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Abstract

This paper describes the design, implementation, and
application of a new algorithm to detect cloned code. It
operates on the abstract syntax trees formed by many com-
pilers as an intermediate representation. It extends prior
work by identifying clones even when arbitrary subtrees
have been changed. On a 440,000-line code corpus, 20-
50% of the clones it detected were missed by previous meth-
ods. The method also identifies cloning in declarations, so
it is somewhat more general than conventional procedural
abstraction.

1 Introduction

Duplicated code arises in software for many reasons:
copy-paste programming, common language constructs,
and accidental duplication of functionality are some com-
mon ones. Code duplication orcloning (especially copy-
paste programming) makes it harder to maintain, update, or
otherwise change the program. For example, when an error
is identified in one copy, then the programmer must find all
of the other copies and make parallel changes. Also dupli-
cate code can make understanding a system more difficult
since the crucial difference in two nearly-identical copies
may be obscured. On the other hand, cloning is easier than
creating a procedure to perform both the original and a new
task, and it can be less error-prone (though many errors
result from incorrectly or incompletely modifying copies).
Since cloned code appears to be a fact of life, identifying
it—for maintenance, program understanding, or code mod-
ification (e.g. refactoring [13] or program compaction)—is
an important part of software development.

There is much prior work in this area, operating on
source code [2, 3, 16, 21], abstract syntax or parse trees
[5, 20, 15], program dependence graphs [18], bytecode [4]
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and assembly code [9, 10, 25, 11]. The methods also use
various matching techniques: suffix trees [11, 2, 3, 16, 20],
hashing [5, 9, 10, 25], subsequence mining [21], program
slicing [18], and feature vectors [19, 23, 15].

Clone detectors offer a range of outputs. Some mainly
flag the clones in a graphical output, such as a dot-plot [8].
This strategy suits users who reject automatic changes to
their source code. Other clone detectors create a revised
source code, which the user is presumably free to modify or
decline [18]. Still others automatically perform procedural
abstraction [9, 10, 25, 11], which replaces the clones with
a procedure and calls. This fully automatic process particu-
larly suits clone detectors that operate on assembly or object
code, since the programmer generally does not inspect this
code and is thus unlikely to reject changes.

Most clone detectors find not only identical fragments of
code but also copies with some differences. These slightly
different copies could, in theory, be abstracted into a single
procedure taking the differences as parameters. However,
most previous methods permit only what we calllexical ab-
straction; that is, a process akin to a compiler’s lexical ana-
lyzer identifies the elements that can become parameters to
the abstracted procedure. Typically, the process treats iden-
tifiers and numbers for source code or register numbers and
literals for assembly code as equivalent; or, alternatively,
it replaces them with a canonical form (a “wildcard”) in
order to detect similar clones. For example, it treats the
source codesi=j+1 andp=q+4 as if they were identical.
In this simple form, lexical abstraction can generate many
false positives. A more precise version, parameterized pat-
tern matching [3], eliminates many of these false positives
by requiring a one-for-one correspondence between parallel
parameters.

Still, some clones detected using these methods could
not be abstracted into procedures because they do not obey
the grammatical structure of the program. A clone consist-
ing of the end of one procedure and the beginning of another
is not easily abstracted, especially at the source-code level,
and perhaps should not be recognized as a clone. Searching
for clones within the program’s abstract syntax tree (AST),
rather than its text, avoids these ungrammatical clones. This
is the main motivation for most clone detection approaches
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using ASTs.
Clone detection in ASTs suggests a natural generaliza-

tion of lexical abstraction in which parameters represent
subtrees of an AST. Subtrees of an AST may correspond to
lexical constructs (identifiers or numbers) but they may also
correspond to more general constructs that capture more
complicated program structures. Thus, we call this general-
izationstructural abstraction.

There is some prior work on clone detection in ASTs,
though not fully general structural abstraction as defined
above. One method uses a subset of the AST features as part
of a feature vector describing code fragments and searches
for clones using feature vector clustering [19]. Another
method [5] finds clones in an AST but allows only lexical
abstraction. A third method linearizes the AST and looks
for clones, using standard techniques, in the resulting se-
quence of AST nodes [20]. A fourth clusters feature vectors
that summarize parse trees [15]. We discuss these and other
approaches in more detail in Section 6.

This paper presents the results of applying general struc-
tural abstraction to ASTs. Our work has no special treat-
ment for identifiers, literals, lists, or any other languagefea-
ture. It bases parameterization only on the abstract syntax
tree. It abstracts identifiers, literals, lists, and more, but it
does so simply by abstracting subtrees of an AST.

The objective of this work is to determine if full struc-
tural abstraction on ASTs is affordable and if it improves
significantly on lexical abstraction. Structural abstraction
seems inherently more costly, and there is noprima facie
evidence that it finds more or better clones.

To answer these questions, we designed and built a clone
detector based on structural abstraction and ran it on over
425,250 lines of Java source and over 16,000 lines of C#
source. We both tabulated the results automatically and
evaluated selections manually. In these tests, structuralab-
straction improved significantly on lexical abstraction: 20-
50% of the clones we found elude lexical abstraction.

2 Algorithm

Our structural abstraction prototype is called Asta. Asta
accepts a single AST represented as an XML string. It has
been used with ASTs created by JavaML from Java code
[1] and with ASTs created by the C# compiler lcsc [14]. A
custom back end for JavaML and lcsc emits each module as
a single AST. A simple tool combines multiple ASTs into a
single XML string to run Asta across multiple modules.

The ASTs are easily pretty-printed to reconstruct a
source program that is very similar to the original input.
The ASTs are also annotated with pointers to the associated
source code. There are thus two different ways to present
AST clones to the programmer in a recognizable form.

To explain Asta, we use common graph theoretic termi-
nology and notation. For example,V (G) andE(G) denote
the nodes and edges of a graphG. A subtreeis any con-
nected subgraph of a tree. A subtree of a rooted tree is also
rooted and its root is the node that is closest to the root in
the original tree. Anancestorof a node in a rooted tree is a
node on the path from the root to that node. If nodeu is an
ancestor of nodev thenv is adescendantof nodeu. A full
subtreeof a rooted treeT is subtree ofT containing a node
of T and all of its descendents inT .

A patternis a labeled, rooted tree some of whose leaves
may be labeled with the special wildcard label,?. Leaves
with this label are calledholes. A patternP matches a la-
beled, rooted treeT if there exists a functionf : V (P ) →

V (T ) such thatf(root(P )) = root(T ), (u, v) ∈ E(P ) if
and only if (f(u), f(v)) ∈ E(T ), and for allv ∈ V (P ),
either (1) label(v) = label(f(v)), andv andf(v) have the
same number of children, or (2) label(v) = ?. In our case,
T is a full subtree of an abstract syntax tree and the pat-
ternP represents a macro, possibly taking arguments. Each
holev in P represents a formal parameter that is filled by
the computation represented by the full subtree ofT rooted
atf(v).

An occurrenceof a patternP in a labeled, rooted treeS
is a subtree ofS thatP matches. Multiple occurrences of a
single patternP in an abstract syntax tree represent cloned
code. Acloneis a pattern with more than one occurrence.

In what follows, trees and patterns appear in a functional,
fully-parenthesized prefix form. For example,

add(?,constant(7))≡ add

? constant

7

denotes a pattern with one hole. When a pattern is used to
form a procedure, holes correspond to formal parameters in
the definition and to actual arguments at invocations. Holes
must replace a full subtree. For example,

?(local(a),formal(b))

is not a valid pattern because the hole replaces an operator
but not the full subtree labeled with that operator. This re-
striction suits conventional programming languages, which
generally do not support abstraction of operators. Lan-
guages with higher order functions do support such abstrac-
tion, so Asta would ideally be extended to offer operator
wildcards if it were used with ASTs from such languages.
Algorithms and experimental results for the extended ver-
sion of Asta can be found in [22].
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2.1 Pattern generation

Asta produces a series of patterns that represent cloned
code in a given abstract syntax treeS. It first generates a set
of candidate patterns that occur at least twice inS and have
at mostH holes (H is an input to Asta.) It then decides
which of these patterns to output and in what order.

Candidate generation starts by creating a set of simple
patterns. Given an integer parameterD, Asta generates, for
each nodev in S, at mostD patterns calledcaps. Thed-cap
(1 ≤ d ≤ D) for v is the pattern obtained by taking the
depthd subtree rooted atv and adding holes in place of all
the children of nodes at depthd. If the subtree rooted atv
has no nodes at depthd (i.e. the subtree has depth less than
d) then nodev has nod-cap. Asta also generates a pattern
called thefull cap for v, which is the full subtree rooted at
v. For example, ifD = 2 and the subtree rooted atv is:

add(local(a),sub(local(b),formal(c)))

then Asta generates the 1-capadd(?,?) and the 2-cap
add(local(?),sub(?,?)) as well as the full cap
add(local(a),sub(local(b),formal(c))).

The set of all caps for all nodes inS forms the initial set,
Π, of candidate patterns.

Asta finds the occurrences of every cap by building an
associative array called theclone table, indexed by pattern.
Each entry of the clone table is a list of occurrences of the
pattern inS. Asta removes fromΠ any cap that occurs only
once.

Karp, Miller, and Rosenberg [17] present a theoretical
treatment of the problem of finding repeated patterns in
trees (as well as strings and arrays). Their problem 1 is
identical to the problem of finding alld-caps: “Find all
depthd substructures ofS which occur at least twice inS
(possibly overlapping), and find the position inS of each
such repeated substructure.” Unfortunately, they presental-
gorithms that solve problem 1 only for strings and arrays.
Their tree algorithms are designed to find the occurrences
of a given subtree inS (a problem that we solve using an
associative array, i.e., hashing).

After creating the set,Π, of repeated caps, Asta performs
the closure of thepattern improvementoperation on the set.
Pattern improvement creates a new pattern by replacing or
“specializing” the holes in an existing pattern. Given a pat-
ternP , pattern improvement produces a new patternQ by
replacing every holev in P with a patternF (v)1 such that
(i) F (v) has at most one hole (thus,Q has at most the same
number of holes asP ), and (ii)Q occurs whereverP occurs
(i.e. F (v) matches every subtree, from every occurrence of
P , that fills holev). It is possible that for some holesv, the

1The notation emphasizes the fact that each hole may be filled with a
different pattern.

only patternF (v) that matches all the subtrees is a hole. In
this case, no specialization occurs for holev.

In order to perform pattern improvement somewhat ef-
ficiently, we store with each nodeu in S a list of patterns
that match the subtree rooted atu. The list is ordered by the
number of nodes in the pattern in decreasing order. Given a
patternP to improve and a holev in P , Asta finds an arbi-
trary occurrence ofP (with matching functionf ) in S and
finds the list of patterns stored with the nodef(v). Asta
considers the patterns in this list, in order, as candidatesfor
F (v). Any candidate with more than one hole is rejected
(to satisfy condition (i)). In order to satisfy condition (ii), a
candidate pattern must match the subtree rooted atf(v) for
all matching functionsf associated with occurrences ofP .
Another way of saying this is that every nodef(v) (over all
matching functionsf from occurrences ofP ) must be the
root of an occurrence of the candidate pattern. Thus Asta
looks up the candidate pattern in the clone table and checks
that eachf(v) is the root of an occurrence in that table entry.
(We actually store this list of occurrences as an associative
array indexed by the root of the occurrence, so the check is
quite efficient.)

Asta repeats the pattern improvement operation on every
pattern inΠ, adding any newly created patterns toΠ, until
no new patterns are created.

Pattern improvement is a conservative operation. It only
creates a more specialized pattern if it occurs in the same
places as the original pattern. Some patterns can’t be spe-
cialized without reducing the number of occurrences. We
may still want to specialize these patterns because our focus
is on finding large patterns that occur at least twice. Asta
performs a greedy version of pattern specialization, called
best-pair specialization, that attempts to produce large pat-
terns that occur at least twice. It does this by performing
pattern improvement but requires only that the specializa-
tion preserves two of the occurrences of the original pattern.

For each pair of occurrences,Ti andTj (1 ≤ i < j ≤

r) of a given patternP with r occurrences, Asta produces
a new patternQij that is identical toP except that every
hole v in P is replaced by a patternFij(v) such that (a)
Fij(v) has at most one hole, and (b)Qij matchesTi and
Tj. The largestQij (over1 ≤ i < j ≤ r) is the best-pair
specialization ofP . Asta creates the best-pair specialization
for every patternP in the set of patterns,Π, and adds those
patterns toΠ. It then computes, again, the closure ofΠ
using the pattern improvement operation.

As the final step in candidate generation, Asta removes
from Π all dominated patterns. A pattern is dominated if it
was improved by the pattern improvement operation.
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2.2 Thinning, ranking, and reporting

Asta finds many candidate clones, sometimes too many,
so the candidates are thinned and ranked before output. Asta
supports a wide range of options for thinning and ranking.

Thinning uses simple command-line options that give
thresholds for number of nodes and number of holes. All
results in this paper omit clones under ten nodes or over
five holes. The ASTs average approximately 14 nodes per
line, so some sub-line clones are reported. Though sub-line
clones are often too small to warrant refactoring, they can
yield substantial savings when abstracted for the purpose of
code compaction.

Clones may be ranked along several dimensions:

Size: Size is the number of AST nodes or the number of
characters, tokens, or lines of source code, in the clone,
not counting holes.

Frequency: A clone may be ranked according to its size
(option One) or its estimated savings, which is the
product of its size and the number of non-overlapping
occurrences, minus one to account for the one occur-
rence that must remain. The latter ranking (option
All) favors clones whose abstraction would most de-
crease overall code size, but it often produces small,
frequent clones. Automatic tools for procedural ab-
straction are indifferent to clone size, but manual refac-
toring is not. We provide options to suit both applica-
tions.

Similarity: Similarity is the size of the clone divided by
the average size of its occurrences. If the clone has no
holes, every occurrence is the same size as the clone
and the similarity is 100%. Clones that take large sub-
trees as parameters have much lower similarity per-
centages. The optionPercent indicates that clones
should be ranked by their similarity.

Ranking does more than simply order the clones for out-
put. The report generator drops clones that overlap clones
of higher rank. Thus rankings that favor small clones will
list them early and can eliminate larger overlapping clones.

Command-line options select from the options above.
For example, the default option string used below is “Node
One”, which counts nodes, favors the largest clone (ignor-
ing the number of occurrences), and doesn’t consider how
similar the clone and its occurrences are.

Asta is currently a platform to evaluate clone detection
on ASTs, and provides only a crude user interface. It pro-
duces a list of clones as an HTML document with three
parts: a table with one row per pattern, a list of patterns
with their occurrences, and the source code. Each part hy-
perlinks to an elaboration in the next part.

3 Measuring Size

Asta has been run on a corpus of 1,141 Java files (from
the java directory of the Java 2 platform, standard edi-
tion (version 1.4.2)2) and 58 C# files (mostly from the lcsc
compiler [14]). Figure 1 gives their sizes. For each file
(ordered by number of AST nodes along thex-axis), the
figures show the number of nodes, characters, tokens, and
lines. Since these are (roughly) related by constant factors3

in what follows, we will use node counts as a proxy for size
of source code, avoiding measures that are more influenced
by formatting.

4 Clone Distribution

Our primary goal is to report a list of clones that merit
procedural abstraction, refactoring, or some other action.
What merits abstraction is a subjective decision that is dif-
ficult to quantify. It is therefore difficult to quantitatively
measure how well a system achieves this goal. Histori-
cally, research in clone detection (procedural abstraction)
for code compaction used the number of source lines (or in-
structions) saved after abstraction as a measure of system
performance. This goal is easy to quantify. A clone withp

elements (lines, tokens, characters, or nodes) andr occur-
rences savesp(r − 1) elements4. Subtracting one accounts
for the one copy of the clone that must remain.

A focus on savings tempts one to use a greedy heuristic
that chooses clones based on the number of, for example,
source lines they save. The clones that result may not be the
ones that subjectively merit abstraction. For example, the
clone that saves the most source lines in an eight-queens
solver written in C# is the rather dubious:

for (int i = 0; i < ?; i++)
? = ?;

To our eyes, reporting clones based on the number of nodes
in the clone itself (rather than the number in all occurrences)
produced better clones, at least from the point of view of
manual refactoring. Whenever our ranking factored in num-
ber of occurrences, we tended to see less attractive clones.
However, it may be that the purpose of performing clone de-
tection is, in fact, to compact the source code via procedural
abstraction. For that application, small, frequent clonesare
desirable.

We explore both our primary goal of finding clones that
merit abstraction and the historical goal of maximizing the

2http://java.sun.com/j2se/1.4.2/download.html
3Let n,c,t, andℓ be the number of nodes, characters, tokens, and lines

in a file. For Java,n ≈ 0.55c ≈ 4.0t ≈ 13.5ℓ. For C#,n ≈ 0.39c ≈

1.45t ≈ 14.9ℓ.
4This does not consider the cost of ther−1 call instructions that replace

r − 1 of the occurrences.
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Figure 1. Java and C# source file metrics. Each column of four d ots represents the number of
characters, nodes, tokens, and lines in one file. The columns are ordered by number of nodes.

number of source lines saved after abstraction. The first
goal we equate with finding large clones (with many nodes).
To accomplish this, we rank clones by size (number of
nodes) and report the size of the non-overlappingclones that
we find (Figures 2 and 3). The second, historical goal, we
approach by ranking clones by the number of nodes saved
and report the percentage of nodes saved after abstraction
(Figure 4). In both cases, we follow Asta’s ranking of clones
to select, in a greedy fashion, those clones that (locally)
most increase the measure (eliminating from future consid-
eration the clones they overlap).

4.1 Clones for abstraction

Figures 2 and 3 show the numbers of non-overlapping
clones of various sizes found in the largest files of the Java
and C# corpora. There are many small clones but also a
significant number that merit abstraction.

We hand-checked all 48 clones of at least 80 nodes in the
C# examples, and found that 44 represent copying that we
would want to eliminate. This high success ratio suggests
that many of the smaller clones should also be actionable.
The number of significantly smaller clones prohibits grad-
ing by hand, but skimming suggests that a 40-node thresh-
old gives many actionable clones and that a 20-node thresh-
old is probably too low, just as 80 is too high.

The size of actionable Java clones is similar. A sampling
of 40-node clones revealed many useful clones, while many
20-node clones are too small to warrant abstraction. As one
example, the following 59 node pattern with 3 holes occurs
10 times across several Java modules:

for (int i=0; i<?1; i++)
if (?2[i] != ?3[i])

return false;

One of its occurrences (injava/awt/image/
ColorModel.java) has argumentsnumComponents,
nBits, and nb. Another (in java/net/
Inet6Address.java) has argumentsINADDRSZ,
ipaddress, andinetAddr.ipaddress. This is one
of the smallest examples of a structural clone that might
be worthy of parameterization. Notice that the third hole
matches both a lexical and structural parameter.

One of the potential benefits of allowing clone param-
eters to be larger subtrees than single leaves is the possi-
bility of detecting more than just lexical inconsistenciesin
copy-paste clones. For example, one of the structural clones
found in the C# source contains the following line5:

return malformed("real-literal", ?);

where one copy of the clone has? = tmp.ToString()
and the other copy has? = tmp. This may be a legitimate
difference, but it may also indicate a copy that missed be-
ing updated. Clone detectors that merely regularize variable
names would not detect the match between these structural
parameters and might miss such potential errors.

4.2 Clones for compaction

We now consider the historical goal of maximizing the
number of nodes saved by abstraction. Reporting total sav-
ings is complicated by the fact that it varies significantly
with the threshold on clone size. Figure 4 shows that, for
our C# corpus, the total savings drops from 24% to 1%
as the threshold for clone size increases from 10 to 160
nodes. If maximizing total savings is our goal, we should al-

5The entire clone comprises 231 nodes (21 source lines), contains one
hole, and occurs twice.
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low the automatic abstraction of small clones, even though
these clones may not be large enough to merit abstraction
by hand. If we would rather avoid abstracting small clones,
thresholds between 20 and 80 nodes eliminate many of the
small, dubious clones and still yield savings of 4-16%.
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Figure 4. Percentage of nodes eliminated by
abstraction

We should emphasize that our results (the wide bars in
Figure 4) represent the execution of Asta on each individual
file in isolation. If instead, we allow Asta to find clones that
occur in multiple files, we obtain greater savings. Figure 4
shows the difference for the Java corpus (the narrow bars).
The savings across multiple modules is obtained by find-
ing clones that occur anywhere within the approximately
400,000 lines of Java source.

By comparison, Baker [2] reports saving about 12% by
abstracting clones of at least 30 lines in inputs with 700,000
to over a million lines of code; she reports that most 20-line
clones are actionable and that most 8-line clones are not.
Baxter et al. also report saving roughly 12% on inputs of
about 400,000 lines of code; they too use a threshold and
conclude that most clones are on the order of 10 lines.

Our threshold of 20 nodes is far smaller than Baker’s
30-line threshold. That we still observe mostly actionable
clones at this threshold may be understood as a difference
in the definition ofactionable, or as a difference in the
corpora, source languages, or abstraction mechanism. Our
smaller threshold is matched by our smaller input sizes: our
largest module contains about 45,000 lines of source. As
mentioned, we can apply our techniques across multiple
modules (as shown in Figure 4), but there is also redun-
dancy and duplication within individual files.

Remarkably, the savings we obtain by abstracting action-
able clones within isolated files is roughly the same as that
obtained by both Baker and Baxter et al. This is somewhat

disappointing since our system finds clones based not only
on lexical abstraction (as in Baker and Baxter et al.) but also
on structural abstraction. Either there are very few clones
that are purely structural in nature, or individual files con-
tain fewer clones (that we view as actionable) than the large
corpora examined by Baker and Baxter et al. The following
section makes the case for the latter interpretation.

5 Lexical versus structural abstraction

Prior clone detection algorithms are based on lexical ab-
straction, which abstracts lexical tokens. Structural abstrac-
tion can abstract arbitrary subtrees and thus should be ex-
pected to find more clones. One objective of this research
has been to determine if this generality translates into prac-
tical benefit and, if so, to characterize the gain.

Clones are easily classified as lexical or structural. An
occurrence of a clone islexical if each of the clone’s holes
is occupied by an actual argument that is an identifier or
literal. If a clone has two or more lexical occurrences, then
it might have been found by lexical abstraction and is thus
called alexical clone; otherwise, it is called astructural
clone.

In the ASTs produced by JavaML and lcsc, identifiers
and literals appear as leaves but, depending on context, can
be wrapped in or hung below one or more unary nodes. We
classify arguments or holes conservatively: if an argument
is a leaf or a chain of unary nodes leading to a leaf, then we
count it as a lexical abstraction. Only more complex argu-
ments are counted as structural abstractions. For example,
suppose the clonea[?] = x; occurs twice:

a[i] = x;
a[i+1] = x;

The argument to the first occurrence is lexical because it in-
cludes only a leaf and, perhaps, a unary node that identifies
the type of leaf. The argument to the second occurrence is,
however, structural because it includes a binary AST node.

Asta’s HTML output optionally shows the arguments to
each occurrence of each clone, and it classifies each argu-
ment as lexical or structural. Because Asta can generate
clones that a human might reject, we checked a selection
of C# source files by hand. Figure 3 includes 48 clones of
80 or more nodes. 32 were structural and 16 were lexical.
28 of the structural clones and all of the lexical clones were
deemed useful. Thus a significant fraction of these large
clones are structural, and most of them merit abstraction.

There are, of course, too many clones to check all of
them by hand, so we present summary data on the ratio of
structural to lexical clones. This ratio naturally varies with
the thresholds for holes and clone size.

First, fixing the hole threshold at 3 and raising the node
threshold from 10 to 160 gives the left half of Figure 5.
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As the threshold on clone size rises, Asta naturally finds
fewer clones, but note that structural clones account for an
increasing fraction of the clones found.

If, instead, we vary the hole threshold, we obtain the
right half of Figure 5, in which the node threshold is fixed at
10 and the hole threshold varies from zero to five. The ratio
of structural to lexical clones rises because each additional
hole increases the chance that a clone will have a structural
argument and thus become structural itself.

Clones with zero holes are always lexical because they
have no arguments at all, much less the complex argu-
ments that define structural clones. Predictably, the num-
ber of structural clones grows with the number of holes. At
the same time, the number of lexical clones may decline
slightly because some of the growing number of structural
clones out-compete some of the lexical clones in the rank-
ings.

Clones with fewer holes are generally easier to exploit,
just as library routines with fewer parameters are easier to
understand and use. Even if we restrict our refactoring ef-
fort to one-parameter macros, we still see that 20% of the
opportunities involve structural abstraction, which is sig-
nificant. Optimizations are deemed successful with much
smaller gains, and improving source code is surely as im-
portant as improving object code. Figure 5 explores a large
range of the configuration options that are most likely to be
useful, and it shows significant numbers of structural clones
for all of the non-trivial settings.

6 Related work

The most closely related work to ours is by Baxter et al.
[5] who perform clone detection in ASTs. They use a hash
function to place each full subtree of the AST into a bucket.
Then every two full subtrees within a bucket are compared.
The hash function is chosen to be insensitive to identifier
names (leaves) so that these can be parameters in a proce-
dural abstraction. In order to allow larger subtrees to be pa-
rameters, an even more insensitive hash function could be
used. However, the cost of this is an increased bucket size
and a larger set requiring pairwise comparison. Asta avoids
this by growing larger matches from smaller ones, essen-
tially hashing the first few levels of each full subtree (thed-
caps) and then extending them as needed. This method finds
anyduplicated subtree not just duplicated full subtrees.

Yang [26] uses a language’s grammatical structure (and
ASTs in particular) to calculate the difference between two
programs via dynamic programming. He addresses a dif-
ferent problem than clone detection, but his method could
be used for that purpose and could be used to find the gen-
eral subtree clones that we find. However, it would require
Ω(n4) time on ann node AST, which is impractical for all
but the smallest programs.

Koschke et al. [20] also detect clones in ASTs. They
serialize the AST and use a suffix tree to find full subtree
copies. This technique does not permit structural parame-
ters.

Jiang et al. [15] cluster feature vectors that summarize
subtrees of a parse tree or AST. The vectors count the num-
ber of nodes in each of several categories. By using locality-
sensitive hashing, they can promptly identify trees with sim-
ilar vectors, without comparing all pairs of trees. The trade-
off is that the vectors conflate trees with the same summary
characteristics but different structures.

The tools CCFinder [16] and CP-Miner [21] also do
not find clones with structural parameters. CCFinder is a
token-based, suffix-tree algorithm that allows parameter-
ized clones by performing a set of token transformation
rules on the input. CP-Miner converts each basic block of
a program into a number and looks for repeated sequences
of these numbers, possibly with gaps. It also allows pa-
rameterized clones by regularizing identifiers and constants.
Neither method produces structural parameters.

Tools that automatically perform procedural abstraction,
rather than simply flagging potential clones, also permit
some degree of parameterization in the abstracted proce-
dure. These tools typically operate on assembly code and
most allow register renaming [9, 10, 25]. Cheung et al. [6]
take advantage of instruction predication (found, for exam-
ple, in the ARM instruction set [24]) to nullify instructions
that differ between similar code fragments. The parameters
to the abstracted representative procedure are the predica-
tion flags, which select the instructions to execute for each
invocation. One flag setting could select an entirely dif-
ferent sequence of instructions than another, however for
the representative to be small, many instructions should be
common to many fragments. A shortest common super-
sequence algorithm finds the best representative for a set
of similar fragments [6]. The method is not intended for a
large number of fragments with many parameters.

Another generalization uses slicing to identify non-con-
tiguous duplicates and then moves irrelevant code out of the
way [18]. This extension catches more clones than lexical
abstraction, but parameterization remains based on lexical
elements. This extension is orthogonal to this paper’s gen-
eralization. The two methods could be used together and
ought to catch more clones together than separately.

Finding clones in an AST might appear to be a special
case of the problem of mining frequent subtrees [7, 27], but
closer examination shows that the two problems operate at
two ends of a spectrum. Algorithms that mine frequent trees
scan huge forests for subtrees that appear under many roots.
The size and exact number of occurrences are secondary
to the “support” or number of roots that hold the pattern.
An AST-based clone detector makes the opposite trade-off.
The best answer may be a clone that occurs only twice, if
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Figure 5. Percentage of structural clones for various node a nd hole thresholds. The number above
each column denotes the total number of clones for the given t hreshold.

it is big enough. Size and exact number of occurrences are
important. Support is secondary; indeed, some interesting
clones may occur in only one tree of the forest.

7 Discussion

Asta has been written in Icon [12] and Java. The Icon
version takes a few seconds on most corpus modules and
about 7 minutes on the largest. Icon is interpreted and dy-
namically typed, and the program has not been optimized
for speed, so these running times are high. The Java version
takes a few seconds on all corpus modules, even the largest.
Finding all clones across all modules in the 440,000 line
corpus took less than one hour.

Our structural abstraction method can benefit from vari-
able renaming (a technique described by Baker [3]) since
variables that can be named consistently in all clone oc-
currences no longer need to be represented as holes in the
clone. This reduces the number of parameters that need
to be passed to the abstracted procedure in the calls that
replace the clone occurrences, and thus these clones save
more when abstracted as procedures. Experimental results
show an extra savings of about 20% for our Java corpus
when combining structural abstraction with variable renam-
ing [22].

In summary, we have designed, implemented, and ex-
perimented with a new method for detecting cloned code.
Heretofore, abstraction parameterized lexical elements such
as identifiers and literals. Our method generalizes these
methods and abstracts arbitrary subtrees of an AST. We
have shown that the new method is affordable and finds a

significant number of clones that are not found by lexical
methods.
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