
 

Understanding Software Architectures by 
Visualization –  
An Experiment with Graphical Elements 

Authors: 
Jens Knodel 
Dirk Muthig 
Matthias Naab 
 
 
Accepted for Publication at 
WCRE 2006 in Beneneto 
 

IESE-Report No. 021.06/E 
Version 1.0 
January 20, 2006 

 
A publication by Fraunhofer IESE 

 



 



 

Fraunhofer IESE is directed by 
Prof. Dr. Dieter Rombach (Executive Director) 
Prof. Dr. Peter Liggesmeyer (Director) 
Fraunhofer-Platz 1 
67663 Kaiserslautern 

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft. 
The institute transfers innovative software 
development techniques, methods and 
tools into industrial practice, assists compa-
nies in building software competencies 
customized to their needs, and helps them 
to establish a competitive market position. 





 

Abstract 

The evolution and maintenance of large-scale software systems requires first an 
understanding of its architecture before delving into lower level details. Tools 
facilitating the architecture comprehension tasks by visualization provide differ-
ent sets of graphical elements. We conducted a controlled experiment that ex-
emplifies the critical role of such graphical elements when aiming at under-
standing the architecture. The results show that a different configuration of 
graphical elements influences program comprehension tasks significantly. In 
particular, a gain of effectiveness by 63% in basic architectural analysis tasks 
was achieved simply by choosing a different set of graphical elements. Based 
on the results we claim that significant effort should be spent on the configura-
tion of architecture visualization tools. 

Keywords: architecture, experiment, graphical elements, program comprehension, visuali-
zation, SAVE, ArQuE 
 

  

Copyright © Fraunhofer IESE 2006 v





 

Table of Contents 

1 Introduction 1 

2 Context 3 
2.1 Apache Tomcat 3 
2.2 SAVE 3 

3 Experiment 4 
3.1 Setup 4 
3.1.1 Hypotheses 4 
3.1.2 Pilot Study 4 
3.1.3 Subjects 5 
3.1.4 Experimental Materials 5 
3.1.5 Experimental Design 7 
3.1.6 Experimental Tasks 8 
3.1.7 Experimental Procedures 8 
3.1.8 Data Collection Procedures 9 
3.1.9 Data Analysis Procedure 10 
3.2 Results 10 
3.2.1 Architecture Analysis Task Results 10 
3.2.2 Anomalies in the Data Set 11 
3.2.3 Hypotheses H1 and H2 12 
3.2.4 H3 – Visualization Questionnaire Results 13 
3.2.5 Debriefing questionnaires 15 
3.2.6 Influence of Graphical Elements on the Results 16 
3.3 Threats to validity 17 
3.3.1 Construct Validity 17 
3.3.2 Internal Validity 18 
3.3.3 External Validity 18 

4 Related Work 20 

5 Conclusion 21 

References 22 

Appendix A – Experimental Tasks 25 
 

 

Copyright © Fraunhofer IESE 2006 vii





Introduction 

1 Introduction 

The architecture of a software system plays a crucial role in the lifecycle since it 
guides its evolution [8] and during maintenance, the software architecture is 
the means to cope with the inherent complexity of the system. The architecture 
is the means to coordinate the maintenance tasks (i.e., assigning the right peo-
ple to the right problems, to plan and monitor the activities). Thus, to success-
fully evolve large-scale systems it is essential to understand their architecture 
before delving into details of the implementation, which is a non-trivial, time 
and effort-consuming activity due to the following reasons:  

• High amount of data: Large-scale systems consist of up to several millions 
lines of code that, potentially, have to be analyzed and abstracted to an ar-
chitectural level. Important information is often hidden among irrelevant 
data; retrieval and navigation within the data is more difficult. 

• High complexity: Large systems are especially complex and therefore not 
easy to understand; it is impossible to handle the system as a whole in all de-
tails, so one can only cope with certain parts at a point in time. 

• High number of dependencies: Large systems obviously have a lot of de-
pendencies among the architectural and code elements they are composed 
of, which poses significant threats of introducing unwanted side effects.  

The most important part in the maintenance and evolution of software systems 
is dedicated to understand the system being maintained [5]. Due to the above-
mentioned reasons the understanding should be supported by tools. Most 
available tools can be roughly categorized in two main groups: they are either 
query languages-based (e.g., [4; 7; 13]) or visualization-based tools, both sup-
porting architecture comprehension but working in different ways. Especially 
the graphical elements used in architecture visualization tools range from sim-
ple lines and boxes (e.g. [20; 22]) to very complex notations (e.g. [2; 14; 15]). 
At Fraunhofer IESE we use the SAVE tool (Software Architecture Visualization 
and Evaluation) to evaluate software architectures [10], which has a powerful 
configurability that allows to enable and disable almost all its built-in graphical 
elements (we thereby define graphical elements as the concepts and figures 
that determine how views on software architectures are visualized). While 
evaluating software architectures with SAVE in our group we made three ob-
servations:  

• Almost every person configured the SAVE tool differently. 

• Working with a configuration created by someone else can decrease the 
analysis efficiency. 

Copyright © Fraunhofer IESE 2006 1



Introduction 

• Some graphical elements of SAVE seemed to have more impact on the effi-
ciency than others. 

Based on these observations, we derived the following open questions: what is 
the influence of graphical elements in architecture analysis tasks of large-scale 
software systems? Which impact has a configuration on the effectiveness and 
efficiency of achieving results? What is a good default configuration for SAVE? 

In this paper, we report on a controlled experiment we conducted with 29 par-
ticipants (12 software engineering researchers and 17 computer science stu-
dents) analyzing the criticality of graphical elements in architectural analysis 
tasks. We set up two configurations of SAVE and split the participants into two 
groups (each group working with a different configuration of the SAVE tool) 
and asked them to perform the same, realistic architecture analysis tasks (see 
Appendix A). The object being analyzed in the experiment was the Apache 
Tomcat web server which is briefly introduced in Section 2. Then Section 3 re-
ports on the experiment’s setting, the results and discusses potential threats to 
validity. Section 4 presents related work and Section 5 concludes this paper.  

Copyright © Fraunhofer IESE 2006 2 



Context 

2 Context  

2.1 Apache Tomcat 

Apache Tomcat is a servlet container that is an implementation of the Java 
Servlet and JavaServer Pages technologies. It is developed in an open and par-
ticipatory environment and released under the Apache Software License. 
Apache Tomcat powers numerous large-scale web applications across a diverse 
range of industries and organizations [1]. We used Apache Tomcat version 
5.0.28 as the system to be analyzed in the experiment. It is a system with about 
4.5 MB of source code in 411 Java files in 42 packages.  

2.2 SAVE 

SAVE (Software Architecture Visualization and Evaluation, see) is an Eclipse 
plug-in for conducting static architecture evaluations [10] based on Reflexion 
models as described in [16] and [12]. The SAVE tool has a powerful engine for 
the visualization of software architectures offering a large number of state-of-
the-art graphical elements. A main feature is the configurability of the visualiza-
tion (i.e., enabling and/or disabling certain graphical elements) allowing users 
to adapt the visualization of results to their needs and wishes. The two configu-
rations we used are described in section 3.1.4. 

Copyright © Fraunhofer IESE 2006 3



Experiment 

3 Experiment 

3.1 Setup 

3.1.1 Hypotheses 

As graphical elements seem to be important for the understanding of a visual-
ized software system, the idea was to explore how critical the impact of graphi-
cal elements is. We captured the participants’ architecture analysis task execu-
tion results for investigating what effects graphical elements can have. The hy-
potheses were: 

• H1 – Visualization enables “novices” to solve architecture exploration tasks 
with nearly the same effort as experts do. (Novice in this context means that 
the person exploring the architecture has no or limited knowledge in the 
domain to which the systems belongs, in this experiment the web server 
domain) 

• H2 – Visualization does not have an effect when solving complex transfer 
tasks. 

Since visualizations of software architectures are often used by people that are 
new to a particular system, we studied two additional aspects captured in H3:  

• H3 – Well-designed graphical elements support the comprehensibility and 
the reduction of complexity in software architecture visualization.  

3.1.2 Pilot Study 

For the preparation of the experiment we asked two experts in the field of web 
servers and especially of Apache Tomcat to solve the tasks of the experiment. 
We were lacking a larger number of experts; nevertheless, we think the results 
are sufficient to serve as basis for exploring the difficulty of the tasks and the 
time needed for the solution. Both experts have been working with web servers 
for a longer time, also have experience in related fields, and stated that they 
would consider themselves as experts. 

Expert 1 was asked to conduct the experiment using the SAVE visualization in 
roughly one hour. In fact, he finished in 45 minutes with correct results.  

Copyright © Fraunhofer IESE 2006 4 



Experiment 

The procedure for the expert 2 was different. In order to be able to estimate 
what the visualization adds as a help to the task solution expert 2 was asked to 
solve the tasks without the visualization. Therefore, the task description was 
slightly adapted. The source code was provided in an Eclipse installation and 
with all default development tools. Additionally we provided the dependencies 
as they are extracted from the source code by the SAVE tool as an Excel spread-
sheet. Expert 2 achieved about half of the results as expert 1 did. One comment 
of him was that the amount of data provided was very large and therefore the 
solution of the tasks was very difficult. 

3.1.3 Subjects 

The subjects participating in the experiment were software engineering re-
searchers and computer science students of the Fraunhofer Institute for Ex-
perimental Software Engineering (IESE), Kaiserslautern, Germany and its sister 
institute, the Fraunhofer Center in Maryland (FC-MD), USA. 10 researchers and 
16 students from IESE, 2 researchers and 1 student from FC-MD resulted in a 
total of 29 subjects. All researchers involved were expected to have deep 
knowledge in the field of software architecture, since they did numerous archi-
tecture-related projects. All the students were at least graduate students. All in-
formation necessary was given in the context of the experiment execution and 
there was no special training.  

3.1.4 Experimental Materials  

As the goal of the experiment was to explore whether the usage of different 
combinations of graphical elements leads to different results in the experiment, 
two different setups of graphical elements in SAVE were designed.  

In the following, a number of graphical elements available in SAVE will be ex-
plained: 

• Different visual figures for different types of components: We can freely as-
sign figures to the types of components (system, subsystem, …) from a set 
of UML-like figures. Some of these figures can be seen in Figure 2. A similar 
approach with different line styles, colors, and widths is applied for relations. 

• Nested components for containment hierarchies vs. explicit containment re-
lations in flat representations:  A model of a software system mostly contains 
some kind of hierarchy (e.g., the system contains subsystems). We offer to 
display this either by nesting the components or by drawing explicit con-
tainment relations. Since artifacts in SAVE can only be contained in one con-
tainer per definition this leads to a tree structure. Figure 1 presents the same 
excerpt of Tomcat using the different configurations. 

Copyright © Fraunhofer IESE 2006 5



Experiment 

• Relation highlighting: If a component is selected in the visualization all its in-
coming and outgoing relations can be highlighted by changing their color. 
For example, in Figure 2 the incoming and outgoing relations of 
“org.apache.catalina” are highlighted. 

• Component highlighting with information panel: If a component is selected 
we can highlight it by a transparent overlay figure with a different color. Fur-
thermore, this figure contained additional textual information: the compo-
nent name, its type, and the name of the figure used. 

 
Figure 1:  Configuration B (left) and A (right) showing the same excerpt of a system 

• Legend: In case that different types of components are displayed using dif-
ferent figures a legend was provided to help users in understanding the fig-
ures and their meaning. The legend explains different colors denoting the re-
lations types, too. 

However, it is not clear whether many different graphical elements ease or 
hamper working with the visualization. Therefore, one distinction of the con-
figurations was the number of graphical elements offered to the user. Besides 
this, we also varied the appearance of single graphical elements between the 
configurations. 

 
 

 

Copyright © Fraunhofer IESE 2006 6 



Experiment 

Configuration Group A 

A key difference between the configurations is that configuration A uses the 
tree structure whereas configuration B uses nested components for displaying 
containment of components (as displayed in Figure 1). Configuration A is lean 
with respect to the number of graphical elements used. It leaves out highlighter 
for incoming and outgoing relations and selected components. Since the num-
ber of colors and figures used is restricted the legend is left out as well.  

Configuration Group B 

Configuration B provides a larger number of graphical elements, for example 
highlighting of selected elements. We used different figures and colors for dif-
ferent kinds of components in configuration B as a contrast to configuration A 
and explained them in a legend. Figure 2 presents the different figures for a 
system, subsystems and components in the UML style.  

 

 
Figure 2:  Different figures and relation highlighting 

3.1.5 Experimental Design 

The participants were randomly distributed in two groups working with either 
configuration A or configuration B. Every group did only one pass of the ex-
periment with one configuration in order to avoid learning effects. Since re-
searchers and students are assumed to have different skill levels, we separated 
them resulting in four person groups as shown in Table 1.  

The participants executed the experiment sequentially as only one computer 
was available for the experiment. Additionally the participants were allowed to 
ask clarification questions. The experiment was conducted as a “blind” experi-
ment: participants were neither told to which groups they belonged nor that 
there were different configurations. 

Copyright © Fraunhofer IESE 2006 7



Experiment 

Configuration  A B 
Group A B 
Person Groups Researcher

(7) 
Student 

(8) 
Researcher 

(5) 
Student 

(9) 

Table 1:  Number of participants per person group 

3.1.6 Experimental Tasks 

Both the groups A and B were asked to solve the same 10 architecture analysis 
tasks (see Appendix A for the complete list). The experimental tasks represented 
realistic architecture analysis scenarios and analyzed static views on the archi-
tecture of the Apache Tomcat. The tasks were divided into 3 groups: 

Filter tasks: These tasks are so easy that everyone should be able to solve 
them. If there are persons that do not solve the tasks they are taken out of the 
experiment results as there are probably problems in understanding the tasks, 
using SAVE, or the experiment as such for some reason. The tasks 1 and 9 are 
of this category. There were 2 students of group A that failed for both the tasks 
and were therefore removed from the evaluation. 

Basic tasks: These are tasks that can be solved by extracting facts from the 
visualization and writing them down as an answer. The tasks 2 – 7 belong to 
this category. 

Transfer tasks: Finally, tasks 8 and 10 were more difficult and asked for more 
sophisticated results. For instance, task 10 dealt with the differences of the 
processing of the TCP and HTTP network protocols. For the solution of this task 
participants had to reason about the expressiveness of component names, the 
relations to other components and to navigate to the source code to learn 
about details of the classes involved.  

The results of the tasks are twofold: written answers given to questions on the 
task sheet and artifacts like views and screenshots created with the SAVE tool. 
We had an example solution for each task and defined the number of points to 
be obtained for an answer based on the difficulty of the task (0 points for filter 
task, basic tasks with 1 or 2 points, and two transfer tasks with 3 and 4 points). 
A total number of 15 points (8 points for basic tasks, 7 points for transfer tasks) 
could be obtained. 

3.1.7 Experimental Procedures 

One computer was prepared for the experiment: Eclipse and the SAVE plug-in 
were installed, two Eclipse workspaces were prepared containing all the data 
required: the only difference was the configuration of the graphical elements 

Copyright © Fraunhofer IESE 2006 8 



Experiment 

for the groups A and B. The workspaces were completely restored for each par-
ticipant.  

The participants were given a handout including the material for the experi-
ment: 

• Step-by-step experiment processing: A short introduction to the experimen-
tal context guiding the participants through the experiment. Participants 
were asked to write down the time after every step. 

• Pre-briefing questionnaire: This questionnaire asked for the participants’ ex-
perience in fields related to the experiment and their motivation. 

• SAVE visualization introduction: A short introduction explaining the major 
functionality of the SAVE tool and the graphical elements available.  

• Experimental tasks: Architecture analysis tasks for the Tomcat system to be 
solved by the participants (see section 3.1.6). 

• Visualization questionnaire: This questionnaire was concerned with ques-
tions about the comprehensibility and complexity reduction of the graphical 
elements.  

• Debriefing questionnaire: Covers questions concerning the auto-perception 
of the performance of the participant (i.e., how good the quality of the re-
sults is estimated to be). Furthermore there are some questions about the 
experiment itself (e.g., sufficiency of time, realism of tasks). 

• Eclipse workspaces: The Eclipse workspace contained the Apache Tomcat 
visualized in SAVE. The screenshots produced by each participant were 
stored within the workspace. 

The processing time until finishing the tasks was limited to 45 minutes, and 
then 15 minutes were given to fill in the remaining questionnaires. Finally, from 
each participant the resulting material was collected. 

3.1.8 Data Collection Procedures 

The task results including screenshots and the Eclipse workspaces with visual 
results and questionnaires filled in were collected. The time was noted for every 
task step.  

Independent variables of the experiment were the software architecture being 
explored and the tool to explore it. Evaluating the tasks the percentage rate of 
points obtained for architecture analysis tasks was measured. The distinction 
between the goals comprehensibility and reduction of complexity was made in 
the visualization questionnaire. 

Copyright © Fraunhofer IESE 2006 9



Experiment 

3.1.9 Data Analysis Procedure 

The experiment data of 27 participants was available for the evaluation and the 
evaluation was carried out according to the expected results with exactly de-
fined instructions how many points an answer counts for.  

In order to guarantee the correctness of task evaluation a second person evalu-
ated the tasks of four randomly chosen participants (2 of group A and 2 of 
group B). The divergence between the evaluation results of the two evaluating 
persons was 0.5 points at the most, which is about 3% of the 15 points. The 
data was not yet evaluated statistically, but qualitative results and outliers were 
identified. 

 

3.2 Results 

3.2.1 Architecture Analysis Task Results 

The answers to the tasks of each participant are evaluated against the expected 
results. The maximum of points to score was 15. 

Figure 3 presents the results for the four person groups. For each group the 
score for every participant and the average value (the horizontal bar) are shown 
(the median is always similar to the average). The following observations can be 
made: 

• On average, researchers achieved higher scores than students, independent 
from the configuration used. 

• Members of group B achieved on average higher scores than members of 
group A, independent from being researchers or students. 

• In group A, there are larger deviations from the average value than in group 
B. 

• The best participants of each of the four person groups (researchers and 
students with configuration A and B) achieved similar results. 

Copyright © Fraunhofer IESE 2006 10 



Experiment 

Researchers Group A

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7

Participants

%
 o

f T
as

k 
Po

in
ts

 S
co

re
d

Researchers Group B

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5

Participants

%
 o

f T
as

k 
Po

in
ts

 S
co

re
d

Students Group A

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6

Participants

%
 o

f T
as

k 
Po

in
ts

 S
co

re
d

Students Group B

0
10

20
30
40
50

60
70
80

90
100

1 2 3 4 5 6 7 8 9

Participants

%
 o

f T
as

k 
Po

in
ts

 S
co

re
d

 

Figure 3:  Task results – individual results and average 

A summary of average values of the tasks points is presented in Table 2. There 
we can compare the overall performance of participants using configuration A 
and B. While the former scored on average 42% of the points, the latter scored 
on average 68%. This means that the effectiveness of the group with configu-
ration B is 63% (Avg. B / Avg. A) higher. This important result supports the 
claim that significant effort should be spent on the configuration of architec-
ture visualization tools to achieve effectiveness gains in the analysis. 

 Group A Group B Groups A & B 
Researchers 40.47 76.00 58.24 
Students 32.93 64.47 48.70 
Researchers & Students 42.05 68.57  

Table 2:  Average points for person groups in % 

3.2.2 Anomalies in the Data Set 

It can be considered an anomaly that two participants of group A were not able 
to accomplish any task. Maybe they did not understand the task description or 

Copyright © Fraunhofer IESE 2006 11



Experiment 

they are very inexperienced in the areas related to the experiment. However, 
they did not state this in the pre-briefing or debriefing questionnaire. Our filter 
tasks were designed exactly for such cases. The filter tasks seem to be well cho-
sen since only participants scoring overall zero points were filtered out.  

In the visualization questionnaire for the graphical elements students of group 
A voted averagely higher for some metrics than students of group B. An exam-
ple is the metric for the question “Do the graphical elements support the dis-
tinction among elements of the SAVE model with different meanings?”. Stu-
dents of group A voted with 3.29, students of group B with 3.11. This is sur-
prising as group A had no visual distinction among systems, subsystems and 
components while group B had this visual distinction with different figures of 
the UML notation.  

3.2.3 Hypotheses H1 and H2 

As there is no statistical evaluation only arguments for the hypotheses H1 and 
H2 can be given. H1 evaluated the results for basic architecture analyses tasks. 
As the participants in average stated in the visualization questionnaire that our 
visualization makes an architecture more comprehensible and reduces the 
complexity, this is a hint that it also enables these “novices” of that particular 
architecture to solve the tasks of the architecture exploration. As the time for 
the participants was aligned to the time of the pilot we can compare the effort 
needed. The overall results of the tasks are used to measure how effective the 
participants are. The variation of the task results is quite large, however, we can 
see that some of the participants achieve results almost as good as the expert 
working with SAVE and nearly all participants of group B perform better than 
the expert working without SAVE. Therefore, H1 is supported by the results of 
the tasks. Different configurations in the different groups led to different re-
sults. Thus we assume that the configuration of a visualization strongly affects 
the results. We assume that it would pay off to invest effort in optimizing the 
configuration. However, one difficulty is that “the optimal configuration” does 
not exist. On the one hand this depends on the purpose for which the visualiza-
tion is to be applied. On the other hand it depends on the preferences and hab-
its of the user. In our group nearly everyone uses his own configuration of the 
visualization. 

 

 Group A Group B Groups A & B 
Researchers 26.57 71.43 49.00 
Students 14.29 43.71 29.00 
Researchers & Students 23.08 53.57  

Table 3:  Average points in task 8 and 10 in % 

Copyright © Fraunhofer IESE 2006 12 



Experiment 

H2 is evaluated with the results of the transfer tasks number 8 and 10. In Table 
3 the results for the two transfer tasks are depicted for the single person 
groups. It can be seen that in all the groups results were achieved. However, 
the configuration that was used seems to have a strong impact on the results. 
Furthermore, the knowledge of the researchers seems to help as well as they 
achieved by far better results than the students. This means for H2 that it can-
not be accepted. Rather we observed that the participants achieved often good 
results. With respect to the influence of the configuration on the results, the 
same holds as for H1: A good configuration strongly pushes the quality of the 
results.  

3.2.4 H3 – Visualization Questionnaire Results 

The personal assessment of the graphical elements by the experiment partici-
pants was the basis for verifying H3. We applied the Goal-Question-Metric 
(GQM [2]) approach to derive the visualization questionnaire to assess the use-
fulness of the graphical elements (see Table 4 for the GQM goal). One example 
question for the goal comprehensibility was “Are the graphical elements for 
components and relations well explained?”.  In total, we derived 16 metrics for 
the comprehensibility goal and 13 for the complexity goal. An ordinal scale 
with five values was applied ranging from 1 (Not at all) to 5 (Highly). For one 
goal, we aggregated the average values of all metrics. The results are presented 
in Table 5 and Table 6.  

Several observations were made during the analysis of the visualization ques-
tionnaire: 

• The average values for comprehensibility and complexity reduction are very 
similar for nearly every group investigated. 

• The results of researchers in groups A and B differ more than the results of 
students. 

• On average participants of group B vote higher than participants of group A. 

• Students mostly vote slightly higher than researchers. 

Copyright © Fraunhofer IESE 2006 13



Experiment 

Object 
 

- Single graphical element 
- Overall visualization 

Purpose Evaluation of the adequacy of graphical elements 
Quality Aspect - Comprehensibility 

- Complexity reduction 
Viewpoint User of the visualization 
Context Visualization of Software Architecture for:  

- Architecture understanding 
- Program comprehension 

Table 4:  GQM Goal 
 

 Group A Group B Groups A & B 
Researchers 3.15 3.74 3.45 
Students 3.48 3.62 3.56 
Researchers & Students 3.34 3.66  

Table 5:  Average values for Comprehensibility  
 

 Group A Group B Groups A & B 
Researchers 3.06 3.67 3.34 
Students 3.50 3.70 3.60 
Researchers & Students 3.29 3.68  

Table 6:  Average values for Complexity Reduction 
 

The most significant difference in the voting of group A and group B for a sin-
gle metric is the measure “How many components are initially shown? Is this 
number suitable for a first overview?”. Group A voted with 2.69 while group B 
voted with 4.07. Thus it can be assumed that showing only an excerpt of the 
architecture at the beginning is appealing to the users.  

As the results of researchers of group A and group B differ more than for the 
entire groups A and B they are explored in more detail. The researchers of 
group B voted with a difference higher than 1.0 compared to the votes of re-
searchers of group A for the following measures:  

• Additional information on the interactions with the selected component in a 
tooltip 

• How many components are initially shown? Is this number suitable for a first 
overview? 

• How evident are the points where a reduction of complexity was con-
ducted? 

• Is it obvious how to interact with the mechanisms for complexity reduction? 
• Can the additional information offer the details needed? 

Copyright © Fraunhofer IESE 2006 14 



Experiment 

• Is it possible to reach all the parts of the SAVE model with the offered navi-
gation from the starting point? 

The fact that there are larger divergences in the votes of researchers of groups 
A and B could be explained with their higher experience in using other architec-
ture visualization tools. The overall results of the visualization questionnaire as 
shown in Table 5 and Table 6 is a hint to accept H3. Additionally, the results of 
the analysis tasks as explored above also support H3 as we believe that a better 
comprehensibility and an appropriate complexity assist in achieving better task 
results. 

3.2.5 Debriefing questionnaires 

The time given for the tasks (in total 1 hour, no overtime possible) was dimen-
sioned by the pilot study to constitute a realistic situation (i.e., projects usually 
have tight time constraints). However, a number of participants were not able 
to accomplish all the tasks and many stated in the debriefing questions that the 
time was too short.  

Another question was how realistic the tasks of the experiment were. There 
were nearly no differences in the answers among groups A and B, and among 
researchers and students. The average value of all persons is 3.69 which means 
between ‘fairly’ and ‘well’. Thus it can be assumed that the tasks of the ex-
periment are appropriate as many of the researchers were highly experienced in 
architecture analyses projects having good knowledge of software architecture 
and related topics. The difficulty of the tasks seemed to be well-dimensioned 
given the experimental constraints as there were persons in each group that 
solved nearly all the tasks (see Figure 3). 

Another aspect dealt with the ease of use: how pleasant was it to work with 
the SAVE tool? Here it is interesting to distinguish between the person groups. 
Table 7 shows that the entire group B finds the visualization more pleasant 
than group A. This tendency is even stronger comparing only the researchers of 
group A and group B. Thus, again we find the configuration of the graphical 
elements as a crucial role. 

A substantial number of participants mentioned that the introduction to the 
SAVE visualization was insufficient. Due to the limited time available for each 
participant it was not possible to provide a detailed user manual explaining all 
functionality, graphical elements and the Eclipse context. Unfortunately some 
graphical elements did not seem to be as intuitive as assumed. On the other 
hand, some participants remarked that graphical elements are missing although 
they are explicitly explained in the introduction. As a conclusion of this criticism, 
we decided to provide an integrated online-help for the normal use of the 
SAVE tool.  

Copyright © Fraunhofer IESE 2006 15



Experiment 

 Group A Group B Groups A & B 
Researchers 2.43 3.80 3.12 
Students 3.57 3.63 3.60 
Researchers & Students 3.00 3.69  

Table 7:  Average values for 'Pleasant to use' 

The participants were also asked for the graphical elements providing high 
benefits. Many participants emphasized that diverse representations of compo-
nents and relations offer high benefit. The graphical elements for abstraction 
purposes like aggregation, collapsing components, and filtering were also men-
tioned. The bird view was recognized as an important element, too. 

3.2.6 Influence of Graphical Elements on the Results 

We analyzed the influence of single graphical elements that distinguished the 
groups A and B (see section 3.1.4 for a list of the differences). 

The identification of hot spots in the example system seemed to benefit from 
two graphical elements:  

• Nested containment of components enables the easy identification of differ-
ent levels of hierarchies. Using containment trees it can become difficult to 
find the root of the tree due to the number of visible components and the 
automatic layout (not displaying a visual tree).  

• Different visual figures for different types of components enable their identi-
fication. For instance, subsystems can be easily recognized even in a large 
amount of components. Some participants even emphasized the visualiza-
tion of different kinds of components and relations as the highest benefit of 
the visualization.  

Relations among components are a particularly important concept in software 
architectures (also known as simple connectors) so their visualization is crucial. 
The tasks related to relations support that the graphical element for highlight-
ing the incoming and outgoing relations of the currently selected component 
facilitated these tasks as it was easier to see the relations’ origin, target and di-
rection.  

The graphical element Overlay Information Panel was not of major importance 
in the experiment. The reason might be that the information displayed was re-
lated to internals of the SAVE tool, which are not meaningful to the experiment 
subjects. However, the element could be adapted to offer more appropriate in-
formation (e.g., metrics like fan-in and fan-out of a component), which several 
of the participants would see as an improvement. 

Copyright © Fraunhofer IESE 2006 16 



Experiment 

3.3 Threats to validity  

3.3.1 Construct Validity 

The construct validity is the degree to which the settings of the experiment in 
terms of the dependent and independent variables reflect the goal of the ex-
periment. The following possible threats were identified: 

• The aspects comprehensibility and reduction of complexity are difficult to 
measure. The measures we chose are intuitively quite reasonable, but cer-
tainly there are other measures. We applied the GQM approach to break 
down the two aspects into 29 distinct measures. 

• The configurations we defined are somehow arbitrary. We do not know 
about the absolute quality of the configurations and we observed that “the 
optimal configuration” does not exist as it strongly depends on the task at 
hand and the user itself. We tried to define one configuration providing 
more graphical elements and one with less graphical elements as we did not 
know about the influence of single elements and their influence on the re-
sults. 

• The partial conduction of the experiment at FC-MD (3 subjects from there) 
required a substantial effort for the setup of the Eclipse environment, the 
preparation of the Eclipse workspaces including the configuration of the 
SAVE tool. Despite sending over a complete installation package to achieve 
an easy execution of the experiment over there, technical problems occurred 
due to an old version of the Java environment. However, these problems af-
fected only the person installing the environment but not the participants. 
Furthermore there was no direct (face-to-face) support for clarification ques-
tions for the participants at FC-MD, but we offered remote support via tele-
phone (which was almost not used). In total (including the IESE site), there 
were not many questions asked; about half of the participants did not ask 
any question at all.  

• How people gain knowledge from visualized information and how they in-
terpret it is strongly based on the person’s background and experience. By 
randomly assigning the participants to the groups, this effect seems to be 
controlled as similar average values of participants of groups A and B in the 
pre-briefing questions on their knowledge resulted. 

• The time given for the experiment was insufficient for several participants. 
As all the participants had the same time for solving the tasks this should not 
affect the results of the evaluation. The purpose of the pilot participant was 
to find a threshold that can be sufficient for solving the tasks. 

• We conducted a pilot with two experts in order to find feasible time con-
straints and to check the appropriateness of the tasks. We are not sure 

Copyright © Fraunhofer IESE 2006 17



Experiment 

about the absolute expertise of our experts. However, as they performed 
well in the pilot we are confident that they were suitable as pilots for our 
experiment. 

3.3.2 Internal Validity 

Internal validity is the degree to which independent variables have impact on 
dependent variables. The following threats to internal validity are identified:  

• A selection effect occurs if an inappropriate selection of the groups accord-
ing to the abilities of the members is done. As the number of participants is 
quite low such effects are more likely to occur than in environments where 
there are many participants. In order to avoid this effect the researchers and 
students were treated separately and randomly assigned to the person 
groups. In the pre-briefing questionnaire the participants were asked about 
their skills in the fields related to the experiment, (e.g., architecture, Java, 
and Eclipse) and, according to their answers, there was not a significant dif-
ference of skills between the members of group A and group B. As ex-
pected, researchers had higher skills than students justifying their separation. 

• Participants that are not familiar with Eclipse could have slight problems 
solving the tasks. However, all the windows and views needed for the ex-
periment were explained and Eclipse is geared to common graphical user in-
terface conventions. The results showed no correlation between the self-
estimated Eclipse experience and the task results. 

• Participants not used to architecture visualization might have a disadvan-
tage. We created the filter tasks to identify participants having problems 
with the visualization in general. In fact, two participants were filtered out 
failing the filter task and having no scores at all; all other participants passed 
the filter tasks and scored at least for some of the tasks. 

3.3.3 External Validity 

External validity is the degree to which the results of the experiment can be 
transferred to other people and to changed environmental settings. 

• The participants may be not representative. Most of them were students and 
they may be not representative for industrial practitioners. To overcome this, 
a separation between researchers and students was made. If only the per-
formance of professionals is of interest the analysis can be restricted to the 
researchers as they are experienced in the field of software architecture.  

• The architecture analysis tasks in the experiment may be not representative. 
They are constructed for the evaluation of the graphical elements with the 

Copyright © Fraunhofer IESE 2006 18 



Experiment 

idea to explore a real software system for the purpose of architecture com-
prehension. It is possible that they are too much directed to the graphical 
elements available in the SAVE. However, the participants assessed the tasks 
as realistic in the context of architecture analysis as discussed in section 
3.2.5. 

Copyright © Fraunhofer IESE 2006 19



Related Work 

4 Related Work  

Rugaber [21] describes the general nature of program comprehension. Panas et 
al. describe a unified process for program comprehension involving visualization 
[19]. Visualization tools use different graphical elements (we define graphical 
elements for software architectures as the concepts and figures used to visual-
ize it. Koschke states  visualizations goes hand in hand with functionality [11]. 
The results of our experiment suggest that the already configuration of graphi-
cal elements within the visualization has an impact on the results. 

Architecture visualization tools incorporate different sets of graphical elements. 
For instance, SHriMP (Simple Hierarchical Multi-Perspective) applies for visualiz-
ing and understanding software the graphical elements “nested graphs”, “ag-
gregation of components and relations”, “filters”, multiple windows including 
“birdview”, “zooming”, “navigation to the source code”, and “focus high-
lighting” [22; 23; 25; 26]. Rigi offers “nested graphs” and “filtering” to facili-
tate easy program comprehension [20]. Further tools supporting reverse engi-
neering and program comprehension are for instance Imagix4D [9] and Bau-
haus [3]. All support “coloring” and “focus highlighting” in their respective 
graphical representation, “layouting” can be done manually or automatically.  

The configuration of SAVE allows enabling and disabling its graphical elements 
(which are the above-mentioned and other, see [17] for a complete list). Com-
ponents and connectors are the elements of architectural views in SAVE and 
are represented in an UML-based notation. Different colors, styles, and decora-
tions can be assigned to the elements. Fisheye views [6] are a means to focus 
parts of interest.  

In the context of the development of the SHriMP tool an experiment was con-
ducted in order to compare different tools for program comprehension. In [23; 
24] this experiment with 30 subjects is described. The tools compared are 
SHriMP, Rigi, and SNiFF+. Different strategies for program comprehension are 
used in the experiment. As a result of their experiment they propose properties 
of a tool for program comprehension that alleviate the usage of such a tool. 
Another experiment comparing the differences of program understanding in 
visual and textual program representations is given in [18]. Their findings in-
clude that visual and textual representations lead to different mental maps of a 
program and different information is extracted by participants. None of these 
experiments (and to our knowledge no other published experiment in the field 
of software architecture) analyzed the impact of configuration of graphical 
elements on analysis tasks. Furthermore, to our knowledge there are no archi-
tecture analysis case studies having the Apache Tomcat as subject system. 

Copyright © Fraunhofer IESE 2006 20 



Conclusion 

5 Conclusion 

The architecture is one of the most crucial artifacts in the life cycle of software 
systems. Once designed, the architecture evolves and is adapted to changed 
functional or quality requirements and to business or organizational goals. 
Mostly such changes are not documented, so the understanding of existing ar-
chitectures becomes an effort-intensive activity of high importance in the evolu-
tion and maintenance of large-scale software systems. Tools visualizing soft-
ware architectures tackle these problems. The experiment we conducted 
showed the important role the graphical elements of a tool play in supporting 
architecture analysis tasks. By simply using a configuration that turned out to 
be more appropriate, participants achieved in average a gain of 63% in the ef-
fectiveness. All participants considered the architecture analysis tasks at least as 
fairly realistic, and we were able to partially capture the role of single graphical 
elements for the task results.  

We will continue analyzing the impact of different combinations and additional 
graphical elements for solving architecture analysis tasks. Another interesting 
experiment related to the one presented in this paper would be to compare the 
architecture analyses performance of two other groups: one having graphical 
support and one having a text-based query language connected to a repository, 
which contains the same data as it is visualized.  

Copyright © Fraunhofer IESE 2006 21



References 

References 

[1] Apache. (2005). The Jakarta Site - Apache Tomcat. 
http://tomcat.apache.org/index.html

[2] Balzer, M., Noack, A., Deussen, O., & Lewerentz, C. (2004). Software 
Land-scapes: Visualizing the Structure of Large Software Systems. Joint 
EUROGRAPHICS - IEEE TCVG Symposium on Visualization. 

[3] Bauhaus - Software Reengineering, Programmverstehen und Software 
Architekturen. (2005). http://www.bauhaus-tech.de

[4] Beyer, D., Noack, A., & Lewerentz, C. (2003 ). Simple and Efficient Rela-
tional Querying of Software Structures In Proceedings of the 10th Work-
ing Conference on Reverse Engineering (pp. 216 ): IEEE Computer Soci-
ety. 

[5] Fjeldstad, R. K., & Hamlen, W. T. (1983). Application Program Mainte-
nance Study: Report to Our Respondents. Philadelphia: Proceedings 
GUIDE 48. 

[6] Furnas, G. W. (1986). Generalized fisheye views. In Proceedings of the 
SIGCHI conference on Human factors in computing systems (pp. 16-23). 
Boston, Massachusetts, United States: ACM Press. 

[7] Holt, R. C. (2002). Introduction to the Grok Programming Language. 
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc

[8] IEEE. (2000). ANSI/IEEE Std. 1471-2000 Recommended Practice for Archi-
tectural Description of Software-Intensive Systems. 

[9] Imagix4D. (2005). http://www.imagix.com/products/imagix4d.html

[10] Knodel, J., Lindvall, M., Muthig, D., & Naab, M. (2006). Static Evaluation 
of Software Architectures. 10th European Conference on Software 
Maintenance and Reengineering, Bari, Italy. 

[11] Koschke, R. (2003). Software visualization in software maintenance, re-
verse enngineering, and re-engineering: a research suvey. Journal of 
Software Maintenance and Evolution, 15(2), 87-109. 

[12] Koschke, R., & Simon, D. (2003). Hierarchical Reflexion Models. Proc. of 
the Working Conference on Reverse Engineering, IEEE. 

Copyright © Fraunhofer IESE 2006 22 

http://tomcat.apache.org/index.html
http://www.bauhaus-tech.de/
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://www.imagix.com/products/imagix4d.html


References 

[13] Krikhaar, R., Postma, A., Sellink, A., Stroucken, M., & Verhoef, C. (1999). 
A two-phase process for software architecture improvement. Interna-
tional Conference on Software Maintenance (ICSM), Oxford, England. 

[14] Lanza, M. (2003). Object-Oriented Reverse Engineering. University of 
Bern. 

[15] Maletic, J. I., Leigh, J., Marcus, A., & Dunlap, G. (2001, May 12-13, 
2001). Visualizing Object-Oriented Software. Virtual Reality Proceedings 
of the 9th IEEE International Workshop on Program Comprehension 
(IWPC'01), Toronto, Canada. 

[16] Murphy, G. C., Notkin, D., & Sullivan, K. J. (2001). Software Reflexion 
Models: Bridging the Gap between Design and Implementation. IEEE 
Trans. Softw. Eng., 27(4), 364-380. 

[17] Naab, M., Forster, T., Knodel, J., & Muthig, D. (2005). Evaluation of 
Graphical Elements and their Adequacy for the Visualization of Software 
Architectures  (IESE Report 078.05/E). Kaiserslautern. 

[18] Navarro-Prieto, R., & Canas, J. J. (2001). Are visual programming lan-
guages better? The role of imagery in program comprehension. Int. J. 
Hum.-Comput. Stud., 54(6), 799-829. 

[19] Panas, T., Löwe, W., & Assmann, U. (2003). Towards the unified recovery 
architecture for reverse engineering. Int. Conf. on Software Engineering 
Research and Practice, Las Vegas, USA. 

[20] Rigi. (2005). Rigi - a visual tool for understanding legacy systems. 
http://www.rigi.csc.uvic.ca/

[21] Rugaber, S. (1995). Program Comprehension. Encyclopedia of Computer 
Science and Technology, 35(20), 341-368. 

[22] Storey, M.-A., & Muller, H. A. (1995). Manipulating and documenting 
software structures using SHriMP views. In Proceedings of the Interna-
tional Conference on Software Maintenance (pp. 275): IEEE Computer 
Society. 

[23] Storey, M.-A. D., Wong, K., Fracchia, F. D., & Mueller, H. A. (1997). On 
Integrating Visualization Techniques for Effective Software Exploration. In 
Proceedings of the 1997 IEEE Symposium on Information Visualization 
(InfoVis '97) (pp. 38): IEEE Computer Society. 

 

Copyright © Fraunhofer IESE 2006 23

http://www.rigi.csc.uvic.ca/


References 

[24] Storey, M.-A. D., Wong, K., & Muller, H. A. (1997). How Do Program 
Understanding Tools Affect How Programmers Understand Programs. In 
Proceedings of the Fourth Working Conference on Reverse Engineering 
(WCRE '97) (pp. 12): IEEE Computer Society. 

[25] Systä, T. (1999). On the Relationships between Static and Dynamic Mod-
els in Reverse Engineering Java Software. In Proceedings of the Sixth 
Working Conference on Reverse Engineering (pp. 304): IEEE Computer 
Society. 

[26] Wu, J., & Storey, M.-A. (2000). A multi-perspective software visualization 
environment. In Proceedings of the 2000 conference of the Centre for 
Advanced Studies on Collaborative research (pp. 15). Mississauga, On-
tario, Canada: IBM Press. 

Copyright © Fraunhofer IESE 2006 24 



Appendix A – Experimental Tasks 

Appendix A – Experimental Tasks 

1. Open the view “Initial System”. What are the main subsystems in the e-
xample? Write down the package names.    Filter task, 0 points 

2. Which of these subsystems seems to be the biggest one (hot spot)? Why do 
you assume this?                  2 points 

3. Which pairs of main subsystems have reciprocal calls and thus a cyclic de-
pendency on this level?               1 point 

4. Navigate to the children of the top-level systems and try to get a high-level 
understanding of the system. 
There is the component org.apache.catalina.mbeans: Has this component 
mainly incoming or outgoing relations?             1 point 

5. How many source files (.java) do belong to the component 
org.apache.catalina.connector?                 1 point 

6. To which components does org.apache.catalina.util have call relations? 
                2 points 

7. Open the view “Catalina Task System” and switch to manual layout. 
Please create a new view that contains all components of the subsystem 
org.apache.catalina, but without the subsystem itself. Name this new view 
“catalina_#”. (Selection of components uses regular expressions (arbitrary 
sequence of characters:  “.*”)              1 point 

8. Reorder the layout of org.apache.catalina in your new view in manual layout 
mode according to the following ideas. 
The objective is to reorder the architecture of this package into a 3-layer ar-
chitecture. The grouping is done according to the ratio of incoming to out-
going relations of a component. 
• Service Layer:         #in / #out →  0 
• Processing Layer:   #in / #out ≈1  
• Library Layer:        #in / #out → ∞            4 points 

9. Please create a JPEG image of the diagram showing all the top-level systems 
and their relations. Save this image with the name “layers_#.jpg” in the ac-
tual workspace (location can be seen in the title bar of Eclipse).   
         Filter task, 0 points 

Copyright © Fraunhofer IESE 2006 25



Appendix A – Experimental Tasks 

10. Open the view “Tomcat Task System”. Looking at the static architectural 
view only: How does the processing of the network protocol TCP 
(org.apache.tomcat.util.net) differ from the processing of the web protocol 
HTTP (org.apache.tomcat.util.http)?            3 points 

 

 

 

Copyright © Fraunhofer IESE 2006 26 



 

Document Information 

Title: Understanding Software 
Architectures by Visualiza-
tion – An Experiment with 
Graphical Elements 

Date: January 20, 2006 
Report: IESE-021.06/E 
Status: Final 
Distribution: Public 

Copyright 2006, Fraunhofer IESE. 
All rights reserved. No part of this publication may 
be reproduced, stored in a retrieval system, or 
transmitted, in any form or by any means including, 
without limitation, photocopying, recording, or 
otherwise, without the prior written permission of 
the publisher. Written permission is not needed if 
this publication is distributed for non-commercial 
purposes. 

 


	Abstract
	Table of Contents
	Introduction
	Context
	Experiment
	Related Work
	Conclusion
	References
	Appendix A – Experimental Tasks

