an alternative. The ability to use and integrate
existing functionalities with our tool demonstrated
another benefit of integrating our visualization tool
with a full-featured IDE.

5.5. Limitations of the Study

The study we conducted is a preliminary step to
provide feedback on the use of a tool such as Xia. The
number of users was sufficient to find many of the
usability problems in our approach as well as helped us
refine the design of the tool for future iterations in our
work. The size of the code studied was small but the study
required that the users gain some knowledge of the code
in a relatively short time. In the next section we discuss
some improvements we made according to the results of
our user study.

6. Improvements

Based on our observations from the user study and
from suggestions made by the users, we have
subsequently made significant changes to the
visualizations we provide, in particular with respect to
graph layouts. We have an early prototype of this new
layout. We describe how these new layout address some
of the issues revealed in the user study:

• From our observations, we noticed that the
organization of file revisions needs improvement. All
file revisions should appear in the view regardless of
whether they belong to a software version or not.
Revisions that belong to the same file should be

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

clustered. In Figure 6, we show a clustering of revision
of files.

Figure 6. Cascaded nodes representing different
revisions of the same file

• The arrangement in Figure 6 uses screen space
effectively, but version information is occluded.
Sometimes the user wants to be able to see which
versions are available. The animation expands the
cascaded nodes to a histogram so that a column
presents each file. Taller columns therefore have more
revisions. Furthermore, to gain an overall picture of
software versions, file revisions that belong to a
particular version need to be related. We achieve this
by connecting files related to a particular version using
colored lines as shown in Figure 7. Alternatively, the
histogram can be morphed to the nesting approach we
showed in Section 2.
This new graph layout is still under development and

we will evaluate it in our next round of user studies.

Figure 7. A software version is represented by
connecting the file revisions belonging to this

version. For example, version 2 contains
revision 1.5 of “file1.txt,” revision 1.2 of

“file2.txt” and revision 1.3 of “file3.txt.” Light
grey arcs connect them.

Future work also involves implementing our own
“diff” view, as the users indicated it was very important
for their work. Eclipse has a useful design for browsing

comparison results, which can potentially be adapted to
our tool design.

Another version control tool, Subversion[21] has
drawn our attention recently. Subversion is considered a
“compelling replacement” for CVS and has more features
such as supporting atomic transactions and versioning
directory information. Subversion has also been integrated
with the Eclipse platform in a plug-in called
Subclipse[22]. We plan to apply visualization techniques
to Subversion in the future, and the integration of
Subversion and Eclipse will reduce our workload in this
effort. The technical architecture of this approach is
similar to that of Xia, using the Eclipse platform as the
framework.

We also observed that individuals were interested in
discovering information related to a certain modification
request. A modification request always results in logically
related changes to several artifacts - the rationale of these
changes is identical. Xia has a limited ability to mine for
artifacts belonging to a certain modification request in
current stage. One possible solution is using the time
slider to discover the group of files submitted at the same
time, assuming changes related to a certain modification
request were submitted together. However, practical
situations are complex and our assumption may not be
tenable. We believe that analyzing the documentation –
in which the modification requests are documented – as
well as code pieces would better solve this problem. Also,
other version control tools, such as the Rational
ClearCase[15], provide the management of modification
requests and associated changes. Integrating Xia with
Rational ClearCase is feasible, as ClearCase has already
been integrated with Eclipse.

7. Conclusions

This paper describes a visualization tool, Xia, used to
browse and explore the software with its version history
and associated human activities. Xia is integrated with the
Eclipse platform, which includes a modern IDE as well as
an interface to the version control tool, CVS. This
integration makes the reverse engineering process easier
than traditional methods, and provides additional
information, such as version logs, to better support
program understanding. Integration also increases the
possibility of Xia being widely adopted in the real world,
and hence providing us with more feedback on the
effectiveness of using visualization of version control
information to support reverse engineering and program
understanding.

We also discussed the evaluation of Xia, and the
resulting observations. Observations from our user study
led us to further design improvements for the tool.
Through the study, we observed that the visualization
techniques applied to version control show great potential

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

for assisting in the information exploration process, hence
improving the efficiency of program understanding of the
whole team in software maintenance and development.

8. References

[1] Ball, T. A. and Eick, S. G. 1996. Software visualization in
the large. IEEE Computer, vol. 29, no. 4, pp. 33-43.

[2] Best, C., Storey, M.-A. and Michaud, J. 2002. Designing a
Component-Based Framework for Visualization in
Software Engineering and Knowledge Engineering. In
Proceedings of the 14th international conference on
software engineering and knowledge engineering, pp323-
322.

[3] Card, S. K., Mackinlay, J. D., and Shneiderman, B. 1999.
Readings in Information Visualization: Using Vision to
Think. Morgan Kaufmann.

[4] CVS 2004. The CVS website: http://www.cvshome.org/

[5] Dourish, P. 2002. “Visualizing Software Development
Activity”: http://www.isr.uci.edu/projects/augur/

[6] Eclipse Platform, 2004. The Eclipse Platform Subproject
Webpage: http://www.eclipse.org/platform/index.html

[7] Eick, S. G., Steffen, J. L., and Summer, E. E. 1992. Seesoft
– A tool for visualizing line oriented software statistics.
IEEE Trans. Software Engineering, vol 18(11), pp. 957-
968.

[8] Fisher, M., and Gall, H., 2003. MDS-Views: Visualizing
problem report data of large scale software using
multidimensional scaling, in Proceedings of the
International Workshop on Evolution of Large-scale
Industrial Software Applications (ELISA), Netherlands.

[9] German, D., Hindle, A., and Jordan N., 2004. Visualizing
the evolution of software using softChange, In Proceedings
of Software Engineering Knowledge Engineering
(SEKE'04), Banff.

[10] Lintern, R., Michaud, J., Storey, M.-A., and Wu, X. 2003.
Plugging-in Visualization: Experiences Integrating a
Visualization Tool with Eclipse. To appear in Proceedings
of Software Visualization 2003.

[11] McGuire, K. 2002. VCM 2.0 Story (article in Eclipse
website: http://dev.eclipse.org/viewcvs/index.cgi/platform-
vcm-home/docs/online/vcm_story2.0/vcm2story.html)

[12] Nielsen, J. 1993. Usability Engineering. Academic Press.

[13] Northover, S. 2001. SWT: The Standard Widget Toolkit,
http://www.Eclipse.org/articles/Article-SWT-Design-
1/SWT-Design-1.html

[14] Perforce 2004. Perforce website: http://www.perforce.com/

[15] Rational ClearCase 2004. Rational ClearCase website:
http://www-306.ibm.com/software/awdtools/clearcase/

[16] Rayside, D., Litoiu, M., Storey, M.-A., Best, C. and
Lintern, R. 2002. Visualizing Flow Diagrams in Websphere
Studio Using SHriMP Views (Visualizing Flow Diagrams).

Information Systems Frontiers: A Journal of Research and
Innovation (Kluwer, ISSN 1387-3326), vol 4 (4)

[17] Shneiderman, B. 1992. Tree Visualization with Tree-maps:
A 2-d space-filling approach. ACM Transactions on
Graphics, vol 11(1), pp. 92-99.

[18] Shneiderman, B. and Wattenberg, M. 2001. Ordered
Treemap Layouts. In Proc. IEEE Symposium on
Information Visualization 2001, 73-78. IEEE Press, Los
Alamitos, CA

[19] SHriMP 2004. SHriMP Website: http://shrimp.cs.uvic.ca/

[20] Storey, M.-A., Best, C., Michaud, J., Rayside, D., Litoiu,
M. and Musen, M. 2002. SHriMP views: an interactive
environment for information visualization and navigation.
In Proceedings of CHI 2002 Conference, Extended
Abstracts on Human Factors in Computer Systems,
Minneapolis, Minnesota, USA, pp. 520-521.

[21] Subversion website: http://subversion.tigris.org/

[22] Subclipse: A Subversion Eclipse Plug-in. Project
homepage: http://subclipse.tigris.org/

[23] Swing 2003. The Swing Connection, http://java.sun.com
/products/jfc/tsc/

[24] Tu, Qiang and Godfrey, Michael 2002. An Integrated
Approach for Studying Software Architectural Evolution.
In Proc. of 2002 International. Workshop on Program
Comprehension (IWPC-02).

[25] VSS 2003. Microsoft Visual Sourcesafe home page:
http://msdn.microsoft.com/ssafe/

[26] Ware, C. 2000. Information Visualization, perception for
design. Morgan Kaufmann

[27] WinCVS 2004. WinCVS website: http://www.wincvs.org/

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

