
Lossless Comparison of Nested Software Decompositions

Mark Shtern and Vassilios Tzerpos
York University

Toronto, Ontario, Canada
{mark,bil}@cse.yorku.ca

Abstract

Reverse engineering legacy software systems often
involves the employment of clustering algorithms that
automatically decompose a software system into subsys-
tems. The decompositions created by existing software
clustering algorithms are often nested, i.e. subsystems
may contain other finer-grained subsystems as well as
system resources, such as source files. It is rather sur-
prising then, that almost all existing methods for de-
composition comparison assume flat decompositions, i.e.
subsystems only contain system resources.

In this paper, we introduce UpMoJo, a novel com-
parison method for software decompositions that can be
applied to both nested and flat decompositions. The ben-
efits of utilizing this method are presented in both ana-
lytical and experimental fashion. We also compare Up-
MoJo to the END framework, the only other existing
method for nested decomposition comparison.

1 Introduction

It is difficult to imagine a world without com-
puters nowadays. Many organizations, such as
banks, airports, or even smaller companies rely on
software systems that must be continuously in op-
eration in order to function properly. As software
systems attempt to improve constantly to meet
market requirements, they become more and more
complicated.

Many of the software solutions in operation to-
day are integrations of multiple software systems
from different software houses. This brings addi-
tional complexity to the task of understanding such
a software system. Design documents that explain
the relations between the various components are
necessary. However, creating such a document is a

challenging task. Commercial reasons may dictate
that part of the architecture is not even available.

Moreover, the market often demands new soft-
ware features in a short time. One of the conse-
quences of this trend is that software systems often
have poor documentation. In many cases, design
documents are never updated. At the same time,
software developers often move to other projects
or even different companies. Conversely, software
developers are often using code components that
were not developed in-house.

Finally, research on code cloning indicates that
the exchange of source code through the indiscrim-
inate use of copy/paste facilities is a common prac-
tice between software developers. As a result, de-
velopers often do not know exactly what is going
on in the code they are working with.

These factors create situations where software
developers can not predict the system’s behaviour.
Maintenance activities, such as fixing bugs or de-
veloping new features, require a lot of effort from
developers and testers. A large amount of impor-
tant business software is in operation today that
developers are simply afraid to change. Organi-
zations are often faced with the dilemma of ei-
ther switching to a new software product, or re-
engineering the existing one. Risk assessment pro-
cesses often indicate the latter approach as the most
viable one.

Retrieving design information from the source
of a software system is an important problem that
affects all stages of the life cycle of a software sys-
tem. Usually, complicated systems consist of dif-
ferent subsystems that can help divide such a sys-
tem into logical components. The natural decom-
position of a software system is usually presented
as a nested decomposition [3]. Many different
methodologies and approaches that attempt to cre-

ate such decompositions automatically have been
presented in the literature[1, 2, 3, 5, 7, 10]. Most of
them produce nested decompositions.

Evaluating the effectiveness of such software
clustering approaches is a challenging issue. Com-
paring results produced by different tools is a com-
plicated problem. A number of approaches that at-
tempt to tackle this problem have been presented
[4, 6, 9]. However, all of them assume a flat de-
composition. The END framework [8] allows one
to reuse a technique developed for flat decompo-
sitions in order to compare nested ones, but it re-
quires a weighting vector that may not be avail-
able.

In this paper, we present a new approach to
the comparison of nested decompositions. This
approach, called UpMoJo, is a generalization of
the MoJo distance measure for flat decompositions
[9]. UpMoJo adds an Up operation to the existing
Move and Join operations of MoJo which allows
for differences in the hierarchical structure of two
different decompositions of the same system to be
reflected in the distance measured.

The structure of the rest of this paper is as fol-
lows. Section 2 presents the issues that arise when
nested decompositions are flattened in order to
be compared using existing methods. Section 3
presents the differences between UpMoJo and the
other existing method for the comparison of nested
decompositions, the END framework. The Up-
MoJo distance measure is introduced in Section 4.
Experiments that showcase the usefulness of this
measure are presented in Section 5. Finally, Section
6 concludes the paper.

2 Flat vs. nested decompositions

Most of the decomposition comparison methods
presented in the literature have been developed
in order to compare flat decompositions. Since
clustering algorithms commonly create nested de-
compositions, various methods have been devised
in order to evaluate clustering results using these
methods. The most common approach is to con-
vert the nested decompositions into flat ones be-
fore applying the comparison method. However,
this approach has limitations.

Converting a nested decomposition to a flat one
is commonly done in two different ways depend-
ing on whether a compact or a detailed flat decom-
position is required:

Decomposition A

A A

A A

431 2 5

1 2

3 4
6 7 8 9 10 11 12 13 14 15

(a) A nested decomposition of a software system

21

1 432 5

B B

Decomposition B

B B B

B B

3 4 5

6 7

6 7

8 9

13 14 15

10 11 12

(b) Another nested decomposition of the same soft-
ware system

Decomposition C

431 2 5

1 2

6 7 8 9 10 11 12 13 14 15

C C

(c) The compact flat form of both decompositions
(a) and (b)

Figure 1. Limitation of compact flat de-
compositions.

2

1A

321

3A

4 5 6 7

1098

2A

11 12 13

4A

Decomposition A

(a) A nested decomposition of a software system

1B

4B

4 5 6 7

1

2B

2 3

3B

11 12 13

5B

8 9 10

Decomposition B

(b) Another nested decomposition of the same soft-
ware system

Decomposition C

1C

1 2 3

3C

4 5 6 7

2C

8 9 10

5C

11 12 13

(c) The detailed flat form of both decompositions
(a) and (b)

Figure 2. Limitation of detailed flat decom-
positions.

1. Converting a nested decomposition to a com-
pact flat one. Each object is assigned to its an-
cestor that is closest to the root of the contain-
ment tree. The flat decomposition obtained
contains only the top-level clusters of the orig-
inal one.

2. Converting a nested decomposition to a de-
tailed flat one. Each cluster and its sub-tree
is assigned directly to the root of the contain-
ment tree. The decomposition obtained con-
tains any cluster that contained at least one ob-
ject in the original decomposition.

Figure 1 presents three decompositions of the
same software system. Clearly, decompositions (a)
and (b) have different hierarchical structures.

If we convert the decompositions in Figure 1 to
compact flat form, they will both become equiv-
alent to decomposition (c). However, the origi-
nal decompositions were quite different. A signif-
icant amount of information has been lost. Figure
2 presents an example where detailed transforma-
tion creates a similar problem.

These examples illustrate clearly that convert-
ing nested decompositions to flat ones removes sig-
nificant information that could impact the evalu-
ation process. The UpMoJo comparison method
presented in this paper utilizes the whole hierar-
chy resulting in lossless comparison.

3 The END Framework

The Evaluation of Nested Decompositions
(END) framework [8] allows a reverse engineer
to compare nested decompositions of large soft-
ware systems without having to lose information
by transforming them to flat ones first. The END
framework is able to compare two nested decom-
positions without any information loss by convert-
ing them into vectors of flat decompositions and
applying existing comparison methods to selected
elements of these vectors. The overall similarity be-
tween the two nested decompositions is computed
based on the similarity vector that was generated
from comparing the decomposition vectors.

The END framework does not specify the func-
tion that will be used to convert the similarity vec-
tor to a number. While this makes the framework
more flexible, it also increases the responsibility
of the user. In practice, it is often difficult to dif-
ferentiate between different weigthing functions as

3

�

� �� �

� � �� � � � � � � �� �

	 � �
 � � � � �� � �

 �
 �

� � �� � � � � �
 �
 �

	 � �
 � � � � �� � �

Figure 3. Decompositions A and B

�

� �� �

� � �� � �

� � �

� �� �

� � �� � � � � �� � �

�

� �� �

� � �

� � � � � � � �� �

� � �� � � � � �� � �

Figure 4. Decompositions C and D

the framework does not provide any guidelines as
to which functions are best suited in which situa-
tions. This can result in different users getting dif-
ferent results from END while comparing the same
nested decompositions. The UpMoJo measure pre-
sented in this paper addresses this problem by pro-
viding a comparison method that is solely depen-
dent on the two decompositions.

Moreover, one of the properties of the END
framework is that a misplaced object closer to the
root of the containment tree results in a larger
penalty than if the misplaced object were deeper
in the hierarchy. Consider the four decompositions
A, B, C, and D shown in Figures 3 and 4. The only
difference between them is the position of object
c.h. The END framework would determine that
the difference between A and B is larger than that
of C and D (the similarity vector in the first case
is (1, 1), while in the second it is (0, 1)). The Up-

MoJo measure eliminates this discrepancy by pe-
nalizing equally for misplaced objects regardless of
their position in the containment tree.

Finally, the END framework does not penalize
for some trivial hierarchical mistakes. For example,
the two nested decompositions shown in Figure 5
are equal according to END. UpMoJo does differ-
entiate between the two structures by assigning a
distance larger than 0.

4 The UpMoJo algorithm

This section presents the UpMoJo algorithm
through the use of a running example. Let us as-
sume that a software clustering algorithm has pro-
duced the nested decomposition shown in Figure
6.

In order to evaluate whether the clustering al-

4

�

� �

� �

� � ! � ! "

#

� � ! � ! "

Figure 5. An example of a hierarchical mis-
take ignored by END.

$

$ %$ &$ '

$ ($)

* + ,* + - . + - - + -

/ + - / + , 0 + - 0 + ,

Figure 6. The containment tree of an auto-
matic decomposition A.

gorithm did a good job, we can compare decompo-
sition A to one created by system experts. Let us
assume that decomposition B shown in Figure 7 is
the authoritative one for our example system.

The UpMoJo distance between the two nested
decompositions is defined as the number of oper-
ations one needs to perform in order to transform
the containment tree of decomposition A to the con-
tainment tree of decomposition B. The more oper-
ations this transformation requires, the more dif-
ferent the two decompositions are. The rest of this
section describes how these operations are counted
by our algorithm.

In the following, the level of a node n in the tree
is defined as the distance from the root to node n,
e.g. subsystem A2 in decomposition A is at level 2.
The root of a containment tree is at level 0.

We also refer to the system elements being clus-

1

1 2

1 31 4

1 56 7 86 7 9 : 7 9

9 7 9 ; 7 9 ; 7 8 < 7 9 < 7 8

Figure 7. The containment tree of the au-
thoritative decomposition B.

tered, i.e. the eight files in our example, as objects.
As a result, a containment tree contains subsystems
and objects. All leaf nodes in the tree are objects.
All non-leaf nodes are subsystems.

The algorithm that calculates UpMoJo distance
is as follows:

Find the set S of objects in level 1 in the authori-
tative nested decomposition. For each element o of
S that is at a higher level than 1 in the automatic
decomposition, transform the automatic decompo-
sition by moving o to level 1. For each level that
o has to move, increase the UpMoJo distance by 1.
Objects that follow the same path move together,
i.e. the UpMoJo distance is increased only for one
of them. Each move of a set of objects to a lower
level is called an Up operation and is explained in
more detail in Section 4.1.

In our example, set S is empty, so no Up opera-
tions will take place. An example of the above pro-
cess will be given for the algorithm’s next iteration.

Next, we flatten the two decompositions to level
1, i.e. remove subsystems in levels other than 1
(this process does not modify the decompositions
but rather creates copies of them). The two flat de-
compositions in our example are shown in Figures
8 and 9.

We now employ the MoJo distance measure for
flat decompositions. The MoJo distance between
two flat decompositions of the same set of objects is
the minimum number of Move and Join operations
one needs to perform in order to transform one flat
decomposition into the other. The two types of op-
erations are defined as follows:

• Move: Remove an object from a subsystem

5

= >
= ?

@ A B@ A C

D A C C A C

E A C E A B

= F

G A C G A B

Figure 8. The flat decomposition of nested
decomposition A.

H IH J

K L MK L N

O L N

N L N

P L N P L M

Q L N Q L M

Figure 9. The flat decomposition of nested
decomposition B.

and put it in a different subsystem. This in-
cludes removing an object from a subsystem
and putting it in a new subsystem by itself.

• Join: Merge two subsystems into one.

In our example, we can transform flat decompo-
sition A to flat decomposition B by joining subsys-
tems A4 and A5 into a new subsystem called A45
and moving c.c to A45 as well.

Having utilized MoJo to determine what are the
necessary Move and Join operations for the flat-
tened decompositions, we return to the original de-
composition A and transform it in the way sug-
gested by the MoJo distance measure, i.e. join sub-
systems A4 and A5, and move object c.c. This will
result in the containment tree for decomposition A
shown in Figure 10 (we denote it by A’ to distin-
guish it from the original version). Subsystem A6
is created so that c.c is at the same level as before.
The current total of the UpMoJo distance in our ex-
ample is now 2 (1 Move and 1 Join operation).

Notice that decompositions A’ and B contain the
same number of top-level subsystems, and each of

R S

R T U

R V

R W

R X R Y

Z [\Z [] ^ []] []

_ [] _ [\ ` [] ` [\

Figure 10. Decomposition A after the
transformation indicated by MoJo.

these subsystems transitively contain the same ob-
jects. This means that the process of transforming
A to B can now continue recursively for each sub-
system until A is transformed exactly into B.

The final value of the UpMoJo distance between
decompositions A and B is the total number of Up,
Move, and Join operations performed during the
transformation process.

In our example, the next iteration will try to
transform subsystem A1 into subsystem B1. Set S

will contain objects a.c, a.h, and b.c (they are in
level 1 with respect to subsystem B1). All three will
need to move up, since they are initially in level 2
with respect to subsystem A1. However, since two
of them reside initially in the same subsystem, only
two Up operations are required. This will increase
the current total for the UpMoJo distance to 4. It
should be easy to see that the flat decompositions
will be exactly the same, so nothing further will be
required for this subtree.

Finally, for subsystem B2, set S will be empty.
The flat decompositions are shown in Figures 11
and 12. Objects directly under the root of the tree
are considered to be in a separate subsystem of car-
dinality 1 in the flat decomposition.

Three further Move operations are required to
transform the flat decomposition of A45 to the flat
decomposition of B2. Objects p.c, p.h and z.h
need to be moved. By performing these operations
on the containment tree of decomposition A’, we
arrive to the containment tree shown in Figure 13,
which is identical to the one of decomposition B
(the names of the subsystems are immaterial).

As a result, the final value of UpMoJo distance
will be 7.

6

Figure 11. The flat decomposition of sub-
system A45.

a ba c

d e d

f e d f e g
h e d h e g

Figure 12. The flat decomposition of sub-
system B2.

i j j

i k

i l mi n

o p qr p sr p t u p t

t p t v p t v p s w p t w p s

Figure 13. The final containment tree for
decomposition A.

4.1 UpMoJo Discussion

There are three properties of the UpMoJo algo-
rithm that warrant further discussion:

1. The way the Up operation works.

2. The apparent lack of a Down operation.

3. The fact that UpMoJo does not attempt to com-

pute the minimum number of Up, Move, and
Join operations.

The Up operation is necessary when two differ-
ent decompositions of the same software system
have placed a given object at a different hierarchi-
cal level. The definition of an Up operation is as
follows:

Up: Move an object or a set of objects that ini-
tially reside in the same subsystem S to the sub-
system that directly contains S.

The intriguing property of the Up operation is
that one is allowed to move a set of objects with one
operation. Figure 14 shows an example of such an
operation. The intuition behind this lies with the
fact that these objects have already been placed to-
gether by the software clustering algorithm which
implies that they are related. The only problem is
that they are not at the same hierarchical level as
in the authoritative decomposition. It seems unfair
that the algorithm be penalized for each object in-
dividually, since the most important property, the
fact that these objects are related, was discovered.

x

x y

z { | } { z ~ { z � { z

x

x yz { |

} { z ~ { z

� { z� � � � �� � � � � � � � �

Figure 14. Example of 1 Up operation

The second interesting property of UpMoJo is
that there is no Down operation. At first sight, this
seems to be strange since the possibility exists that
an object will be placed higher in the automatic de-
composition than in the authoritative one. How-
ever, a downward movement is accomplished by
the Move and Join operations. Introducing a Down
operation would penalize twice for the same dis-
crepancy between the two decompositions. The
following example indicates how this works:

Consider the two decompositions shown in Fig-
ure 15. Suppose that we are transforming A to B. It
would appear that a Down operation is required.
The UpMoJo algorithm will accomplish the same
effect implicitly as shown below.

The first step of UpMoJo is to perform any nec-
essary Up operations. It is easy to see that no
such operations are required in this example. Next,
the flat decompositions for level 1 are calculated.

7

�

� �� � �

� � � � � �

�

� � � � � � � � �

Figure 15. An example of an implicit Down
operation

These are shown in Figures 16 and 17 (as explained
earlier, objects directly under the root of the tree,
a.c, b.c, and c.c in this case, are considered to
reside in separate subsystems of cardinality 1 in the
flat decomposition). MoJo would indicate one Join
operation. This will mean that objects b.c and c.c
are now one level lower in the hierarchy.

� � �

� � �

� � �

� � �

� � �

� � �

Figure 16. The flat decomposition of A.

� � �

� � �

� �

� � � � � �

Figure 17. The flat decomposition of B.

Finally, the UpMoJo algorithm does not com-
pute the minimum number of Up, Move and Join
operations required to transform one nested de-
composition to another. In order to justify this de-
cision, we define a new metric called MinUpMoJo
that does compute the minimum number of oper-
ations needed to transform the containment tree of
decomposition A to the containment tree of decom-
position B.

In order to indicate why UpMoJo is a more
appropriate measure, we will use the nested de-
compositions in Figures 18, 19, and 20. Table 4.1
presents results from applying both UpMoJo and
MinUpMoJo to these decompositions.

A

a.c A1

A2

A3

A4c.c

b.h

a.h

d.c f.c e.cb.c

Figure 18. A - Nested Decomposition .

B

B2

B3

B4

b.c

c.c

d.c

a.h f.c e.c

B1b.ha.c

Figure 19. B - Nested Decomposition .

C

a.c a.h C1 b.h

b.c C2

c.c C3

d.c C4

e.c f.c

Figure 20. C - Nested Decomposition .

(A,C) (B,C)
MinUpMoJo 4 4

UpMoJo 7 4

Table 1. MinUpMoJo and UpMoJo results

MinUpMoJo has determined that both A and B
are equally different from C. This result is mislead-
ing since B is clearly closer to C than A. The op-
timization behaviour of MinUpMoJo has masked
the differences between A and C. On the other
hand, the UpMoJo method ranked the nested de-
compositions correctly and confirmed that B is
closer to C.

8

5 Experiments

The advantages of comparing nested software
decompositions in a lossless fashion should be ap-
parent by now. When one flattens a decomposition,
important information that could distinguish two
decompositions may be lost. While this is certainly
true in theory, it is not apparent whether it makes a
significant difference in practice.

The experiments presented in this section at-
tempt to answer the following questions:

1. Does UpMoJo produce different results in
practice than a comparison method for flat de-
compositions such as MoJo?

2. What are the practical differences between Up-
MoJo and the END framework using a trivial
weighting function, such as equal weight for
all values in the similarity vector?

Before we present the process we followed in
order to answer these questions, we discuss the
following example. Suppose we want to compare
three nested decompositions A, B, and C. By apply-
ing the MoJo method we obtain the results in Table
1.

MoJo(A,B) MoJo(B,C) MoJo(A,C)
1 2 3

Table 2. MoJo results

When we compare the same nested decomposi-
tions using UpMoJo we obtain the results in Table
2.

UpMoJo(A,B) UpMoJo(B,C) UpMoJo(A,C)
5 2 8

Table 3. UpMoJo results

According to MoJo, A and B are the two most
similar decompositions. However, according to
UpMoJo, this is incorrect. This is a significant dif-
ference because it affects the way the two algo-
rithms rank the three decompositions. In other
words, we would not consider it a significant dif-
ference if UpMoJo produced larger distance values
than MoJo as long as the two algorithms ranked all
decompositions in the same order of similarity.

A generalization of this idea will be the con-
gruity metric we will use in order to compare Up-
MoJo to both MoJo and END. Assume we have N
pairs of nested decompositions of the same soft-
ware system. We can apply both MoJo and Up-
MoJo to each pair and obtain two different values
mi and ui. We arrange the pairs of decomposi-
tions in such a way so that for 1 ≤ i ≤ N − 1 we
have mi ≤ mi+1. The value of the congruity metric
will be the number of distinct values of i for which
ui > ui+1. Values for this metric range from 0 to
N − 1. A value of 0 means that both comparison
methods rank all pairs in exactly the same order,
while a value of N − 1 probably indicates that we
are comparing a distance measure to a similarity
measure. Values significantly removed from both 0
and N − 1 indicate important differences between
the two comparison methods. This is the result we
were hoping for in our experiments.

In order to perform the evaluation described
above, we generated 100 random nested decom-
positions containing 346 objects with an average
height of 4 and calculated MoJo and UpMoJo val-
ues for all pairs. We repeated this experiment 10
times to ensure that our results are not based on an
unlikely set of decompositions. In all experiments,
the value of the congruity metric ranged from 35
to 44. This clearly indicated that there are signif-
icant differences between MoJo and UpMoJo. Us-
ing MoJo to compare nested decompositions runs
the risk of producing results that do not reflect the
inherent differences between the decompositions.

We performed the same comparison between
END and UpMoJo. In the case of END, we
used MoJo as the plugin comparison method, and
applied a weighting vector that contained equal
weights for all values of the similarity vector. The
same experiment setup as before was used (100
random decompositions, 10 repeats). The values of
the comparison congruity metric ranged from 25
to 42, indicating again a significant difference be-
tween END and UpMoJo. Section 3 mentions the
main differences between END and UpMoJo. It is
up to the reverse engineer to decide which set of
features is more appropriate for their project.

Table 4 presents further experimental results
that confirm the above findings (they also add the
expected result that END is significantly different
from MoJo). The table presents values for the con-
gruity metric for an experiment setup of 100 ran-
dom nested decompositions and various combina-

9

Comparison methods D = 6 C = 4 D = 8 C= 4 D = 8 C = 20 D = 8 C = 60 D = 12 C = 60
MoJo and UpMoJo 37 42 50 43 46

MoJo and END 25 31 42 46 41
END and UpMoJo 32 41 36 41 50

Table 4. Metric values for several experimental setups.

tions of values for two generation parameters: D

is the maximum possible depth of the generated
nested decomposition, and C is the maximum pos-
sible children for any subsystem in the generated
decomposition.

These experimental results indicate clearly that
the three comparison methods provide signifi-
cantly different results.

6 Conclusions

This paper presented a novel comparison
method for nested software decompositions called
UpMoJo. UpMoJo takes differences in the hierar-
chical structure of the nested decomposition into
account and allows for comparison that does not
lose any information due to conversion to flat de-
compositions. At the same time, UpMoJo is able to
operate without the need for additional input, such
as the weighting vector required by END. Our ex-
periments indicate that UpMoJo does indeed pro-
duce significantly different results than both MoJo
and END.

References

[1] P. Andritsos and V. Tzerpos. Software clustering
based on information loss minimization. In Pro-
ceedings of the Tenth Working Conference on Reverse
Engineering, pages 334–344, Nov. 2003.

[2] S. C. Choi and W. Scacchi. Extracting and restruc-
turing the design of large systems. IEEE Software,
pages 66–71, Jan. 1990.

[3] D. H. Hutchens and V. R. Basili. System struc-
ture analysis: Clustering with data bindings. IEEE
Transactions on Software Engineering, 11(8):749–757,
Aug. 1985.

[4] R. Koschke and T. Eisenbarth. A framework for
experimental evaluation of clustering techniques.
In Proceedings of the Eighth International Workshop on
Program Comprehension, pages 201–210, June 2000.

[5] S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner.
Bunch: A clustering tool for the recovery and main-
tenance of software system structures. In Proceed-

ings of the International Conference on Software Main-
tenance. IEEE Computer Society Press, 1999.

[6] B. S. Mitchell and S. Mancoridis. Comparing the
decompositions produced by software clustering
algorithms using similarity measurements. In Pro-
ceedings of the International Conference on Software
Maintenance, pages 744–753, Nov. 2001.

[7] H. A. Müller and J. S. Uhl. Composing subsystem
structures using (k,2)-partite graphs. In Conference
on Software Maintenance, pages 12–19, Nov. 1990.

[8] M. Shtern and V. Tzerpos. A framework for the
comparison of nested software decompositions. In
Proceedings of the Eleventh Working Conference on Re-
verse Engineering, pages 284–292, Nov. 2004.

[9] V. Tzerpos and R. C. Holt. MoJo: A distance metric
for software clusterings. In Proceedings of the Sixth
Working Conference on Reverse Engineering, pages
187–193, Oct. 1999.

[10] V. Tzerpos and R. C. Holt. ACDC: An algorithm for
comprehension-driven clustering. In Proceedings of
the Seventh Working Conference on Reverse Engineer-
ing, pages 258–267, Nov. 2000.

10

