QUARK: Empirical Assessment of Automaton-based Specification Miners

David Lo and Siau-Cheng Khoo
Department of Computer Science, National University of Singapore
{dlo,khoosc} @comp.nus.edu.sg

Abstract

Software is often built without specification. Tools to au-
tomatically extract specification from software are needed
and many techniques have been proposed. One type of these
specifications — temporal API specification — is often spec-
ified in the form of automaton. There has been much work
on reverse engineering or mining software temporal speci-
fication, using dynamic analysis techniques; i.e., analysis of
software program traces. Unfortunately, the issues of scala-
bility, robustness and accuracy of these techniques have not
been comprehensively addressed.

In this paper, we describe QUARK(QUality Assurance
framewoRK) that enables assessments of the performance
of a specification miner in generating temporal specifica-
tion of software through traces recorded from its API in-
teraction. QUARK requires the temporal specification pro-
duced by the miner to be expressed as an automaton. It
accepts a user-defined simulator automaton and a specifi-
cation miner. It produces quality assurance measures on
the specification generated by the miner. Extensive ex-
periments on 3 specification miners have been performed to
demonstrate the usefulness of our proposed framework.

1 Introduction

Presence of bugs and non-existence of specifications are
common problems faced by software engineers. It is desir-
able if every program is specified formally. Unfortunately,
difficulty in writing formal specification has proven to be a
barrier in adoption of formal specification [1]. Worst yet,
imprecise, changing requirements and short time to mar-
ket [7] contribute to construction of programs with poor or
no specification. The situation is further aggravated by the
lack of specification or irrelevancy of specification during
program evolution (cf. [10]).

Recently, there has been a surge in software engineer-
ing research to adopt machine learning and statistical ap-
proaches to address these problems. One active area is spec-
ification discovery [8, 19, 22, 1], where software specifi-

cation is reverse-engineered from program traces. In [11],
Fox illuminated the use of machine learning to bridge the
gap between high level abstraction expressing software en-
gineering problems and low level program behaviors. He
points out that some baseline models can be learned auto-
matically to aid characterization and monitoring of system.

Along similar line of research, Ammons ef al. coined the
term specification mining as a machine learning approach to
discover program specification by analyzing program exe-
cution traces [1]. Under the assumption that programs be-
ing mined must “reveal strong hints of correct protocols”
during their execution, Ammons ef al. demonstrate that
correct specifications can be obtained through their tech-
nique. Specifically, their technique focuses on mining of
specification which reflects temporal and data dependency
relations (i.e., temporal specification) of a program through
traces of its API-client interaction. The specification miner
discovered API-client interaction protocol model, which is
expressed initially as a probabilistic finite state automaton
(PFSA). To reduce the effect of errors in training traces,
transitions with low likelihood of being traversed can later
be pruned. After pruning, the probabilities are dropped and
an FSA is obtained.

Despite the proliferation of specification-mining re-
search, there is not much report on issues pertaining to the
quality of specification miners. Specifically, we note that
issues such as scalability and robustness of miners, level
of user intervention required during mining have not been
comprehensively addressed. As an illustration, in [1], it was
reported that “in order to learn the rule [i.e., automaton],
we need to remove the buggy traces from the training set.”
This indicates the problem with the limitation of choosing
good training sets. In later work [2], it was noted that in or-
der to debug specification generated by specification miner,
it might be necessary to exhaustively inspect each of the
traces, which can be hundreds or thousands in number.

Hence, there is a demand for a generic framework that
can assess the quality of specification miners. Such a frame-
work must address the issue of limited training sets as well
as provide objective measures to the performance of specifi-
cation miners. Performance should be measured in multiple

dimensions: miners’ scalability, robustness and accuracy.

Scalability determines a specification miner’s ability to
infer large specification. Robustness refers to its sensitivity
to error present in the input data. Accuracy refers to the
extent of an inferred specification being representative of
the actual specification.

These measurements extend from the existing set of
measurements found in literature on software specification
validation and program analysis. During our assessment,
we generate program traces from a chosen specification,
use the traces to mine a specification, and then compare
the mined specification against the original specification. A
good specification miner should infer a specification that
matches the original specification as accurately as possi-
ble, if the set of traces generated is a good representation
(sample) of the original specification. Our measurement of
accuracy is adapted from the measurements of recall and
precision of Nimmer ef al. in evaluating Daikon. Nim-
mer et al. also relates these measurements to the concept
of soundness and completeness used in program analysis
community [20]. On the other hand, we do not advocate
measuring compactness of mined specification against the
training set of traces as often found in machine-learning lit-
erature (aka., Minimum Message Length [21, 4, 15]), as we
believe accuracy is a more relevant issue than compactness
for software specification mining.

An additional advantage of having these objective as-
sessments of specification miner is that they not only define
the quality of specification miners in different dimensions,
but also highlight areas for improvement, and aid the design
and development of new specification miners.

In this paper, we propose a generic framework for assess-
ing the quality of automaton-based specification miners.
Our framework (QUARK) requires any specification miner
under assessment to exhibit the following input-output be-
havior:

Let a program execution trace be a sequence
of method calls to an API interface. Given a
(multi-)set of program execution traces T, a mi-
nority of which might be erroneous, the spec-
ification miner infers sequencing/temporal con-
straints among the method calls in the form of a
finite-state automaton.

We do not constrain automaton-based specifications to
be deterministic; in fact, a miner is expected to perform its
task in the presence of non-deterministic specification.

The original automaton can be either probabilistic or not
(PFSA/ FSA). In fact, an FSA is a special form of PFSA
with probability dropped. Representing specifications as
Probabilistic FSAs (PFSAs) instead of FSAs, however, has
the following benefit: Probabilities attached to a protocol
specification enable more control over the trace-generation

process so that the collection of traces generated mimics
certain characteristics of the traces that can be collected
from actual API interactions. For example, sub-protocols
within a protocol specification may appear more frequently
than others in the actual interaction with API interface —
analogous to the idea of hotspot found in program execu-
tion [24]. Such behavior can be made to exhibit in a set of
generated traces through supply of appropriate probabilities
at various transitions of a specification automaton.

In addition, it has also been proven that perfect learning
of an FSA from positive examples is not decidable [1, 12],
whereas perfect learning of a PFSA from examples is de-
cidable (cf. [9, 3]) though inefficient (cf. [16]). This theo-
retical finding has prompted Ammons ef al. to use PFSA as
an intermediate step to the learning of an FSA.

QUARK enables any specification miner with the re-
quired input-output behavior to be assessed under a simu-
lated environment. It operates as follows: Given a speci-
fication miner, a simulator automaton and a percentage of
expected error, QUARK generates a multiset of traces from
the automaton with the specified percentage of erroneous
traces. Running the specification miner against these traces
produces a mined automaton. By comparing the behavior
of the mined automaton with that of the original automaton,
QUARK can assess the accuracy of mining as performed by
the given miner.

Furthermore, by varying the percentage of expected error
and the size of the original automaton, QUARK enables the
respective assessments of robustness and scalability of the
miners.

We have built a prototype of QUARK, and used it to as-
sess some existing specification miners. In this paper, we
describe our comprehensive experiments on three specifi-
cation miners. These experiments include mining of sev-
eral real-world API-interaction specifications obtained from
(1) programs using XLib and XToolkit intrinsic libraries for
X11 windowing system [1], (2) IBM® WebSphere® Com-
merce code [27], and (3) a simple CVS protocol built on top
of Jakarta Commons Net [25].

The outline of the paper is as follows: In section 2, a typ-
ical specification mining process is presented and the struc-
ture of QUARK is outlined. Sections 3 and 4 describe our
solutions to two major issues related to quality assurance
measurement: model-and-trace generation and the metrics
and techniques for quality assurance. Section 5 briefly de-
scribes specification miners used in our experiments. Sec-
tions 6 and 7 describe our experiments and results. We
discuss related work and conclude in Section 8.

2 Framework Structure

Typically, a miner’s input is in the form of API inter-
action traces, where each trace represents a sequence of

Simulator Model (Automaton)

Simulated Traces

User-defined Specification Miner (SM)

i Assurance | Section 4
+ | SM Quality Assurance QA Measures>

Figure 1. Framework Structure

method calls (with or without argument). Preprocessing is
usually performed on these traces to turn each of them into
an abstract trace. We omit the detail of instrumentation,
collection and abstraction of program traces, as these have
been documented in the literature; e.g., [1], [26], etc. Spec-
ification miner then learns from these traces to produce a
specification. The specification can be expressed in various
forms: automaton, algebraic equations, Hoare-style equa-
tion of pre and post-condition, efc. Human judgment is
often employed at this stage to assess the performance of
the miner. Some systems, such as [1], in addition permits
mined specification to be modified manually before return-
ing.

Some existing systems, such as Daikon, are assessed by
measuring their accuracy in recalling correct information
(invariants) and in reducing the generation of incorrect in-
formation [20]. However, they fall short in providing sys-
tematic support for assessment of scalability and robustness
of miners. It is clear that scalability and robustness are im-
portant determinants for the usability of miners; the former
determines the limit of a miner in handling complex sys-
tems, and the latter determines the usefulness of a miner in
handling mildly corrupted input.

QUARK aims to address all the above quality assurance
concerns for assessment of automaton-based specification
miners. It accepts specification models of varying com-
plexity, and generates sets of simulated traces that reflect
the characteristics of those protocol specifications, includ-
ing the presence of error. It then evaluates a miner’s perfor-
mance in recovering the original model from three dimen-
sions: its accuracy, robustness and scalability.

The structure of QUARK is shown in Figure 1. Its trace
generator component generates traces based on a specifi-
cation model in PFSA format. These simulated traces are
then used to train the specification miner, culminating with
a mined PFSA model. The original model and the mined
model are then used by the specification miner quality as-
surance sub-system to generate various quality assurance
metrics.

There are two major issues in QUARK that need to be
addressed: (1) model and trace generation, and (2) qual-
ity assurance metrics and their techniques. These will be
discussed in sections 3 and 4 respectively.

3 Simulator Model & Trace Generation

QUARK admits two closely-related simulator models:
FSA and PFSA. In both cases, it accepts both deterministic
and non-deterministic models. Since PFSA is technically
more complex to handle than FSA, we focus our discussion
on PFSA and its associated trace-generation method. At the
end of this section, we show how our method can be adapted
to handle FSA.

3.1 Probabilistic Model

Figure 2 depicts an example of error-injected simulator

model. Ignoring the dotted nodes and dashed edges, the re-
maining model is in the form of a probabilistic finite state
automaton (PFSA). Each node in a PFSA represents a pro-
gram state. There are 3 types of nodes: start, end and nor-
mal nodes. Each transition in the automaton denotes an ab-
stract representation of a viable API method call from that
state. Every transition is attached with a probability, indi-
cating how likely the associated method call will be invoked
from that source state. It is an invariant of any PFSA un-
der consideration that all transitions emitting from a source
(excluding the transitions leading to error nodes) must have
their probabilities summed up to 1.0.
Error Injection A PFSA model can be injected with error
by including error nodes and error transitions, shown as dot-
ted nodes and dashed edges respectively in Figure 2. This
inclusion enables generation of erroneous traces, and aids
the evaluation of miner’s ability to learn in the presence of
error (i.e. robustness). The allocations of error nodes and
transitions characterize the kind of errors allowed. Probabil-
ities are not assigned to error transitions, as we do not intend
to micro-manage the generation of erroneous traces. We
will describe generation of erroneous traces in Section 3.2.
Model Size and Model Generation In addition to subject-
ing miners to tests with real-world specifications, we also
devise ways to generate synthetic models. This allows us to
perform controlled experiments on miners’ quality.

To test a miner’s scalability, we control the size of a sim-
ulator model by varying the number of nodes it has and the
maximum number of transitions a node can emit. We au-
tomatically generate distinct models having n nodes and a
maximum of m transitions per state with a common start
and end nodes. Transition labels are chosen randomly, with
repetition, from a pool of fixed number of labels. We first
build a tree from a pre-determined number of nodes. Next,

Figure 2. Sample Simulator Model

to mimic the behaviour of typical API-interaction, we in-
troduce loops into the tree based on an idea similar to the
principle of ‘locality of reference’. This well-known prin-
ciple states that a program tends to reuse data and instruc-
tions it has used recently [23]. Adapting from this princi-
ple, a method will more likely be invoked again if it has just
been called before. Hence, loops between child and par-
ent/ancestor nodes, including self-loop, are introduced with
higher probability than those connecting to distant sibling
nodes. Although we have not rigorously verified the appli-
cability of this principle, the three real-world specifications
shown in Section 6 are found to adhere to this principle.

Lastly, probabilities are assigned equally to transitions
from the same source node. Due to lack of space, we re-
fer readers to [17] for the algorithm detail of the synthetic
model generator.

3.2 Trace Generation

Actual program trace can be mapped to string of alpha-
bets, as shown by Ammons et al., through a ’standardiza-
tion” process, in which an alphabet (corresponds to a tran-
sition label in the simulator model) represents a particular
method call [1]. Two types of traces are generated: normal
and erroneous traces. A normal trace is defined as a se-
quence of transition names that forms a path leading from
the start node to the end node of a PFSA. An erroneous
trace is one that includes an error transition.

Since normal traces are generated from a PFSA, we can
determine the probability of a trace by multiplying together
the probability of its constituents.

Given an input model, the algorithm for trace genera-
tion is described below. Basically, it performs a stratified
random walk over the input model, guided by the probabil-
ity of the PFSA’s transitions. Consequently, it ensures that
highly probable traces (sentences) accepted by the PFSA
model will statistically be more likely to appear in the mul-
tiset of generated traces. (We use the term “sentence” and
“trace” interchangeably.)

This algorithm, called TraceGen, is akin to the “code

and branch coverage” criterion used in generating program
test cases [6]. Given a PFSA M, a cover N, and a maxi-
mum trace number Max , TraceGen generates a multiset
of traces T' possessing the following asymptotic property:

Property 1 For any N > 0, and for a sufficiently large
number Mazx, every transitions in the PFSA M occurs at
least N times in the traces multiset T' of size at most M ax.

This property ensures that all transitions in M have the
opportunity to be used for trace generation. This is the cov-
erage criterion used in our experiments. The algorithm de-
tail is depicted in Figure 3.

Procedure TraceGen
Inputs:
M : Automaton model
E1T : Error injection
N : Cover
I: Maximum number of loop
MaxzPopFE : Maximum possible error trace population
M az : Maximum trace number
GE: Global error injection probability
Outputs:
A multiset of traces
Method:
let Mpr=M UEI
let E/ = list of all transitions in model M identified by
the transition name, its source and sink nodes
let Errlist =list of all possible error traces from Mgy
bounded by MaxzPopE where for each, transitions in
Mg are traversed at most I times
let C'tr = a map from e in E to a number
- initialized to O
do {
Let rand = random number between O to 1
if (rand < GE){
Let TE = a trace generated randomly from Errlist
Output TE

else {
Let T" = a trace generated from M
Output T
Let E' = all transitions traversed by T
For each €’ € E’ increase Ctr[e'] by I

(see text) (*)

} while (3e € E: ctrle] < N & number of traces < Max)

Figure 3. Trace Generation Algorithm

In Figure 3, Mgy is the PESA M with error E] injected.
At program point (*), a trace is generated by starting from
start node of the model and independently throwing a dice”
at each node for decision on which transition to take accord-
ing to the probability of the transitions until an end node is
reached. Traces generated will then reflect the probabilities
of the transitions in the simulator model (i.e., distribution of
generated traces is governed by the model).

Traces will continue to be generated until all transitions
have been covered at least N times or MAX number of
traces have been generated. We use N here rather than 1
to accommodate slower learner that requires more than 1
sentence in the language to infer the automaton model.

Erroneous Traces Generation. The percentage of erro-
neous traces generated are controlled at a global level by a
probability GE. Before a trace is generated to fill up the
trace set, the algorithm checks if erroneous trace needs to
be generated. If so, such a trace is produced by choosing
one randomly from previously generated pool of erroneous
traces (E'rrlist - see Figure 3).

Non-Probabilistic Model. An FSA model can be easily ob-
tained from a PFSA simulator model by dropping the prob-
ability associated with each transition in the model. The
major technical difference between using FSA and PFSA
simulator models is trace generation. In FSA, a standard
random walk is performed, rather than stratified random
walk. For the algorithm in Figure 3, this difference occurs
at the program point (*): When FSA is used, a normal trace
is generated by starting from start node of the model and
randomly choosing an outgoing transition to reach the next
node, until the end node is reached. Here, all outgoing tran-
sitions from a node have equal chance to be chosen.

4 Specification Miner Quality Assurance

The quality of a specification miner is measured along
three dimensions: accuracy, robustness and scalability.

We define robustness of a specification miner as its abil-
ity in remaining accurate in recovering simulator models
from simulated traces, in the presence of error. Erroneous
traces usually constitute a small proportion of the entire col-
lection of traces, and a robust miner should be able to filter
erroneous traces in building mined models.

We define scalability of a specification miner as its abil-
ity in remaining accurate in recovering simulator models of
varying sizes.

As these measurements are orthogonal, we can conve-
niently compose them, and objectively discuss about the ro-
bustness of a scalable miner, or the scalability of a robust
miner. Central to our assessments is a thorough treatment
of accuracy. In the rest of the section, we shall provide
a detailed account of metrics and techniques employed in
measuring accuracy.

4.1 Trace Similarity

The accuracy of a specification miner is determined by
its ability in recovering simulator models by learning the
simulated traces, in the absence of error. For clarity sake,
we denote a simulator model by X and a mined model by
Y. We use the term “sentence” and “trace” interchangeably.

In assessing accuracy, we adopt two metrics to measure
the similarity between X and Y in terms of their generated
traces (or sentences). First, the percentage of sentences gen-
erated by X that are accepted by Y represents the amount
of correct information that can be recollected by the mined

model. This measurement is known as recall in information
retrieval literature (cf. [13]). Second, the percentage of sen-
tences generated by Y that are accepted by X represents the
amount of correct information that can be produced by the
mined model. This is known as precision (cf. [13]).

The notions of recall and precision are also used by Nim-
mer et al to evaluate Daikon. Nimmer ez al. further relate
them to measures of completeness and soundness, respec-
tively [20].

To perform trace similarity measurement, we employ an
automaton language search technique. This basically gen-
erates two sets of samples of traces from X and Y, respec-
tively, and calculates the percentage of traces generated by
X that are accepted by Y, and vice versa. The trace sample
generated from X will be different from the set of traces
used in training the miner. Separating the training set from
the test set enables the detection of any “overfitting” done
by the miner; Ze., the miner learns the training set so closely
that it does not generalize well to original model [14].

This technique is effective in measuring the quality of
Y (X) provided the set of traces generated are representative
of X(Y). To this end, we use the TraceGen procedure in
Figure 3 to help in trace generation.

4.2 Probability Similarity

For models that are represented by PFS A, it is not suffi-
cient to measure their similarity by simply examining their
recall and precision. It is equally important to determine
if both the simulator and the mined models generate the
same traces at similar frequencies, and thus place emphasis
on similar sub-protocols. Thus, our third metric measures
the similarity in terms of probabilities assigned to common
traces generated by both X and Y: A trace might possi-
bly be generated by both X and Y'; however, its probability
might differ greatly.

Co-emission has been used in measuring probability sim-
ilarity between two Hidden Markov Models [18]. Let L(M)
represent the language recognized by the automaton M, the
co-emission is defined by the following formula:

Yser(xny)(Px(s)Py(s)).

Here, Pog(X,Y) determines the probability that a sen-
tence s is generated by both X and Y independently. Py (s)
and Py (s) denote the probability of generating sentence s
by X and by Y, respectively.

The probability similarity between X and Y, denoted by
PS, can then be defined as follows [18]:

Pop(X,Y) =

2xPop(X,Y)

PS(X,Y) (Pce (X, X)+Pce(Y)Y))

This provides an unbiased and normalized probability simi-
larity measurement of the two models. In practice, this com-
putation is realized by a HMM-HMM comparison-based

technique. This technique has been adapted from the work
of Lyngsg et al. [18]. Due to lack of space, we refer readers
to [17] for detailed discussion of this technique.

S Specification Miners Used

In this section, the three specification miners used in our
experiments will be briefly described. They are: (1) k-tails
FSA learner, (2) sk-strings PFSA learner and (3) our own
miner (Specification Mining Architecture with Trace Filter-
ing and Clustering — SMArTIC) which produces PFSA.

k-tail algorithm is a well-known heuristic algorithm pro-
posed by Biermann and Feldman [5] to learn automata
from positive samples. It has been adapted/modified by
various researchers to perform specification mining tasks
[8, 22, 19]. From a training set of positive samples, the
algorithm first builds a prefix tree acceptor. Informally, a
prefix tree acceptor (PTA) is an automata in the form of a
tree where there is one node for every common prefix and
each leaf is a final state. Given a PTA, a node g, a set
of alphabet X, a set of final states (the leaves of PTA) F¢,
and an extended transition function 6* , the set of k-tails
associated with the node q is given by {s|s € X*,[|s| <
k A 6*(q,s) N F. # 0}. Two nodes form this PTA are then
merged if their respective k-tails are indistinguishable.

sk-strings algorithm is an extension of k-tails heuristic
for stochastic automata. It has been used by Ammons et al.
in [1]. Similar to k-tails, sk-strings algorithm also builds
a prefix tree acceptor from traces. The difference lies in
the criteria for merging of nodes and for incorporation of
probability estimation. Two nodes are merged if they are
indistinguishable with respect to the top s% most probable
strings (instead of fails) of length exactly k (or less if an
end node is encountered before reaching length k) that can
be generated starting from them.

The default parameters of sk-strings [21] as implemented
by Raman et al. are: s%=50% and k=1. Also, by default,
an AND variant of the algorithm is used. Unless otherwise
stated, these defaults are used in the experiments (k=3 is
also used in some of our experiments).

In [1], Ammons et al. discussed coring method as a
post-processing step to remove erroneous transitions from
the mined automaton. Briefly, identification of erroneous
transitions is determined by a notion of heat. The heat be-
tween a source node and a sink node is the probability that
the sink is reached from the source in any amount of steps.
A low heat transition is likely to be erroneous and will be
pruned. In this paper, we refer to sk-strings with coring as
sk-coring.

Specification Mining Architecture with Trace Filter-
ing and Clustering (SMArTIC) comprises 4 major blocks:
Clustering, Filtering, Learning and Merging, as shown in
Figure 4.

Filtered
Traces

m Filtering Block

Automatons /477 Mé;gf;g'ﬁ(&éﬁ""“

Display of Mined
Specifications

Figure 4. SMArTIC Architecture

Traces deviating from common trace population rules are
deemed to be erroneous, and are removed. Contrary to sk-
coring, removal of error is done prior to automata learning
and not after. The resultant filtered traces are then separated
into multiple clusters whose sizes are determined automat-
ically. By clustering common traces together, the learner is
expected to learn better since this restricts the effect of over-
generalization to within a cluster. Each cluster can be con-
sidered as an independent sub-protocols; each will be fed
separately to a specification miner. Among others, we use
sk-strings learner for convenient sake. The multiple mined
automata are then merged, with no further generalization,
to obtain the final automaton.

6 Experiments

Three sets of experiments were conducted to show the

usefulness of QUARK in evaluating the performance of the
three specification miners described earlier. These experi-
ments aims to measure the accuracy of these miners in dis-
covering various real-world specifications.
Material Simulator models used in these experiments are
specifications from (1) programs using XLib and XToolkit
intrinsic libraries for X11 windowing system [1], (2)
IBM® WebSphere® Business Integration processes from
WebSphere® Commerce [27] (3) Simple CVS (Concurrent
Versions System) protocol built on top of Jakarta Commons
Net [25]. These simulator models are shown in Figure 5,
6 and 7, and are referred to as x/1, ws and cvs models
respectively. Probabilities are distributed equally to transi-
tions from the same source node (not shown in figures).

For each model, 100 experiments were run for each
learner with the k parameter set to 1 and then to 3. A total
of 1800 experiments were performed. For each experiment,
a multi-set of traces was generated from the model using
TraceGen (Figure 3) with parameters IV, I and M az set to
10, 10 and 10,000 respectively. No error was introduced to
the models.

In analyzing the results, any two results differing in abso-
lute value by less than 1%(0.01) are considered equivalent,
as the difference is deemed insignificant.

X11 Windowing Toolkit In [1], Ammons et al. described

A - XNextEvent (time=X21_0)
B - XNextEvent (time = X21_0)
or B = XtDispatchEvent (time = X21_0)
or B = XIfEvent (time = X21_0)
C - XtDispatchEvent (time = X21_0)
or C = XtEventHandler (time=X21_0)
or C = XtLatTimeStampProcessed
(time = X21_0)
- XGetSelectionOwner
- XSetSelectionOwner (time = X21_0)
- XtOwnSelection (time = X21_0)
- XtActionHookProc (time = X21_0)
- XInternAtom

TQTmmg

Figure 5. X11 Windowing Toolkit

the mining of a specification, shown in Figure 5, from sev-
eral programs using XLib and XToolkit intrinsic libraries
for X11 windowing system.

In our experiments, the mining results obtained by the
three learners are shown in the table below. k-len corre-
sponds to the k parameter of sk-strings (used by both sk-
strings and SMArTIC) and k-tails algorithms. A default
value of 50% for s was used. The columns Recall, Precs.
and PS are the QA metrics defined in Section 4.

Learner k-len=1 k-len =3
Recall Precs. PS Recall Precs. PS
k-tails 1.000 0.000 N/A 0.998 0.313 N/A

sk-strings 1.000 0.654 | 0.692 0.998 0.883 | 0.758
SMAITIC 1.000 0.820 | 0.910 0.998 0.987 | 0.956

Analysis The results show that: (1) k-tails did not learn
well at k-len = 1, while sk-strings learnt reasonably well.
(2) With bigger k-len, all miners produced more precise
automata. (3) sk-strings produced more precise automa-
ton than k-tails, and SMArTIC improved upon sk-strings
in both its precision and probability similarities.

To Node 1,7

F — Find Locked Orders With Status G
_ Find Stle G- Verify Locked Orders With Status G
'~ Find Stale Order Items H — Find Invalid Orders Items By Orders Id
G- Verify Stale Order liems
. 1~ Find By Order
H- IsUsingATP
t . J - Allocate Inventory Cmd
1~ Deallocate Existing Inventory Crmd)
calloc 2 " K - Reprepare Order Cimd
J— Deallocate Expected Inventory Crnd L o
(a) (b)

Figure 6. WebSphere® Commerce Processes

WebSphere® Commerce. In [27], Zou er al. stati-
cally extracted workflows describing IBM® WebSphere®
Business Integration business process from the IBM®
WebSphere® Commerce code. They presented two work-
flows, in the form of automata, which correspond to (1)
the release of expired allocations and (2) the processing of

Info

A — appendFile
S — storeFile

N — rename

Info

é— Cun_necl V — retrieveFile

S -]l::)gm C — changeWorkingDirectory
~ Logout L — listFiles

Y — Disconnect

T — setFileType

W- <init>

Info
I- listNames

D - deleteFile

M — makeDirectory
R — removeDirectory

Probabilities are
distributed equally
over outgoing
transitions

Figure 7. CVS Protocol

backorders. These are shown in Figures 6(a) and (b), re-
spectively. We combine the two automatons into a simulator
model by joining their start and end nodes. Note that, dif-
ferent from x// and cvs models, this model has more transi-
tions per nodes and more loops (Ze. it is more “bushy”). The
experiment results are tabulated in the following table .

Learner k-len=1 k-len =3
Recall Precs. PS Recall Precs. PS
k-tails 1.000 0.000 N/A 0.998 0.597 N/A
sk-strings 1.000 0.536 | 0.785 1.000 0.538 0.785
SMAITIC 1.000 0.779 0.780 1.000 0.753 0.783

Analysis The results show that: (1) k-tails did not learn well
at k-len = 1 as compared with sk-strings. (2) Increasing
the value of k-len did not improve the performance of sk-
strings, and even caused a slight degradation in the perfor-
mance of SMATTIC. (3) sk-strings performed worse than
k-tails for k-len=3, wheras SMArTIC improved upon sk-
strings in its precision, and had better results than k-tails.

CVS on Jakarta Commons Net Jakarta Commons Net
[25] is a set of reusable open source java code implementing
the clients of many commonly used network protocols. We
built a simple CVS (Concurrent Versions System) client on
top of the FTP library provided by Jakarta Commons Net.

There are six common FTP interaction scenarios in our
CVS implementation: Initialization, multiple-file upload,
download, and deletion, multiple-directory creation and
deletion. All scenarios begin by connecting and logging-in
to the FTP server. They end by logging-off and disconnect-
ing from the FTP server. The client side only maintains a
record of files backed-up in the FTP server.

All these scenarios are depicted in the automata shown in
Figure 7. The dashed boxes, from top to bottom, represent

upload files, initialization, delete files, make directories, re-
move directories and download files scenario, respectively.

Compared with x// and ws models, this model has the
most number of nodes, but it remains to be less ‘bushy’.
The experiments results are tabulated below.

Learner k-len=1 k-len =3
Recall Precs. PS Recall Precs. PS
k-tails 1.000 0.000 N/A 1.000 0.000 N/A

sk-strings 1.000 0.226 | 0.509 0.999 0.017 | 0.030
SMAITIC 0.986 0.487 | 0.669 0.973 0.503 | 0.523

Analysis The results show that: (1) k-tails did not learn well
atk-len = 1 and k-len = 3. (2) Atk-len = 3, the performance
of sk-strings was degraded, whereas that of SMArTIC im-
proved sightly. (3) sk-strings performed better than k-tails,
while SMArTIC improved upon sk-strings in both precision
and probability similarities.

7 Robustness and Scalability

Two sets of experiments were conducted to evaluate

the robustness and scalability of the three miners. In total,
2400 robustness experiments were run to cover three error-
injection levels, four learners and two k-len values. Also,
2400 scalability experiments were run to cover eight differ-
ent pairs of node-numbers and maximum number of transi-
tions per node, three learners and two k-len values.800 dif-
ferent models were used in the scalability experiments (ie.
experiments with the same settings but for different learners
shared the same model and trace multi-set).
Material In the first set of experiments, we evaluated the
learners’ robustness. We used similar model of X11 Win-
dowing Toolkit (shown in Figure 5). However, the model
was modified so that it was without any non-determinism
nor repeated use of alphabet assigned to transitions. This
is meant to produce a base model that can be learned (al-
most) perfectly by all miners. Error nodes and transitions
were then injected to the automaton to conduct the robust-
ness tests. The model used with injection of errors (transi-
tions labelled as Z) is shown in the Figure 8.

N

Figure 8. Robustness Simulator Model

We expect specification miner to be able to filter error.
We compared the inferred automaton with the simulator

model shown in Figure 8 without error nodes and transitions
and recorded their similarity metrics. We generated traces
using TraceGen (Figure 3) with parameters N, I and Max
set to 10, 10 and 10,000 respectively. Error was injected
at four, eight and ten percentages to the set of generated
traces. In each case, we ran 100 experiments and recorded
the average performance.

In addition to testing the three learners, we also tested
sk-coring (combining sk-strings and coring method). In or-
der to analyze the effect of the filtering block of SMArTIC
(which is meant to ensure robustness), we only enabled this
block. (‘Full’ SMATrTIC was used for mining specifications
extracted from real software in Section 6.)

In the second set of experiments, we evaluated the learn-
ers’ scalability. Two sub-experiments were conducted, each
with a different independent variable. In the first sub-
experiment, we varied the number of nodes (by 15, 20, 25,
and 30) in the model and maintained the number of outgo-
ing transitions per node to at most four (we refer to it as
nodes experiment). In the second sub-experiment, we var-
ied the maximum number of outgoing transitions per node
(by 3,5,7,9) and maintained the number of nodes at 10 (we
refer to it as trans experiment). For each case, we performed
50 experiments and recorded their average performance.

We generated traces using TraceGen with parameters
N, I and Max set to 10, 10 and 10,000 respectively. No
error was injected to the system. Since we imposed a cap of
M azx traces, there might be a concern that training trace-set
does not satisfy the coverage criterion by merely generating
up to Max traces. Fortunately, this did not happen that of-
ten, as only 18 out of 2400 experiments reached the cap; for
all other experiments, the coverage criterion was met with-
out the need to generate M ax traces.

The three usual learners were tested. To analyze the ef-
fect of clustering block of SMArTIC (which is meant to en-
sure scalability), only this block is enabled.

Robustness Experiment Results These are tabulated in
the following table . Column E% indicates the percentiles
of erroneous traces.

Info k-len =1 k-len =3
E% Learner Recall Precs. PS Recall Precs. PS
k-tails 1.000 0.000 N/A 1.000 0.763 N/A
4% sk-strings 1.000 0.944 | 0.947 1.000 0.949 0.948

sk-coring 0.756 0.956 | 0.831 0.764 0.965 0.838
SMAITIC 1.000 0.992 | 0.945 1.000 0.994 | 0.947

k-tails 1.000 0.000 N/A 1.000 0.645 N/A
8% sk-strings 1.000 0.892 | 0.944 1.000 0.899 0.944
sk-coring 0.781 0.903 | 0.828 0.795 0.916 | 0.835
SMAITIC 1.000 0.989 | 0.945 1.000 0.990 | 0.945

k-tails 1.000 0.000 N/A 1.000 0.621 N/A
10% sk-strings 1.000 0.864 | 0.935 1.000 0.872 0.933
sk-coring 0.754 0.873 | 0.800 0.761 0.900 | 0.803
SMAITIC 1.000 0.980 | 0.936 1.000 0.982 0.935

Analysis The presence of error affected miners’ precision.
We rank the learners’ precisions in decreasing order wrt the
degrees of their susceptibility to errors as follows: k-tails,

sk-strings, sk-coring and SMATrTIC. Also, increasing k-len
value did not significantly reduce the susceptibility to error.

For sk-coring and sk-strings, losses in precision were
about the same as the percentages of error injected. For k-
tails however, the losses of precision were much larger. Al-
though sk-coring removed error and improved precision, the
ability to recall was adversely affected. On the other hand,
we note that SMArTIC was only slightly affected by the
increase in the number of erroneous traces.

Scalability Experiment Results The results of our two
sub-experiments are shown below. Column “N/TN” corre-
sponds to the number of nodes and the maximum number
of transitions per node in the simulator models.

Info k-len=1 k-len =3
N/TN Learner Recall Precs. PS Recall Precs. PS
k-tails 1.000 0.002 N/A 0.999 0.195 N/A

15/4 sk-strings 1.000 0.094 | 0.152 0.997 0.296 | 0.344
SMAITIC 0.996 0.346 | 0.466 0.982 0.773 0.757

k-tails 1.000 0.004 N/A 0.997 0.138 N/A

20/4 sk-strings 1.000 0.025 0.059 0.997 0.338 0.371
SMAITIC 0.996 0.175 | 0.287 0.985 0.655 0.661

k-tails 1.000 0.007 N/A 0.998 0.089 N/A

25/4 sk-strings 1.000 0.008 | 0.029 0.997 0.123 0.197
SMAITIC 0.998 0.106 | 0.195 0.988 0.490 | 0.519

k-tails 1.000 0.008 N/A 1.000 0.064 N/A
30/4 sk-strings 1.000 0.007 | 0.031 0.999 0.079 | 0.105
SMAITIC 0.999 0.077 | 0.199 0.991 0.353 0.360

Info k-len=1 k-len =3
N/TN Learner Recall Precs. PS Recall Precs. PS
k-tails 1.000 0.002 N/A 0.998 0.201 N/A

10/3 sk-strings 1.000 0.165 | 0.283 0.992 0.928 0.913
SMAITIC 0.991 0.416 | 0.536 0.977 0.984 | 0.963

k-tails 1.000 0.004 N/A 0.980 0.494 N/A
10/5 sk-strings 0.997 0.294 | 0.375 0.976 0.626 | 0.614
SMAITIC 0.979 0.538 | 0.667 0.957 0.860 | 0.819

k-tails 1.000 0.007 N/A 0.963 0.446 N/A
10/7 sk-strings 0.999 0.142 | 0.203 0.960 0.420 | 0.173
SMAITIC 0.986 0.453 | 0.553 0.939 0.753 0.717

k-tails 0.997 0.008 N/A 0.934 0.467 N/A
10/9 sk-strings 0.999 0.082 | 0.141 0.979 0.338 0.339
SMAITIC 0.976 0.432 | 0.508 0.934 0.759 | 0.696

Analysis For all learners, their recalls were always greater
than 90%. The average recalls for k-len = 1 and 3 were
99.6% and 96.6% respectively. In each experiment setting,
recalls of different learners only differs by less than 5%.
However, the precision results were less glossy. Even for
k-len = 3, there were cases where precisions were less than
10% (see k-len=3;N=30;TN=4). The average precision for
k-len =1 and 3 are 14.2% and 45.3% respectively.

sk-strings’ precision is almost always equivalent to or
better than k-tails’, except for very “bushy” automaton (see
k-1en=3;N/TN=10/9). Similar results were reported in the
ws experiment described in Section 6. k-tails did not per-
form well with k-len=1 (precision < 1%). Increasing the
“bushiness” of models — by increasing TN from 1 to 9 for
10-node automatons — improved the relative performance of
k-tails over sk-strings.

For all cases, SMArTIC had better overall performance
in terms of precision over both k-tails and sk-strings, and
probability similarity (PS) over sk-strings. The differences
were significant, especially for large number of nodes (see
k-len=3;N/TN=30/4). Its ability to recall is only slightly
less than those of the other learners, with their differences
capped at 4.5% (see k-len=3;N/TN=30/4), and averaged at
1.7%.

8 Related Work and Conclusion

In this paper, QUARK, a framework to empirically as-
sess quality of automaton-based specification miner is pro-
posed. Our assessment of specification miners is guided by
the conviction that: A good miner should have good recall,
good precision and be able to retain probability distribution
of the original specification (for PFSA learner). In addition,
it should remain robust in the presence of error, and scalable
in learning from traces generated from large automata.

There have been numerous work in the research of
automaton-based specification mining [1, 8, 22, 19]. Exper-
iments provided in these works have given guarantees to
the quality of the proposed miners. These guarantees can
be further strengthened by our comprehensive quality as-
surance metrics and simulation-based framework.

Nimmer et al. provide a precision- and recall-based
quality measures for Daikon - which generates Hoare-style
equation of pre and post conditions [20]. Lyngsg et al.
provide a similarity measures for probability distribution of
Hidden Markov Model [18]. In this paper, we adapt these
metrics to our framework as a means for measuring the ac-
curacy of automata generated by specification miners.

To demonstrate the effectiveness of QUARK in assess-
ing specification miners, we use it to assess three types
of automaton-based specification miners: (1) k-tails FSA
learner (2) sk-strings PFSA learner and its variant (sk-
coring) and (3) our own miner (Specification Mining Archi-
tecture with Trace Filtering and Clustering — SMArTIC).

Experiments using real-world specifications from X11
Windowing Toolkit, WebSphere® Commerce and CVS
were performed. Results show that for x// and cvs mod-
els, sk-strings performed better than k-tails. For cvs model,
k-tails did not learn well even when k is set to 3. How-
ever, for ws model, k-tails performed slightly better than
sk-strings. It is noted that for all cases SMArTIC had better
performance.

Simulated experiments measuring robustness and scala-
bility of the miners were also performed. The results in-
dicate that specification miners typically have good recall
ability but poor precision in the presence of error, resulting
in inaccurate inferred specification. Our preliminary work
in addressing this problem leads to the creation of SMAr-
TIC. In the scalability experiments, increasing the number

of nodes in simulator models can reduce recall ability; in-
creasing the number of transitions per node in simulator
models leads to narrowing in the performance gap between
k-tails and sk-strings. For very “bushy” simulator models,
k-tails perform better than sk-strings. Again, it was noted
that for all cases SMATTIC had better results.

In summary, QUARK is specially designed to assess
automaton-based specification miners rather than generic
automaton miners, since: (1) Generated traces are viewed
as abstract representation of actual program traces; (2) trace
generation conforms to ‘code and branch coverage’-based
criterion; (3) various models extracted from real software
have been used; (4) synthetic models are generated follow-
ing the principle of locality of reference; and (S) metrics
proposed are directly related to software engineering con-
cerns.

The framework and metrics developed here do not only
provide us a means for quality assurance measurement.
They also provide hints for development of better spec-
ification miners to meet the stringent quality assurance
requirements. While we acknowledge the usefulness
of producing imperfect learned specification in meeting
certain software engineering tasks, we also believe that
improvement in specification miners’ quality will greatly
enhance their usefulness.

Acknowledgments We would like to thank Anand Raman,
Peter Andreae and Jon D. Patrick for letting us use the im-
plementations of sk-strings and k-tail algorithms in our ex-
periments. We would also like to thank Glenn Ammons and
Rastislav Bodik for sharing the detail of their coring algo-
rithm.

References

[1] G. Ammons, R. Bodik, and J. R. Larus. Mining specifi-
cation. In Proc. of Principles of Programming Languages,
2002.

G. Ammons, D. Mandelin, R. Bodik, and J. Larus. De-
bugging temporal specifications with concept analysis. In
Proc. of Programming Language Design and Implementa-
tion, 2003.

D. Angluin. Identifying languages from stochastic exam-
ples. Yale tech. report, YALEU/DCS/RR-614, 1988.
A.Raman, P.Andreae, and J.D.Patrick. A beam search algo-
rithm for pfsa inference. Pattern Analysis and Applications,
1998.

A. Biermann and J. Feldman. On the synthesis of finite-state
machines from samples of their behaviour. IEEE Transac-
tions on Computers, 21:591-597, 1972.

R. Binder. Testing Object-Oriented Systems Mod-
els, Patterns,And Tools. Addison-Wesley, 2000.

R. Capilla and J. C. Duefias. Light-weight product-lines for
evolution and maintenance of web sites. In Proc. of the Euro.
Conf. On Software Maintenance And Reengineering, 2003.

(2]

(3]

(4]

(3]

(6]
(7]

10

(8]

(9]

[10]

(11]

(12]
[13]
[14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

J. E. Cook and A. L. Wolf. Discovering models of soft-
ware processes from event-based data. ACM Transactions
on Software Engineering and Methodology, 7(3):215-249,
July 1998.

C. de la Higuera and F. Thollard. Identification in the limit
with probability one of stochastic deterministic finite au-
tomata. In Proc. of International Colloquium of Grammati-
cal Inference and Applications, 2000.

S. Deelstra, M. Sinnema, and J. Bosch. Experiences in soft-
ware product families: Problems and issues during product
derivation. In Proc. of Software Product Line Conference,
2004.

A. Fox. Addressing software dependability with statistical
and machine learning techniques. In Proc. of Int. Conf. of
Software Engineering, 2005. Invited Talk.

E. M. Gold. Language identification in the limit. Informa-
tion and Control, 10:447-474, 1967.

G.Salton. Automatic Information Organization and Re-
trieval. McGraw-Hill, 1968.

D. Hand, H. Mannila, and P. Smyth. Principles of Data
Mining. MIT Press, 2001.

P. Hingston. Inference of regular languages using model
simplicity. In Proc. of the Australasian Conf. on Computer
Science, 2001.

M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire,
and L. Sellie. On the learnability of discrete distributions. In
Proc. of ACM Symposium on Theory of Computing, 1994.
D. Lo and S.-C. Khoo. Quark: Towards better quality spec-
ification miners. NUS tech. report, TRA 7/06, 2006.

R. Lyngsg, C. Pedersen, and H. Nielsen. Metrics and sim-
ilarity measures for hidden markov models. In Proc. of the
National Conf. on Artificial Intelligence, 1999.

L. Mariani and M. Pezze. Behavior capture and test: Au-
tomated analysis for component integration. In Proc. of the
Int. Conf. on Engineering of Complex Computer Systems,
2005.

J. W. Nimmer and M. D. Ernst. Automatic generation of
program specifications. In Proc. of the 2002 International
Symposium on Software Testing and Analysis, 2002.

A. V. Raman and J. D. Patrick. The sk-strings method for
inferring pfsa. In Proc. of the workshop on automata induc-
tion, grammatical inference and language acquisition, 1997.
S. P. Reiss and M. Renieris. Encoding program executions.
In Proc. of the Int. Conf. on Software Engineering, 2001.

A. Silberschatz, P. Galvin, and G. Gagne. Operating System
Concepts. Wiley, 2003.

Sun Microsystems,Inc. The java hotspot
performance engine architecture. online at
http://java.sun.com/products/hotspot/whitepaper. html,

1999.

The Apache Software Foundation. Jakarta commons/net.
online at hitp://jakarta.apache.org/commons/net/.

J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M.Das. Per-
racotta: Mining temporal api rules from imperfect traces. In
Proc. of Int. Conf. on Software Engineering, 2000.

Y.Zou, T. Lau, K. Kontogiannis, T. Tong, and R. McKeg-
ney. Model-driven busineess process recovery. In Proc. of
Working Conf. on Reverse Engineering, 2004.

