
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Monitoring Requirements Coverage
Using Reconstructed Views:

An Industrial Case Study

Marco Lormans, Hans-Gerhard Gross, Arie van Deursen,
Rini van Solingen and André Stehouwer

Report TUD-SERG-2006-014

SERG

TUD-SERG-2006-014

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the Working Conference on Reverse Engineering
(WCRE), 2006, IEEE Computer Society.

c© copyright 2006, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Monitoring Requirements Coverage using Reconstructed Views:
An Industrial Case Study

Marco Lormans and Hans-Gerhard Gross
Delft University of Technology

(M.Lormans, H.G.Gross)@ewi.tudelft.nl

Arie van Deursen
Delft University of Technology and CWI

Arie.vanDeursen@tudelft.nl

Rini van Solingen
LogicaCMG and Drenthe University

Rini.van.Solingen@logicacmg.com

André Stehouwer
LogicaCMG

Andre.Stehouwer@logicacmg.com

Abstract

Requirements views, such as coverage and status views, are
an important asset for monitoring and managing software
development. We have developed a method that automates
the process for reconstructing these views, and built a tool,
ReqAnalyst, to support this method. In this paper, we in-
vestigate to what extent we can automatically generate re-
quirements views to monitor requirements in test categories
and test cases. The technique used for retrieving the neces-
sary data is an information retrieval technique called La-
tent Semantic Indexing (LSI). We applied our method in a
case study at LogicaCMG. We defined a number of require-
ments views and experimented with different reconstruction
settings to generate these views.

1. Introduction

A “requirements view” on a system or development pro-
cess offers a perspective on that system in which require-
ments are leading [18]. For example, requirements views
can describe project progress in terms of testing (these re-
quirements have been successfully tested), design (the re-
quirements that resulted in a design decision), coding (the
requirements that were actually implemented), and so on.

Requirements views are essential for successful project
management, in order to monitor progress in product devel-
opment. In an outsourcing context, reporting progress in
terms of requirements is particularly important, since the
customer is much less aware of the system breakdown or
implementation issues, and is primarily interested in his re-
quirements.

Unfortunately, capturing, monitoring, and resolv-
ing multiple views on requirements is difficult, time-
consuming as well as error-prone when done by hand [17].
The creation of requirements views requires an accurate

traceability matrix, which in practice turns out to be very
hard to obtain and maintain [6,10,13,21].

To remedy this problem, a significant amount of re-
search has been conducted in the area of reverse engineer-
ing traceability links from available software development
work products [8, 14, 19]. Our own line of research has
focused on the use of information retrieval techniques, in
particularlatent semantic indexing(LSI) [3], for this pur-
pose, and the application of the reconstructed matrices for
view reconstruction specifically [11,12].

While significant progress in these areas has been
booked, a number of open research issues exist, which we
seek to explore in this paper.

The first question we address is which requirements
views are most needed in practice. To answer this question,
we have sent out a questionnaire to a dozen practitioners.
From the answers, we have distilled three important groups
of views, which are described.

The second question is how and to what extent these par-
ticular requirements views can be reverse engineered from
existing work products. Can the approach we proposed
in [11, 12] be used to reconstruct these views? Our answer
comes in the form of a prototype tool, called ReqAnalyst,
which implements a way of reconstructing these views, of-
fering project stakeholders the capabilities to inspect the
system and development progress in terms of these views.

The third and hardest question is if these reconstructed
views can help in a real life software development process.
To address this issue, we take an extensive look at a long
running, complex software development process that has
been going on for several years.

The project at hand deals with a traffic monitoring
system (TMS). The development of TMS is outsourced
to LogicaCMG, an international IT services supplier.
Progress reporting to the customer must be done in terms of
requirements, making accurate requirements views an es-
sential success factor in the project. We discuss the way of

SERG Marco Lormans et al. – Monitoring Requirements Coverage using Reconstructed Views

TUD-SERG-2006-014 1

working in this project, and analyze to what extent recon-
structed links can be used to support and enhance the way
of working. In our case study we focus on requirements
views related to testing.

The remainder of this paper is organized as follows. In
Section 2 we discuss existing work in the area of require-
ments views and reverse engineering of traceability ma-
trices. In Section 3, we summarize our methodology for
generating requirements views, based on [11, 12]. In Sec-
tions 4, 5, and 6 we present the requirements views we aim
at, the ReqAnalyst tool, and the case at LogicaCMG, re-
spectively, after which we conclude the paper with a sum-
mary of contributions, and suggestions for future research.

2. Related Work

The term ’view’ is often used in the area of software
engineering, especially in the area of requirements engi-
neering. Views are generally introduced as a means for
separation of concerns [18] and mostly represent a specific
perspective on a system. Nuseibehet al. discuss the rela-
tionships between multiple views of a requirements spec-
ification [18]. Most systems that are developed by multi-
ple participants have to deal with requirements that overlap,
complement and contradict each other. Their approach fo-
cuses on identifying inconsistencies and managing incon-
sistencies in the requirements specification.

Another approach is to use a well structured document
set, conforming to known templates such as MIL-std 498,
Volare or IEEE-std-830-1998. These templates help in get-
ting an overview of what the system does, but they are often
not sufficient. Project managers, but also other team mem-
bers, need fast access to this data, and, preferably, they
would like only a subset of the whole pile of documents
produced during the development life-cycle. Current tem-
plates are not sufficiently flexible and are difficult to keep
consistent during development.

Nissenet al. show that meta-models help managing dif-
ferent requirements perspectives [17]. The meta-models
define what information is available and how it is structured
in the life-cycle: the development artifacts including their
attributes, and the traceability relations that are allowed to
be set between these artifacts. An important area of re-
search is developing these meta-models [16,20,22,23,25],
which constrain the views that can be generated.

Von Knethen proposes traceability models for manag-
ing changes on embedded systems [23, 24]. These mod-
els help estimating the impact of a change on the system,
or help to determine the links necessary for correct reuse
of requirements. According to Von Knethen, defining a
workable traceability model is a neglected activity in many
approaches. Our earlier research confirms the importance
of defining a traceability model [13]. Some initial experi-

ments concerned a static traceability model. New insights
suggest a dynamic model, in which new types of links
can be added as the way of working evolves during the
project. The need for information as well as the level of
detail changes constantly for big development projects [6].

In order to reconstruct requirements views from project
documentation we need traceability support. Several trace-
ability recovery methods and supporting tools already exist,
each covering different traceability issues.

De Lucia et al. present an artifact management sys-
tem, which has been extended with traceability recovery
features [14]. This system manages different artifacts pro-
duced during development such as requirements, designs,
test cases, and source code modules. De Luciaet al. use
latent semantic indexing (LSI) for recovering the traceabil-
ity links. They also propose an incremental traceability re-
covery process in which they incrementally try to identify
the ’optimal’ threshold [15].

Natt och Daget al. [19] and Huffman Hayeset al. [8]
primarily use traceability reconstruction for managing re-
quirements of different levels of abstraction, such as be-
tween business requirements and system requirements.
Natt och Daget al. discuss their approach and tool, Re-
qSimile, where they have implemented the basic vector
space model and applied it in an industrial case study [19].
Huffman Hayeset al. have implemented various meth-
ods for recovering the traceability links in their tool called
RETRO [8]. They also applied their approach in an indus-
trial case study.

Cleland-Huanget al. define three strategies for improv-
ing dynamic requirements traceability performance: hier-
archical modeling, logical clustering of artifacts and semi-
automated pruning of the probabilistic network [1].

3. A Methodology for Generating Require-
ments Views

In our earlier work [11], we have proposed an ap-
proach for reconstructing requirements views and we ex-
perimented with the reconstruction of traceability links in
several case studies [12]. Our method consists of the fol-
lowing six steps:

Step 1: Defining the traceability meta-model. The un-
derlying traceability meta-model defines the work products
and the type of links that are permitted. Examples can be
found in [16,20,22–25].

Step 2: Identifying the work products. The work prod-
ucts are identified in the provided documentation. Each
work product is given an unique identifier, for example,
’FR01’ for a requirements description.

2

Marco Lormans et al. – Monitoring Requirements Coverage using Reconstructed Views SERG

2 TUD-SERG-2006-014

Step 3: Preprocessing the work products. Each work
product is preprocessed to support automated analysis. The
text of each work product needs to be extracted and trans-
formed into plain text. This includes typical information
retrieval steps such as lexical analysis, and so on.

Step 4: Reconstructing the traceability links. The
traceability links are reconstructed for which we use La-
tent Semantic Indexing [3]. The result of this step is the
complete set of candidate traceability links.

Step 5: Selecting the relevant links. The possible rele-
vant links are automatically selected from the complete set
of candidate links using various link selection strategies.

Step 6: Generating requirements views. Finally, the
requirements views are generated using the reconstructed
traceability links.

4. Which Views are Needed in Practice?

To determine which requirements views are needed in
practice, we set up a questionnaire and distributed it among
various practitioners. Below we describe the process we
used for this, as well as the three main types of views that
emerged from our investigation.

4.1. Requirements View Questionnaire

The goal of our questionnaire is to get an impression
which views are helpful and what information these views
should present. We distributed the questionnaire among
people holding various roles within the software develop-
ment life-cycle. The roles we distinguished are: project
manager, software process improvement / quality manager,
product marketing manager, requirements engineer, sys-
tem/software architect, programmer and test engineer, as
well as more specific roles such as product owner and us-
ability designer.

The respondents came from the industrial partners of the
Merlin1 project we are involved in. This is a European re-
search project in the area of global software development
in which various universities and companies participate. In
total, the questionnaire was spread among all 7 industrial
partners. We got a response from 5 of the companies with
multiple filled in questionnaires. In total we had 12 fully
filled in questionnaires containing around 100 descriptions
of desirable views for different roles in the life-cycle.

We also asked if these views can be extracted from the
work products they currently produce during the develop-
ment life-cycle. Most respondents think that this is possi-

1www.merlinproject.org

ble, because this information should be stored somewhere
in the work products. However, the exact location of this
information is not always known.

We have learned from this questionnaire that the pos-
sibility for browsing requirements data and the underlying
work products is essential in all environments. A challenge
here is that in many cases the readability of many of the
work products leaves much to be desired, and that it is often
hard to get an overview of the whole system. In addition
to that, stakeholders can easily get lost when looking for
information if there are too many possible links to follow.
Our views should take care of this issue, and should make
it easier to arrive at the exact information one needs for the
view in question.

Furthermore, we learned from this questionnaire that the
following information is desirable in a requirements view:

• For each requirement their source, description, moti-
vation, importance, history, status and dependencies
to other work products.

• For each group of requirements a list of all require-
ments, the status of their implementation and verifica-
tion (not tested, test passed, test failed).

• Life-cycle paths; per requirement the complete path it
undergoes during the life-cycle. In other words, walk-
ing the complete path of dependencies per require-
ment (using traceability). Two paths are of interest
for the developers: the Requirements-Implementation
path and the Requirements-Test path.

• For all the requirements the coverage in a certain work
product. These work products can, for example, be
a lower level of requirements, the design or the test
cases.

From the questionnaire we can conclude that various de-
velopers and managers are interested in specific informa-
tion about a certain requirement (see first and third bullet)
or a group of requirements, sometimes in relation to other
work products (see last bullet).

From the answers to this questionnaire we distilled three
types of views: Coverage views, Life-cycle Path views, and
Status views, which we will briefly discuss below.

4.2. Coverage Views

Requirements coverage views focus on the localization
of the requirements in the rest of the system. These views
show if and where a certain requirement is covered in the
system. This can be coverage in, for example, the system
architecture, in the detailed design, or in the test cases. The
number of different types of coverage views depends on the

3

SERG Marco Lormans et al. – Monitoring Requirements Coverage using Reconstructed Views

TUD-SERG-2006-014 3

meta-model defined for the development process. It pre-
scribes which phases are defined and what work products
are produced during these phases.

According to Costelloet al. requirements coverage is
defined as:The number of requirements that trace consis-
tently to the next level up or down[2]. Costelloet al. orig-
inally defined this metric for requirement to requirement
coverage. As this definition is very general, it is also suit-
able for the coverage of requirements to other work prod-
ucts.

Hull et al. also define three so called traceability met-
rics [9]. One of them,Traceability Breadth, relates to cov-
erage. It measures the extent to which requirements are
covered by the adjacent layer above or below (within the
defined meta-model).

We define requirements coverage as follows: If a link
between a requirement and another work product, e.g. a
test case, exists and this link is correct, the requirement is
covered by that work product. In the requirements cover-
age view we show which requirements are covered by work
products as well as the percentage of these requirements
with respect to the total number of requirements. For ex-
ample, we can define the percentage of requirements that
are covered by a test case as follows:

coveragetest =
|requirementstest|
|requirementstotal|

,

where coveragetest represents the coverage in the
test case specification,requirementstest the number
of requirements traced consistently by test cases and
requirementstotal the total number of requirements.

This coverage metric is very general and can be used for
requirements coverage in other life-cycle phases as well,
such as the coverage of requirements in the design.

4.3. Life-cycle Path Views

From the questionnaire we learned that two life-cycle
paths are important: the Requirements-Implementation
path and the Requirements-Test path. When comparing this
to the well-known V-model, we see that these are the hori-
zontal and vertical dimensions of this life-cycle model.

The second traceability metric Hullet al. defined,
Traceability Depth, is useful for this view [9]. This met-
ric relates to the number of layers the traceability extends.
These layers are captured in the life-cycle path.

The last traceability metric discussed by Hullet al. is
also interesting with respect to our life-cycle path views [9].
This metric,Traceability Growth, measures how a require-
ment expands down through the layers of the meta-model
(in our case the life-cycle path). For example, a require-
ment can be covered by one test case or by multiple test
cases. For impact analysis this is a useful metric to include
in our life-cycle path view.

4.4. Status Views

Status views concern the status of a (set of) work prod-
uct(s) such as a (set of) requirement(s). The view shows
a specific status of the work product in the life-cycle. For
example, given the presence of a link, the status of a re-
quirement can be appropriately set; the requirement is dealt
with in the other work product. Moreover, management
information can be obtained by computing percentages of
requirements that have reached a certain status.

Often traceability support is not enough to generate
complete status reports of requirements, for example, when
a project manager needs to know if all requirements have
passed a test. Traceability can help identifying the require-
ments in the test document (the document that describes the
test), and hopefully also in the test report document. The
latter contains the information if a requirement has passed
the test. This information needs to be extracted from the
document and included in the status view as well.

In our case study we like to monitor this extra status in-
formation and not only the traceability data. We would like
to retrieve ’richer information’ concerning the status of the
requirements. For example, a status view for an individual
requirement can show its relations to other work products
(coverage) including its status such as ’covered by test, but
not tested yet’, ’covered by test, and failed the test’ or ’cov-
ered by design, but not covered by test’.

All three views should make it possible to obtain con-
tinuous feedback on the progress, in terms of require-
ments, of ongoing software development or maintenance
projects. Furthermore, they facilitate communication be-
tween project stakeholders and different document owners.

5. The ReqAnalyst Tool Suite

For supporting our approach we developed a tool called
ReqAnalyst. For this tool suite, we used the Extract-Query-
View approach [5]. In this approach, we first extract the
relevant data from the provided documents. This data, the
work products and if available the reference traceability
matrices, is stored in a database. The reference traceability
matrix is the matrix that contains the correct links accord-
ing to the experts. For reconstructing the traceability links,
queries can be done on the database. The reconstructed in-
formation combined with the data from the database is used
to generate the requirements views.

ReqAnalyst is implemented using standard web-
technology. For storing the data we use a MySQL database.
On top of the database we have implemented a Java web ap-
plication using Java Servlets and Java Server Pages (JSP).
The choice for building a dynamic web application in Java
made it easy to fulfill a number of the practical tool require-

4

Marco Lormans et al. – Monitoring Requirements Coverage using Reconstructed Views SERG

4 TUD-SERG-2006-014

Figure 1. An example ReqAnalyst session

ments such as ease of deployment2. Furthermore, every
project member can use a browser to access the tool inde-
pendent of his or her location, making it suitable for global
distributed software development.

5.1. Features of ReqAnalyst

The functionality of the present version of ReqAnalyst
is still relatively simple. ReqAnalyst currently is primarily
a research prototype, allowing us to experiment with the
use of LSI for requirements view reconstruction.

A ReqAnalyst session starts by choosing a project,
which can be a new one, or one that has been stored in
the database already. Once the user has chosen a project,
ReqAnalyst shows a menu with the steps that can be ex-
ecuted next. This main menu follows the steps from the
Extract-Query-View approach [5]. The first submenu pro-
vides functionality for extracting the data from the provided
documentation. The work products and the reference trace-
ability matrices can be extracted. The second submenu pro-
vides the options for setting the parameters of the LSI re-
construction and the choice for a link selection strategy. Fi-
nally, the bottom menu provides an option for choosing a
different project.

Once the tool has executed a reconstruction, an interme-
diate menu appears showing the reconstructed traceability

2For our case study we used the Apache Tomcat 5.5 web server for
deployment

matrix and some options for generating various require-
ments views. This intermediate menu shows all the met-
rics relevant for assessing the reconstruction, such as re-
call, precision and the number of false positives and miss-
ing links. In addition to that, ReqAnalyst offers views that
support the comparison of traceability matrices obtained in
different ways, e.g. manual versus automatically via LSI.

In Figure 1 a session with ReqAnalyst is shown, in
which the tool is used to analyze a set of requirements.
Concrete contents of requirements have been made anony-
mous in order to protect the customer’s interest. The left-
most window displays the main menu for setting the param-
eters and starting the analysis. The window in the middle
shows the results of a reconstruction including the metrics
for assessing the results. The rightmost window shows an
example of a coverage view. The view compares the cov-
erage of correct retrieved links with all retrieved links (in-
cluding false positives) and the coverage of the provided
reference traceability matrix. The list of related require-
ments is not shown. Note that all interactions take place
via a standard browser.

An important feature of ReqAnalyst is the possibility to
browse the reconstructed results. It allows users to inspect
the reconstructed traceability matrix and browse the trace-
ability links (implemented as hyperlinks). Furthermore, the
reconstructed matrix can be compared to a reference ma-
trix, if available. The correct links, colored green, and the
incorrect links, colored red, can be analyzed. When follow-

5

SERG Marco Lormans et al. – Monitoring Requirements Coverage using Reconstructed Views

TUD-SERG-2006-014 5

ing the hyperlink, all the information concerning the two
entities involved can be browsed and inspected.

5.2. Views in ReqAnalyst

Coverage Views. The ’Coverage View’ as implemented
in ReqAnalyst shows the number of requirements that are
correctly covered in the other work product and the total
number of requirements that are analyzed. It also shows the
coverage percentage as defined in Section 4.2. Finally, it
lists the requirements with their description and the related
artifacts of the other work product. Besides the coverage, it
is also possible to see which requirements are not covered
by the other work product.

Life-cycle Views. ReqAnalyst supports the reconstruc-
tion of links between two work products. These two work
products can be the beginning of a life-cycle path and the
end of a life-cycle path. ReqAnalyst reconstructs the trace-
ability between these concepts considering it as one link
in the meta-model. Currently, ReqAnalyst can not auto-
matically derive the traceability matrices that cross multi-
ple layers in the meta-model. In other words, it ignores
the traceability data between intermediate concepts. How-
ever, in this view it should take into account this interme-
diate data to show the complete path between the two work
products. ReqAnalyst is not able to combine the data from
intermediate layers in a single view.

Status Views. The ’Status View’ is not yet implemented
in our ReqAnalyst tool. Currently, we only extract the rele-
vant data to reconstruct our traceability links. For the status
views, additional status attributes need to be extracted from
the provided documentation, which is left as future work.

6. Case Study: LogicaCMG

For many companies traceability support is a major
challenge [7, 8, 13]. The problem can be best explained
according to a real life example. In this section we will dis-
cuss the way of working at LogicaCMG in monitoring the
progress of requirements as well as the results from an in-
dustrial case study we conducted at LogicaCMG. First, we
discuss some experiences at LogicaCMG and how a project
handles progress monitoring of requirements. Next, we de-
scribe how we applied our methodology as a pilot project
parallel to this project.

6.1. Case Background

The project in our case study involves a traffic monitor-
ing system (TMS), which is an important part of a traffic
control and logistics system. The main purpose of TMS

is to record the positions of vehicles in the traffic system.
These recordings are used to adjust the schedules of run-
ning and planned vehicles as well as operating the neces-
sary signaling.

Initial Approach In our earlier work, we discussed the
setting that LogicaCMG initially used in the TMS project
for handling requirements management in this outsourcing
context [13]. Below, we summarize this approach, and dis-
cuss its shortcomings.

In the initial TMS setting, LogicaCMG used IBM Ratio-
nal RequisitePro for managing the requirements and MIL-
std-498 [4] for documenting their work products. The
project consumed 21 man years in the last 3 years of devel-
opment. In total, there are over 1200 requirements and over
700 test cases. All the traceability links between the work
products needed to be manually set. This manual work,
which is time-consuming and error-prone, is acceptable if it
is a one time task. However, when requirements change or
new requirements come in, the links can become inconsis-
tent; old links may need to be dropped and new links may
need to be added. Sometimes the huge number of changes
caused that the effort needed for updating the traceability
links was comparable with resetting all the links.

An additional issue in this setting is the fact that the cus-
tomer was not willing to operate on the tagged documenta-
tion LogicaCMG provided along with the tool, since they
wanted to maintain their own documents. For managing
the requirements in this particular case, LogicaCMG was
forced to make separate requirements documents in which
the traceability was manually set by the requirements engi-
neers. The main shortcomings of this setting are:

• Unreliability, as the consistency of the traceability
links could not be guaranteed. It was hard to keep the
links consistent during the evolution of the project.

• The manual work for synchronizing the updates from
the client introduced errors, was time consuming and
cost the project an unbalanced effort.

This makes the information for monitoring the progress
of the requirements during the development process unre-
liable. It increases risks during the integration phase, such
as requirements that are not implemented or functionality
that should not be implemented in the system.

Currently, an alternative way of working is introduced
at LogicaCMG to overcome these shortcomings. The ini-
tial setting did not allow simple improvements to tailor the
setting according to their development needs.

The Current Setting. Compared to the way of working
described in the previous paragraph, LogicaCMG has set

6

Marco Lormans et al. – Monitoring Requirements Coverage using Reconstructed Views SERG

6 TUD-SERG-2006-014

up an alternative setting for further developing the TMS
system. All work products are still documented according
to MIL-std-498 [4], but currently they are all maintained
by LogicaCMG. This includes the Requirements Specifi-
cations and the Software Test Descriptions. Synchronizing
changes is easier now as the development methodology for
all documents is equal.

Instead of managing all traceability links, only the es-
sential links are managed. The number of possible link
types for testing are reduced, making the meta-model less
complex. As a result, the reduction of possible traceability
links also reduces the risk of inconsistencies.

This reduction of links was realized by merging the test
scripts and the test documentation. So, the new test cases,
written in ’tst’-files, now include the description of the test
as well as the real script for executing the test. These ’tst’-
files also include the unique identifier of the requirements
they cover. Currently, these identifiers are manually set.

The explicitly documented requirement identifiers are
actually the traceability links between the requirements and
test cases. The test cases are structured (with the require-
ments identifiers) so that Doxygen3 can generate a HTML
representation of the test cases including hyperlinks to the
requirements.

In this way of working the traceability links are still
manually set. Our approach aims at automating this. The
case study at hand offers us an opportunity to show that our
approach can be useful in practice and that it can reduce the
effort needed for consistent traceability support.

6.2. Case Configuration

In the TMS case study, we investigate the relation be-
tween requirements and test categories and between re-
quirements and test cases. More specifically, we focus
on the requirements-to-test-coverage and the requirements-
test-path views.

Two main documents are provided: a Sys-
tem/Subsystem Specification (SSS), containing the
requirements and a Software Test Description (STD),
containing the description of the test categories. Both
are MS-Word documents and are structured according
to MIL-std-498 [4]. This means that traceability data is
incorporated in these documents and that it is possible to
extract a reference traceability matrix from this data.

Besides the two MS-Word documents, a HTML docu-
ment generated by Doxygen is provided. This document is
an addition to the STD and contains the description of the
test cases. It also contains the description of the test cat-
egories and, in some cases, of the requirement(s) it refers
to (see Section 6.1). The HTML document is accompanied

3www.doxygen.org

Number of Requirements Categories 43 artifacts
Size of Requirements Categories 1168 terms
Average number of terms per document 183 terms
Number of Requirements 121 artifacts
Size of Requirements Documents 695 terms
Average number of terms per document 29 terms
Number of Test Categories 29 artifacts
Size of Test Categories 589 terms
Average number of terms per document 183 terms
Number of Test Cases 98 artifacts
Size of Test Cases 886 terms
Average number of terms per document 107 terms
Total number of indexed terms 1783 terms
Average number of terms per document 93 terms

Table 1. TMS Case Study Statistics

by a MS-Excel spreadsheet, which contains the traceability
links between the requirements and the test cases.

Our meta-model for this case study is shown in Fig-
ure 2. In this model we can identify the following work
products. First of all, the scenarios describe a general use
case. Since the scenarios were documented in a memo and
as this is not a formal document in MIL-std-498, we ig-
nored the scenarios in this case study. Furthermore, in the
SSS a hierarchy can be identified. The uniquely identifiable
requirements are clustered according to a hierarchy result-
ing in categories of requirements. Just like the individual
requirements, these requirements categories have a unique
numbering, which is why we also took these into account
for our analysis as well.

Examples of requirements categories are general cate-
gories such as goal and domain, but also more specific ones
such as the use of computer resources, specific system in-
terfaces and safety. Each of these requirements categories
has one or more uniquely identifiable requirements. Natu-
rally, the traceability between the requirements categories
and requirements can be derived from the hierarchy. This
traceability is not explicitly incorporated in the MS-Word
documents. The SSS does contain the traceability links be-
tween the scenarios and the individual requirements.

For the test cases we can identify the same hierarchy re-
sulting in the separate work products “test category” and
“test case”. Both are uniquely identifiable in the provided
documentation. The STD contains the traceability links be-
tween the requirements and the test categories.

The bold lines in Figure 2 are the links that LogicaCMG
currently maintains (in the SSS, STD and MS-Excel). The
other lines are the links that can be derived indirectly by the
hierarchical structure of the documents.

In total, we monitored the progress of 121 requirements

7

SERG Marco Lormans et al. – Monitoring Requirements Coverage using Reconstructed Views

TUD-SERG-2006-014 7

Scenario

Case

Requirement
Category Category

Test

Requirement
Test

Figure 2. Traceability Meta-Model

in this case study. As these requirements are provided
by MS-Word documents we needed to do some manual
processing to extract the relevant data from the SSS and
store the processed tokens of text in our database. The re-
quirements have an unique identifier and consist of a de-
scription. Besides the requirements, the document contains
some context explaining certain domain knowledge for a
group of requirements. We extracted this data as well and
stored it in our database and marked it as “context”.

For the test categories and test cases, the same approach
for obtaining the relevant data can be used resulting in 29
test categories and 98 test cases.

6.3. Results

Quality of Reference Matrix. We expect our method-
ology should reduce the effort for maintaining consistent
traceability. This means that the effort for getting a val-
idated traceability matrix is less than doing it manually.
For this, we first need to check the quality of our reference
traceability matrix.

The initial results are generated using ReqAnalyst and
the reference traceability data provided by the experts of
LogicaCMG. Next, we conducted one validation session
and reconstructed the links again with the updated infor-
mation. We executed this session as it is hard to maintain
a consistent traceability matrix by hand. So, it is unlikely
to assume that the reference traceability data for our TMS
case study is consistent.

We have used the 20% variable threshold as input for our
validation session. For this session it took the expert about
30 minutes to inspect the 31 false positives and 61 missing
links. It resulted in resetting 4 missing links. These links
initially were indicated as link by the expert, but because
ReqAnalyst did not reconstruct them, the expert reassessed
the links and decided to remove them from the reference
traceability data. This improved traceability data is usedas
reference in our reconstruction.

Reconstruction Settings. Our reconstruction based on
LSI can be tuned in several ways. In Table 2, we show the
reconstruction results of the requirements to test categories.
The reconstruction between the other work products shows
equal results. For the meaning of the parameters we re-
fer to [12]. We have found the best results with a reduced
rank-k subspace of 40% and a constant threshold ofc =
0.3. We varied with the parameterε, which indicates the
variable threshold for our link selection strategy. The 20%
in Table 2 means that only 20% of the candidate links are
selected as traceability links.

In total for this reconstruction there are 3509 candidate
links and 110 links in the reference traceability matrix (the
correct positives plus missing links is always 110).

Reconstruction Quality. The recall (correct positives /
total reference links) and precision (correct positives / total
reconstructed links) show expected results for an industrial
case study [12,15].

For our application, the results of the last two columns,
percentage of validation work and coverage percentage, are
the most interesting. The percentage of validation work
refers to the effort needed to validate the reconstructed
links manually compared to validating all possible candi-
date links manually (total reconstructed links / total candi-
date links). The coverage percentage refers to the percent-
age of correctly covered requirements compared to all the
requirements (see Section 4.2).

A validation percentage of 2% means that the developers
only need to validate 2% of all the candidate links manu-
ally. A low validation percentage is positive as it indicates
the effort needed to keep the traceability support consistent
after e.g. a change. In this example, 98% of the candidate
links do not need to be validated again.

However, in the case where the validation percentage
is 2%, there are also correct links missing compared to
the reference traceability matrix, namely 57 missing links.
This is not acceptable. In practice, the goal is to achieve
100% recall, so only false positives need to be eliminated.
Table 2 shows that with a constant threshold ofc = 0.3 we
never achieve a recall of 100%. So we decreasedc to 0.2
and 0.1. Withc = 0.1 we reached a recall of almost 100%.
Unfortunately, the number of false positives increases and
accordingly the validation percentage. Still, the total effort
reduction is 35%. From these results we can conclude that
it is very hard to recover the last 10–15 missing links with
our approach and realize a recall of 100%. As such it makes
sense to investigate which textual revisions are needed in
the documents that would enable automatic recovery.

The second interesting column, the coverage percent-
age, increases as the recall increases. This is expected be-
havior as it uses the correct positives as input and ignores
the false positives. As the recall approaches 100%, the cov-

8

Marco Lormans et al. – Monitoring Requirements Coverage using Reconstructed Views SERG

8 TUD-SERG-2006-014

Link ε Reconstructed Links Missing Recall Precision Validation Coverage
Type Correct Positives False Positives Links Percentage Percentage
Requirements 20% 53 31 57 0.48 0.63 2 43
to 40% 76 329 34 0.69 0.19 12 62
Test 60% 83 728 27 0.75 0.10 23 68
Categories 80% 83 747 27 0.75 0.10 24 68
c = 0.2 80% 95 1392 15 0.86 0.07 42 77
c = 0.1 80% 107 2159 3 0.97 0.05 65 83

Table 2. Results Two Dimensional Filter Strategy on TMS case with rank-k subspace of 40% and c = 0.3

erage percentage will get closer to the coverage that is ob-
tained from the reference matrix, which presently is 85%.
In TMS case study, currently, 85% of the requirements are
covered by test categories.

6.4. Lessons Learned

Consistent Traceability Support. The first observation
is the fact that we found some small inconsistencies dur-
ing our analysis. The traceability data incorporated in the
SSS and the traceability data maintained in MS-Excel show
different links compared to the content of the descriptions.
For example, a requirement that was cancelled, was still
included in the traceability data. The manual synchroniza-
tion of these work products is apparently error-prone. Req-
Analyst can identify these inconsistencies, after which the
developer can correct it. This way, maintaining consistent
traceability support becomes easier.

Effort Reduction. It is harder to estimate if ReqAnalyst
really reduces the effort needed for keeping the traceability
support consistent. Is the 35% effort reduction reasonable?
In our case, we did a first-time reconstruction and one in-
crement (the validation session). Following increments can
take into account the validated reference traceability ma-
trix. So, false positives that are already discarded from a
previous reconstruction are ignored. We expect that this
will again reduce the effort for doing a next update. How-
ever, ReqAnalyst does not support this automatic validation
yet. We updated our reference traceability data manually
after the validation session with the expert.

Requirements Views. Although ReqAnalyst does not
support all defined views yet, it increases developers’ in-
sights in the system. Our views improve the possibilities to
systematically review and validate the requirements. Indi-
vidual requirements can be inspected with respect to their
coverage and their role within the system.

An issue is the fact that our views greatly depend on Re-
qAnalyst’s traceability support (as discussed above). Once
the traceability is consistent, the progress of requirements

can easily be monitored with the defined requirements
views.

Quality of the Documentation. Our validation session
also improved the quality of the content of the work prod-
ucts. Normally, the specifications are reviewed by indi-
vidual persons after a change. In our validation session,
we inspected the false positives and missing links. Assess-
ing the links, implied reviewing the descriptions of the re-
lated work products. This also led to more harmonized de-
scriptions in the documentation. It is worth investigating
what the documentation requirements are to enable full au-
tomated traceability with a 100% recall. If projects could
improve their documentation and that would enable fully
automated traceability reconstruction, the benefits for prac-
tice would increase considerably.

7. Conclusions

In this paper, we have studied the reverse engineering of
requirements views from software development work prod-
ucts, in the context of an industrial outsourcing project. We
consider the following as our key contributions:

• We identified, through a questionnaire among prac-
tioners, what relevant requirements views are;

• We demonstrated how these requirements views can
be reconstructed, and implemented this reconstruction
in our ReqAnalyst tool suite;

• We applied our approach to an ongoing project at Log-
icaCMG.

Our future work will concern the following issues. First,
we would like to tune our approach and come to more
specific guidelines to reduce the effort needed to get a
validated reference traceability matrix. Furthermore, we
would like to expand the number of requirements views
for more complex environments with more sophisticated
meta-models and were we can generate ’richer’ require-
ments views such as our life-cycle and status views. Last

9

SERG Marco Lormans et al. – Monitoring Requirements Coverage using Reconstructed Views

TUD-SERG-2006-014 9

but not least, we are starting up a new industrial case in
the area of consumer electronics. This case concerns a
global distributed software development environment and
a product-line, making it a very complex environment to
apply our methodology.

AcknowledgmentsWe would like to thank the Merlin partners
for filling in the questionnaire. In particular we would liketo
thank LogicaCMG and the members of the TMS project for their
cooperation and making this research possible. Partial support
was obtained from NWO Jacquard, project Reconstructor, and
SenterNovem, project Single Page Computer Interaction (SPCI).

References

[1] Jane Cleland-Huang, Raffaella Settimi, Chuan Duan, and
Xuchang Zou. Utilizing supporting evidence to improve dy-
namic requirements traceability. InProc. of the 13th IEEE
Int. Conf. on Requirements Engineering, pages 135–144,
Washington, DC, USA, 2005. IEEE Computer Society.

[2] Rita J. Costello and Dar-Biau Liu. Metrics for requirements
engineering.Journal of Sys. and Softw., 29:39–63, 1995.

[3] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. Indexing by latent semantic analysis.
Journal of the American Society for Information Science,
41(6):391–407, 1990.

[4] USA Department of Defence. Military standard on software
development and documentation (mil-std-498), 1994.

[5] Arie Van Deursen and Leon Moonen. Exploring legacy sys-
tems using types. InProc. of the 7th Working Conf. on Re-
verse Engineering, page 32, Washington, DC, USA, 2000.
IEEE Computer Society.

[6] Ralf Dömges and Klaus Pohl. Adapting traceability environ-
ments to project-specific needs.Com. ACM, 41(12):54–62,
1998.

[7] Bas Graaf, Marco Lormans, and Hans Toetenel. Embedded
software engineering: state of the practice.IEEE Software,
20(6):61–69, November–December 2003.

[8] Jane Huffman Hayes, Alex Dekhtyar, and Senthil Sun-
daram. Advancing candidate link generation for require-
ments tracing: The study of methods.IEEE Trans. on Softw.
Eng., 32(1):4–19, January 2006.

[9] M.E.C. Hull, K. Jackson, and A.J.J. Dick.Requirements
Engineering. Springer, 2002.

[10] M. Lindvall and K. Sandahl. Practical implications of trace-
ability. Softw. Pract. Exper., 26(10):1161–1180, 1996.

[11] Marco Lormans and Arie van Deursen. Reconstructing re-
quirements coverage views from design and test using trace-
ability recovery via LSI. InProc. of the Int. Workshop on
Traceability in Emerging Forms of Software Engineering,
pages 37–42, Long Beach, CA, USA, November 2005.

[12] Marco Lormans and Arie van Deursen. Can LSI help re-
constructing requirements traceability in design and test? In
Proc. of the 10th European Conf. on Software Maintenance
and Reengineering, pages 47–56, Bari, Italy, March 2006.
IEEE Computer Society.

[13] Marco Lormans, Hylke van Dijk, Arie van Deursen, Eric
Nöcker, and Aart de Zeeuw. Managing evolving require-
ments in an outsoucring context: An industrial experience
report. InProc. of the Int. Workshop on Principles of Soft-
ware Evolution, Kyoto, Japan, 2004. IWPSE04.

[14] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Gen-
oveffa Tortora. Enhancing an artefact management system
with traceability recovery features. InProc. of the 20th IEEE
Int. Conf. on Software Maintenance, pages 306 – 315. IEEE
Computer Society, 2004.

[15] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Gen-
oveffa Tortora. Can information retrieval techniques effec-
tively support traceability link recovery? InProc. of the
10th Int. Workshop on Prog. Compr., Athens, Greece, 2006.
IEEE Computer Society.

[16] Jonathan I. Maletic, Ethan V. Munson, Andrian Marcus, and
Tien N. Nguyen. Using a hypertext model for traceability
link conformance analysis. InProc. of the Int. Workshop on
Traceability in Emerging Forms of Software Engineering,
pages 47–54, Montreal, Canada, 2003.

[17] Hans W. Nissen, Manfred A. Jeusfeld, Matthias Jarke,
Georg V. Zemanek, and Harald Huber. Managing multiple
requirements perspectives with metamodels.IEEE Softw.,
13(2):37–48, 1996.

[18] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A
framework for expressing the relationships between multi-
ple views in requirements specification.IEEE Trans. Softw.
Eng., 20(10):760–773, 1994.

[19] Johan Natt och Dag, Vincenzo Gervasi, Sjaak Brinkkem-
per, and Bjorn Regnell. A linguistic-engineering approach
to large-scale requirements management.IEEE Softw.,
22(1):32–39, 2005.

[20] B. Ramesh and M. Jarke. Toward reference models for re-
quirements traceability.IEEE Trans. Softw. Eng., 27(1):58–
93, 2001.

[21] B. Ramesh, T. Powers, C. Stubbs, and M. Edwards. Imple-
menting requirements traceability: a case study. InProc.
of the 2nd IEEE Int. Symp. on Requirements Engineering,
page 89, Washington, DC, USA, 1995. IEEE Computer So-
ciety.

[22] Marco Toranzo and Jaelson Castro. A comprehensive trace-
ability model to support the design of interactive systems.
In Proc. of the Workshop on Object-Oriented Technology,
pages 283–284, London, UK, 1999. Springer-Verlag.

[23] Antje von Knethen. A trace model for system requirements
changes on embedded systems. InProc. of the 4th Int. Work-
shop on Principles of Software Evolution, pages 17–26, New
York, NY, USA, 2001. ACM Press.

[24] Antje von Knethen, Barbara Paech, Friedemann Kiedaisch,
and Frank Houdek. Systematic requirements recycling
through abstraction and traceability. InProc. of the Int.
Conf. on Requirements Engineering, pages 273–281, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[25] A. Zisman, G. Spanoudakis, E. Perez-Mi nana, and
P.Krause. Tracing software requirements artifacts. InProc.
of Int. Conf. on Software Engineering Research and Prac-
tice, pages 448–455, Las Vegas, Nevada, USA, 2003.

10

Marco Lormans et al. – Monitoring Requirements Coverage using Reconstructed Views SERG

10 TUD-SERG-2006-014

TUD-SERG-2006-014
ISSN 1872-5392 SERG

