Clone Detection via Structural Abstraction

William S. Evansg Christopher W. Fraser Fei Ma
will@cs.ubc.ca cwiraser@gmail.com Fei.Ma@microsoft.com
Abstract and assembly code [9, 10, 25, 11]. The methods also use

various matching techniques: suffix trees [11, 2, 3, 16, 20],
This paper describes the design, implementation, andhashing [5, 9, 10, 25], subsequence mining [21], program
application of a new algorithm to detect cloned code. It slicing [18], and feature vectors [19, 23, 15].
operates on the abstract syntax trees formed by many com-  cjone detectors offer a range of outputs. Some mainly
pilers as an in_te_rmediate representation. It_ extends prior flag the clones in a graphical output, such as a dot-plot [8].
work by identifying clones even when arbitrary subtrees Thjs strategy suits users who reject automatic changes to
have been changed. On a 440,000-line code corpus, 20+heir source code. Other clone detectors create a revised
50% of the clones it detected were missed by previous methgqrce code, which the user is presumably free to modify or
ods. The method also identifies cloning in declarations, S0 gecline [18]. Still others automatically perform procealur
it is som_ewhat more general than conventional procedural gpsiraction [9, 10, 25, 11], which replaces the clones with
abstraction. a procedure and calls. This fully automatic process particu
larly suits clone detectors that operate on assembly ocbbje
code, since the programmer generally does not inspect this
1 Introduction code and is thus unlikely to reject changes.

Most clone detectors find not only identical fragments of

Duplicated code arises in software for many reasons:code but also copies with some differences. These slightly
copy-paste programming, common language constructsditferent copies could, in theory, be abstracted into alsing
and accidental dUp"C&tiOﬂ of functionality are some com- procedure taking the differences as parametersl However,
mon ones. Code duplication atoning (especially copy-  most previous methods permit only what we deical ab-
paste programming) makes it harder to maintain, update, ofstraction that is, a process akin to a compiler’s lexical ana-
otherwise change the program. For example, when an errolyzer identifies the elements that can become parameters to
is identified in one copy, then the programmer must find all the abstracted procedure. Typically, the process treats id
of the other copies and make parallel changes. Also dupli-tifiers and numbers for source code or register numbers and
cate code can make understanding a system more difficultiterals for assembly code as equivalent; or, alternatjvel
since the crucial difference in two nearly-identical capie it replaces them with a canonical form (a “wildcard”) in
may be obscured. On the other hand, cloning is easier tharprder to detect similar clones. For example, it treats the
creating a procedure to perform both the original and a newsource codes=j +1 andp=q+4 as if they were identical.
task, and it can be less error-prone (though many errorsin this simple form, lexical abstraction can generate many
result from incorrectly or incompletely modifying copies) false positives. A more precise version, parameterized pat
Since cloned code appears to be a fact of life, identifying tern matching [3], eliminates many of these false positives

it—for maintenance, program understanding, or code mod-py requiring a one-for-one correspondence between phralle
ification (e.g. refactoring [13] or program compaction)—is parameters.

an important part of software development. Still, some clones detected using these methods could

There is much prior work in this area, operating on not be abstracted into procedures because they do not obey

source code [2, 3, 16, 21], abstract syntax or parse tree§he grammatical structure of the program. A clone consist-

[5, 20, 15], program dependence graphs [18], bytecode [4]ing of the end of one procedure and the beginning of another
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using ASTs. To explain Asta, we use common graph theoretic termi-
Clone detection in ASTs suggests a natural generaliza-nology and notation. For examplg(G) and E(G) denote
tion of lexical abstraction in which parameters represent the nodes and edges of a gragh A subtreeis any con-
subtrees of an AST. Subtrees of an AST may correspond tonected subgraph of a tree. A subtree of a rooted tree is also
lexical constructs (identifiers or numbers) but they mag als rooted and its root is the node that is closest to the root in
correspond to more general constructs that capture mordhe original tree. Arancestorof a node in a rooted tree is a
complicated program structures. Thus, we call this general node on the path from the root to that node. If nade an
izationstructural abstraction ancestor of node thenv is adescendandf nodeu. A full
There is some prior work on clone detection in ASTs, subtreeof a rooted tred' is subtree of" containing a node
though not fully general structural abstraction as defined of 7" and all of its descendents .
above. One method uses a subset of the AST features as part A patternis a labeled, rooted tree some of whose leaves
of a feature vector describing code fragments and searchesnay be labeled with the special wildcard lab®l, Leaves
for clones using feature vector clustering [19]. Another with this label are calletholes A patternP matches a la-
method [5] finds clones in an AST but allows only lexical beled, rooted tre if there exists a functiorf : V(P) —
abstraction. A third method linearizes the AST and looks V(T") such thatf(root(P)) = root(T), (u,v) € E(P) if
for clones, using standard techniques, in the resulting se-and only if (f(u), f(v)) € E(T), and for allv € V(P),
guence of AST nodes [20]. A fourth clusters feature vectors either (1) labelv) = label f(v)), andv and f(v) have the
that summarize parse trees [15]. We discuss these and othesame number of children, or (2) lalfe)] = ?. In our case,
approaches in more detail in Section 6. T is a full subtree of an abstract syntax tree and the pat-
This paper presents the results of applying general structern P represents a macro, possibly taking arguments. Each
tural abstraction to ASTs. Our work has no special treat- holev in P represents a formal parameter that is filled by
ment for identifiers, literals, lists, or any other languéege the computation represented by the full subtre# oboted
ture. It bases parameterization only on the abstract syntaat f (v).
tree. It abstracts identifiers, literals, lists, and mond, ib An occurrenceof a patternP in a labeled, rooted tre¢
does so simply by abstracting subtrees of an AST. is a subtree of thatP matches. Multiple occurrences of a
The objective of this work is to determine if full struc- single patternP in an abstract syntax tree represent cloned
tural abstraction on ASTs is affordable and if it improves code. Acloneis a pattern with more than one occurrence.
significantly on lexical abstraction. Structural absti@tt In what follows, trees and patterns appear in a functional,

seems inherently more costly, and there ispnicna facie fully-parenthesized prefix form. For example,
evidence that it finds more or better clones.

To answer these questions, we designed and built a clone

detector based on structural abstraction and ran it on over add(?, constant(7)) = add
425,250 lines of Java source and over 16,000 lines of C# ’?/cﬁt ant
source. We both tabulated the results automatically and ’

evaluated selections manually. In these tests, strucabral ;

straction improved significantly on lexical abstractio®- 2

50% of the clones we found elude lexical abstraction. . .
denotes a pattern with one hole. When a pattern is used to

form a procedure, holes correspond to formal parameters in
2 Algorithm the definition and to actual arguments at invocations. Holes
must replace a full subtree. For example,

Our structural abstraction prototype is called Asta. Asta
accepts a single AST represented as an XML string. Ithas  ?(l ocal (a), formal (b))
been used with ASTs created by JavaML from Java code
[1] and with ASTs created by the C# compiler Icsc [14]. A is not a valid pattern because the hole replaces an operator
custom back end for JavaML and Icsc emits each module ashut not the full subtree labeled with that operator. This re-
a single AST. A simple tool combines multiple ASTs into a striction suits conventional programming languages, tvhic
single XML string to run Asta across multiple modules. generally do not support abstraction of operators. Lan-
The ASTs are easily pretty-printed to reconstruct a guages with higher order functions do support such abstrac-
source program that is very similar to the original input. tion, so Asta would ideally be extended to offer operator
The ASTs are also annotated with pointers to the associatedvildcards if it were used with ASTs from such languages.
source code. There are thus two different ways to presentAlgorithms and experimental results for the extended ver-
AST clones to the programmer in a recognizable form. sion of Asta can be found in [22].



2.1 Pattern generation only patternF'(v) that matches all the subtrees is a hole. In
this case, no specialization occurs for hole

Asta produces a series of patterns that represent cloned _
code in a given abstract syntax trgelt first generates a set In order to perform pattern improvement somewhat ef-

of candidate patterns that occur at least twics iand have  ficiently, we store with each nodein S a list of patterns
at mostH holes (I is an input to Asta.) It then decides that match the subtree rootediatThe list is ordered by the

which of these patterns to output and in what order. number of nodes in the pattern in decreasing order. Given a

Candidate generation starts by creating a set of simplePattém# to improve and a hole in P, Asta finds an arbi-
patterns. Given an integer paramefigrAsta generates, for  rary occurrence of” (with matching functionf) in S and

each node in S, at mostD patterns calledaps Thed-cap finds the list of patterns stored with the nodé). Asta
(1 < d < D) for v is the pattern obtained by taking the considers the patterns in this list, in order, as candidates

depthd subtree rooted at and adding holes in place of all £"(v). Any candidate with more than one hole is rejected
the children of nodes at depth If the subtree rooted at (to sa}t|sfy condition (i)). In order to satisfy condition)(ia
has no nodes at depth(i.e. the subtree has depth less than ¢andidate pattern must match the subtree rootgd:tfor
d) then nodes has nod-cap. Asta also generates a pattern all matching functiong’ associated with occurrences Bf
called thefull cap for v, which is the full subtree rooted at AnOther way of saying this is that every nofiev) (over all

v. For example, ifD = 2 and the subtree rooted afs: matching functiong’ from occurrences of’) must be the
' root of an occurrence of the candidate pattern. Thus Asta

add( ! ocal (a), sub(l ocal (b),formal (c))) looks up the candidate pattern in the clone table and checks
that eachy (v) is the root of an occurrence in that table entry.
then Asta generates the 1-capgd( ?, ?) and the 2-cap  (We actually store this list of occurrences as an assoeiativ

add(l ocal (?7),sub(?, 7)) aswell as the full cap array indexed by the root of the occurrence, so the check is
add(l ocal (a), sub(local (b),formal (c))). quite efficient.)

The set of all caps for all nodes mforms the initial set,
11, of candidate patterns. Asta repeats the pattern improvement operation on every

Asta finds the occurrences of every cap by building an Pattern inll, adding any newly created patternsifountil

associative array called tlobone table indexed by pattern. N0 new patterns are created.

Each entry of the clone table is a list of occurrences of the ) _ ) _

pattern inS. Asta removes froriil any cap that occurs only Pattern improvement is a conservative operation. It only
once. creates a more specialized pattern if it occurs in the same

Karp, Miller, and Rosenberg [17] present a theoretical p]ac_:es as _the original .pattern. Some patterns can’t be spe-
treatment of the problem of finding repeated patterns in cialized without reducing the number of occurrences. We
trees (as well as strings and arrays). Their problem 1 isM&y st_lllvyant to specialize these patterns becausg ousfocu
identical to the problem of finding ali-caps: “Find all is on finding large pattgrns that occur at Igagt tvylce. Asta
depthd substructures of which occur at least twice i§ performs a greedy version of pattern specialization, dalle
(possibly overlapping), and find the position $hof each best-pair specializatiorthat :_;lttempts to prqduce large pa}t—
such repeated substructure.” Unfortunately, they premlent t€rns that occur at least twice. It does this by performing
gorithms that solve problem 1 only for strings and arrays. Pattérn improvement but requires only that the specializa-
Their tree algorithms are designed to find the occurrencedlion Preserves two of the occurrences of the original pauter
of a given subtree it (a problem that we solve using an
associative array, i.e., hashing).

After creating the set], of repeated caps, Asta performs
the closure of thpattern improvemerdperation on the set.
Pattern improvement creates a new pattern by replacing o
“specializing” the holes in an existing pattern. Given a pat
tern P, pattern improvement produces a new pati@rhy
replacing every hole in P with a patternf'(v)! such that
(i) F(v) has at most one hole (thug,has at most the same
number of holes a®), and (ii)@Q occurs whereveP occurs
(i.e. F(v) matches every subtree, from every occurrence of
P, that fills holev). It is possible that for some holesthe

For each pair of occurrences; andT; (1 < i < j <
r) of a given patternP with r occurrences, Asta produces
a new patterr);; that is identical toP except that every
Iholev in P is replaced by a patterfy;; (v) such that (a)
F;;(v) has at most one hole, and (§),; matchesI; and
T;. The largesty;; (overl < i < j < r) is the best-pair
specialization of?. Asta creates the best-pair specialization
for every patternP in the set of patterng], and adds those
patterns tall. It then computes, again, the closurelbf
using the pattern improvement operation.

As the final step in candidate generation, Asta removes
1The notation emphasizes the fact that each hole may be filitdav from.H all dominated patterngA pattern is dommaFed if it
different pattern. was improved by the pattern improvement operation.




2.2 Thinning, ranking, and reporting 3 Measuring Size

Asta finds many candidate clones, sometimes too many, Asta has been run on a corpus of 1,141 Java files (from
so the candidates are thinned and ranked before output. Astghe j ava directory of the Java 2 platform, standard edi-
supports a wide range of options for thinning and ranking. tion (version 1.4.%) and 58 C# files (mostly from the lcsc

Thinning uses simple command-line options that give compiler [14]). Figure 1 gives their sizes. For each file
thresholds for number of nodes and number of holes. All (ordered by number of AST nodes along thexis), the
results in this paper omit clones under ten nodes or overfigures show the number of nodes, characters, tokens, and
five holes. The ASTs average approximately 14 nodes perlines. Since these are (roughly) related by constant fattor
line, so some sub-line clones are reported. Though sub-linen what follows, we will use node counts as a proxy for size
clones are often too small to warrant refactoring, they can of source code, avoiding measures that are more influenced
yield substantial savings when abstracted for the purpbse o by formatting.
code compaction.

Clones may be ranked along several dimensions: 4 Clone Distribution

Size: Size is the number of AST nodes or the number of
characters, tokens, or lines of source code, in the clone,
not counting holes.

Our primary goal is to report a list of clones that merit
procedural abstraction, refactoring, or some other action
What merits abstraction is a subjective decision that is dif

Frequency: A clone may be ranked according to its size ficult to quantify. It is therefore difficult to quantitatib;e
(option One) or its estimated savings, which is the measure how well a system achieves this goal. Histori-
product of its size and the number of non-over|apping CaIIy, research in clone detection (procedural abstra):tio
occurrences, minus one to account for the one occur-for code compaction used the number of source lines (or in-
rence that must remain. The latter ranking (option structions) saved after abstraction as a measure of system
Al |) favors clones whose abstraction would most de- performance. This goal is easy to quantify. A clone with
crease overall code size, but it often produces small, elements (lines, tokens, characters, or nodes)rametur-
frequent clones. Automatic tools for procedural ab- rences saves(r — 1) element$. Subtracting one accounts
straction are indifferent to clone size, but manual refac- for the one copy of the clone that must remain.

toring is not. We provide options to suit both applica- A focus on savings tempts one to use a greedy heuristic
tions. that chooses clones based on the number of, for example,

source lines they save. The clones that result may not be the
Similarity: Similarity is the size of the clone divided by ones that subjectively merit abstraction. For example, the

the average size of its occurrences. If the clone has noclone that saves the most source lines in an eight-queens
holes, every occurrence is the same size as the clone&olver written in C# is the rather dubious:
and the similarity is 100%. Clones that take large sub- ) _ )
trees as parameters have much lower similarity per- for (int i =0; i
centages. The optioRer cent indicates that clones =7
should be ranked by their similarity.

< 7 0+4)

To our eyes, reporting clones based on the number of nodes
Ranking does more than simply order the clones for out- in the clone itself (rather than the numberin all occurrahce

put. The report generator drops clones that overlap clonesDrOducecj better_ clones, at least from t_he point of view of
of higher rank. Thus rankings that favor small clones will manual refactoring. Whenever our ranking factored in num-

X S : ber of occurrences, we tended to see less attractive clones.
list them early and can eliminate larger overlapping clones . .
) : . However, it may be that the purpose of performing clone de-
Command-line options select from the options above. co .
) . tection is, in fact, to compact the source code via procddura
For example, the default option string used belowNede . o
. . : abstraction. For that application, small, frequent cloares
One”, which counts nodes, favors the largest clone (ignor- desirable
ing the number of occurrences), and doesn’t consider how . .
2 ; We explore both our primary goal of finding clones that
similar the clone and its occurrences are. . : o o
. . merit abstraction and the historical goal of maximizing the
Asta is currently a platform to evaluate clone detection

on ASTs, and provides only a crude user interface. It pro-  2http:/jjava.sun.com/j2se/1.4.2/download.html

duces a list of clones as an HTML document with three  S3Letn.ct, and? be the number of nodes, characters, tokens, and lines
parts: a table with one row per pattern, a list of patterns '1”25;"3‘ 1':4°gzava” % 0.55¢ &= 4.0t & 13.5¢. For Cin & 0.39¢ ~
with their occurrences, and the source code. Each part hy-  41pis does not consider the cost of the 1 call instructions that replace

perlinks to an elaboration in the next part. r — 1 of the occurrences.
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Figure 1. Java and C# source file metrics. Each column of four d ots represents the number of
characters, nodes, tokens, and lines in one file. The columns are ordered by number of nodes.

number of source lines saved after abstraction. The firstOne of its occurrences (inj ava/aw/i nage/

goal we equate with finding large clones (with many nodes). Col or Model . j ava) has argumentsunConponent s,

To accomplish this, we rank clones by size (number of nBits, and nb. Another (in javal/ net/
nodes) and report the size of the non-overlapping clonés thal net 6Addr ess. j ava) has argumentsl NADDRSZ,

we find (Figures 2 and 3). The second, historical goal, we i paddr ess, andi net Addr . i paddr ess. This is one
approach by ranking clones by the number of nodes savedf the smallest examples of a structural clone that might
and report the percentage of nodes saved after abstractiobe worthy of parameterization. Notice that the third hole
(Figure 4). In both cases, we follow Asta’s ranking of clones matches both a lexical and structural parameter.

to select, in a greedy fashion, those clones that (locally) One of the potential benefits of allowing clone param-
most increase the measure (eliminating from future consid-eters to be larger subtrees than single leaves is the possi-

eration the clones they overlap). bility of detecting more than just lexical inconsistencies
copy-paste clones. For example, one of the structural slone
4.1 Clones for abstraction found in the C# source contains the following fine
Figures 2 and 3 show the numbers of non-overlapping return mal forned("real-literal”, 7?);

clones of various sizes found in the largest files of the Java )

and C# corpora. There are many small clones but also avhere one copy of the clone has= t np. ToSt ri ng()

significant number that merit abstraction. and the other copy has= t np. This may be a legitimate
We hand-checked all 48 clones of at least 80 nodes in thedifference, but it may also indicate a copy that missed be-

C# examples, and found that 44 represent copying that wdng updated. Clone detectors that merely regularize viriab

would want to eliminate. This high success ratio suggestsnames would not Qetect Fhe match betvx{een these structural

that many of the smaller clones should also be actionable Parameters and might miss such potential errors.

The number of significantly smaller clones prohibits grad-

ing by hand, but skimming suggests that a 40-node thresh4.2 Clones for compaction

old gives many actionable clones and that a 20-node thresh-

old is probably too low, just as 80 is too high. We now consider the historical goal of maximizing the
The size of actionable Java clones is similar. A sampling number of nodes saved by abstraction. Reporting total sav-

of 40-node clones revealed many useful clones, while manyings is complicated by the fact that it varies significantly

20-node clones are too small to warrant abstraction. As onewith the threshold on clone size. Figure 4 shows that, for

example, the following 59 node pattern with 3 holes occurs our C# corpus, the total savings drops from 24% to 1%

10 times across several Java modules: as the threshold for clone size increases from 10 to 160

for (int i=0; i<?y i+4) nodes. If maximizing total savings is our goal, we should al-

if (72[i] '= 73[i]) 5The entire clone comprises 231 nodes (21 source lines)aiosnbne
return false; hole, and occurs twice.
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The 30 largest sour ce files (labeled by number of nodes)
Figure 2. Number of non-overlapping clones in Java source fil es. For example, the 54 in the rightmost
column indicates that the largest source file (44,616 nodes) has 54 non-overlapping clones, each with

20-30 nodes. An asterisk indicates a clone whose size is off t he scale. (The maximum size clone has
913 nodes.)
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Figure 3. Number of non-overlapping clones in C# source files . For example, the 48 in the rightmost
column indicates that the largest source file (37,364 nodes) has 48 non-overlapping clones, each
with 20-30 nodes. An asterisk indicates a clone whose size is off the scale. (The maximum size

clone has 605 nodes.)



low the automatic abstraction of small clones, even thoughdisappointing since our system finds clones based not only
these clones may not be large enough to merit abstractioron lexical abstraction (as in Baker and Baxter et al.) but als
by hand. If we would rather avoid abstracting small clones, on structural abstraction. Either there are very few clones
thresholds between 20 and 80 nodes eliminate many of thethat are purely structural in nature, or individual files €on
small, dubious clones and still yield savings of 4-16%. tain fewer clones (that we view as actionable) than the large
corpora examined by Baker and Baxter et al. The following

304 section makes the case for the latter interpretation.

N
(61
|

m Java cross-module
mmm Java intra-module
== C# intra-module

5 Lexical versus structural abstraction

N
o
|

Prior clone detection algorithms are based on lexical ab-
straction, which abstracts lexical tokens. Structuratralos
tion can abstract arbitrary subtrees and thus should be ex-

Per centage of nodes saved
[E=Y
7

104 pected to find more clones. One objective of this research
has been to determine if this generality translates into-pra
5 tical benefit and, if so, to characterize the gain.
Clones are easily classified as lexical or structural. An
0 h *—| occurrence of a clone igxical if each of the clone’s holes
10 20 40 80 160 is occupied by an actual argument that is an identifier or
Node Threshold literal. If a clone has two or more lexical occurrences, then
it might have been found by lexical abstraction and is thus
Figure 4. Percentage of nodes eliminated by called alexical clone otherwise, it is called @tructural
abstraction clone

In the ASTs produced by JavaML and Icsc, identifiers
and literals appear as leaves but, depending on context, can

We should emphasize that our results (the wide bars inbe wrapped in or hung below one or more unary nodes. We
Figure 4) represent the execution of Asta on each individual classify arguments or holes conservatively: if an argument
file in isolation. If instead, we allow Asta to find clones that is a leaf or a chain of unary nodes leading to a leaf, then we
occur in multiple files, we obtain greater savings. Figure 4 count it as a lexical abstraction. Only more complex argu-
shows the difference for the Java corpus (the narrow bars) ments are counted as structural abstractions. For example,
The savings across multiple modules is obtained by find- suppose the clon&] 7] = x; occurs twice:
ing clones that occur anywhere within the approximately
400,000 lines of Java source.

By comparison, Baker [2] reports saving about 12% by
abstracting clones of at least 30 lines in inputs with 700,00 The argument to the first occurrence is lexical because it in-
to over a million lines of code; she reports that most 20-line cludes only a leaf and, perhaps, a unary node that identifies
clones are actionable and that most 8-line clones are notthe type of leaf. The argument to the second occurrence is,
Baxter et al. also report saving roughly 12% on inputs of however, structural because it includes a binary AST node.
about 400,000 lines of code; they too use a threshold and Asta’s HTML output optionally shows the arguments to
conclude that most clones are on the order of 10 lines. each occurrence of each clone, and it classifies each argu-

Our threshold of 20 nodes is far smaller than Baker's ment as lexical or structural. Because Asta can generate
30-line threshold. That we still observe mostly actionable clones that a human might reject, we checked a selection
clones at this threshold may be understood as a differencenf C# source files by hand. Figure 3 includes 48 clones of
in the definition ofactionable or as a difference in the 80 or more nodes. 32 were structural and 16 were lexical.
corpora, source languages, or abstraction mechanism. Oug8 of the structural clones and all of the lexical clones were
smaller threshold is matched by our smaller input sizes: ourdeemed useful. Thus a significant fraction of these large
largest module contains about 45,000 lines of source. Asclones are structural, and most of them merit abstraction.
mentioned, we can apply our techniques across multiple There are, of course, too many clones to check all of
modules (as shown in Figure 4), but there is also redun-them by hand, so we present summary data on the ratio of
dancy and duplication within individual files. structural to lexical clones. This ratio naturally varieshw

Remarkably, the savings we obtain by abstracting action-the thresholds for holes and clone size.
able clones within isolated files is roughly the same as that  First, fixing the hole threshold at 3 and raising the node
obtained by both Baker and Baxter et al. This is somewhatthreshold from 10 to 160 gives the left half of Figure 5.

a[i] = x;
ali+1] = x;



As the threshold on clone size rises, Asta naturally finds Koschke et al. [20] also detect clones in ASTs. They
fewer clones, but note that structural clones account for anserialize the AST and use a suffix tree to find full subtree
increasing fraction of the clones found. copies. This technique does not permit structural parame-
If, instead, we vary the hole threshold, we obtain the ters.
right half of Figure 5, in which the node thresholdis fixedat  Jiang et al. [15] cluster feature vectors that summarize
10 and the hole threshold varies from zero to five. The ratio subtrees of a parse tree or AST. The vectors count the num-
of structural to lexical clones rises because each addition ber of nodes in each of several categories. By using loeality
hole increases the chance that a clone will have a structurakensitive hashing, they can promptly identify trees with-si
argument and thus become structural itself. ilar vectors, without comparing all pairs of trees. The &-ad
Clones with zero holes are always lexical because theyoff is that the vectors conflate trees with the same summary
have no arguments at all, much less the complex argu-characteristics but different structures.
ments that define structural clones. Predictably, the num-  Tne tools CCFinder [16] and CP-Miner [21] also do
ber of structural clones grows with the number of holes. At not find clones with structural parameters. CCFinder is a
the same time, the number of lexical clones may decline token-based, suffix-tree algorithm that allows parameter-
slightly because some of the growing number of structural jzed clones by performing a set of token transformation
clones out-compete some of the lexical clones in the rank-ryjes on the input. CP-Miner converts each basic block of
Ings. a program into a number and looks for repeated sequences
Clones with fewer holes are generally easier to exploit, of these numbers, possibly with gaps. It also allows pa-

just as library routines with fewer parameters are easier torameterized clones by regularizing identifiers and cortstan
understand and use. Even if we restrict our I’efaCtOI‘Ing ef- Neither method produces structural parameters_

fort to one-parameter macros, we still see that 20% of the
opportunities involve structural abstraction, which ig-si
nificant. Optimizations are deemed successful with much

Tools that automatically perform procedural abstraction,
rather than simply flagging potential clones, also permit
some degree of parameterization in the abstracted proce-

smaller gains, and improving source code is surely as im-q,,re - These tools typically operate on assembly code and
portant as improving object code. Figure 5 explores a large ot allow register renaming [9, 10, 25]. Cheung et al. [6]

range of the configuration options that are most likely to be (56 advantage of instruction predication (found, for exam
useful, and it show_s _s|gn|f|<_:ant numbers of structural ctone ple, in the ARM instruction set [24]) to nullify instructisn
for all of the non-trivial settings. that differ between similar code fragments. The parameters
to the abstracted representative procedure are the predica
6 Related work tion flags, which select the instructions to execute for each
invocation. One flag setting could select an entirely dif-
The most closely related work to ours is by Baxter et al. ferent sequence of instructions than another, however for
[5] who perform clone detection in ASTs. They use a hash the representative to be small, many instructions should be
function to place each full subtree of the AST into a bucket. common to many fragments. A shortest common super-
Then every two full subtrees within a bucket are compared. Sequence algorithm finds the best representative for a set
The hash function is chosen to be insensitive to identifier Of similar fragments [6]. The method is not intended for a
names (leaves) so that these can be parameters in a procéarge number of fragments with many parameters.
dural abstraction. In order to allow larger subtrees to be pa  Another generalization uses slicing to identify non-con-
rameters, an even more insensitive hash function could beliguous duplicates and then moves irrelevant code out of the
used. However, the cost of this is an increased bucket sizevay [18]. This extension catches more clones than lexical
and a larger set requiring pairwise comparison. Asta avoidsabstraction, but parameterization remains based on lexica
this by growing larger matches from smaller ones, essen-elements. This extension is orthogonal to this paper’s gen-
tially hashing the first few levels of each full subtree (the  eralization. The two methods could be used together and
caps) and then extending them as needed. This method findgught to catch more clones together than separately.
anyduplicated subtree not just duplicated full subtrees. Finding clones in an AST might appear to be a special
Yang [26] uses a language’s grammatical structure (andcase of the problem of mining frequent subtrees [7, 27], but
ASTs in particular) to calculate the difference between two closer examination shows that the two problems operate at
programs via dynamic programming. He addresses a dif-two ends of a spectrum. Algorithms that mine frequent trees
ferent problem than clone detection, but his method could scan huge forests for subtrees that appear under many roots.
be used for that purpose and could be used to find the genThe size and exact nhumber of occurrences are secondary
eral subtree clones that we find. However, it would require to the “support” or number of roots that hold the pattern.
Q(n*) time on ann. node AST, which is impractical for all  An AST-based clone detector makes the opposite trade-off.
but the smallest programs. The best answer may be a clone that occurs only twice, if
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Figure 5. Percentage of structural clones for various node a nd hole thresholds. The number above
each column denotes the total number of clones for the given t hreshold.

it is big enough. Size and exact number of occurrences aresignificant number of clones that are not found by lexical
important. Support is secondary; indeed, some interestingmethods.
clones may occur in only one tree of the forest.
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