
Software Language Evolution

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op maandag 1 oktober 2012 om 15:00 uur door

Sander Daniël VERMOLEN

doctorandus informatica
geboren te Arnhem

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. A. van Deursen

Copromotor: Dr. E. Visser

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. A. van Deursen Delft University of Technology, promotor
Dr. E. Visser Delft University of Technology, copromotor
Prof. dr. R. Lämmel University of Koblenz-Landau
Prof. dr. A. Rensink University of Twente
Prof. dr. ir. A. P. de Vries Centrum Wiskunde & Informatica

Delft University of Technology
Prof. dr. C. Witteveen Delft University of Technology
Dr. M. W. Godfrey University of Waterloo

The work in this thesis has been carried out at the Delft University of Tech-
nology, under the auspices of the research school IPA (Institute for Program-
ming research and Algorithmics). The research was financially supported by
the Netherlands Organisation for Scientific Research (NWO)/Jacquard project
638.001.610, MoDSE: Model-Driven Software Evolution.

Copyright c© 2012 Sander D. Vermolen

ISBN 978-90-79982-13-4

Preface

If you would ask me to summarize this dissertation in one word, it would
neither be software, nor language, nor evolution. It would be change. Change
is a bit of a funny thing. It is often neglected, often ignored and generally
opposed against in whatever way possible. But change is also the trigger for
new thoughts and ideas, it is the driving factor of economic growth, it is the
thing that makes tomorrow different from today. Some like it, some don’t.
But sooner or later it will happen. Change is inevitable.

Partially due to rapid development, partially due to the ease of adaptation,
change is prominent in computer science. I spend four years researching
change in computer science. Four years of my life that did not go as smoothly
as most of you might know. Nevertheless, the research went well and I am
proud of the result: the book you are holding in your hands.

By now, I changed my career path to industry. I even – more or less –
changed my field of work to what some of my PhD colleagues would consider
the dark side (physics). But fear not, change drives new ideas and insights
and can most of all be highly enjoyable. And for those that do not like change,
some things are still the same: I still work with models, they still change all
the time and their change still rises the same issues as the ones addressed in
the following chapters.

Acknowledgements

There has been much support from many people during my PhD. I thank all
of them, but some I would like to thank in particular:

First of all, I thank my copromotor, Eelco Visser. His input and ideas have
shaped this dissertation. I thank my promotor, Arie van Deursen, for his ad-
vice and many suggestions that greatly improved the chapters. I also thank
Mike Godfrey, Ralf Lämmel, Arend Rensink, Arjen de Vries and Cees Wit-
teveen for reviewing my dissertation.

I thank Markus Herrmannsdörfer and Guido Wachsmuth for an excellent
and fruitful joint effort. I thank you for co-authoring several papers, but most
of all for the pleasant collaboration.

I thank our SERG coffee club, with whom I drank many, many cups of
heated liquid, including Sander van der Burg, Eelco Dolstra, Danny Groe-
newegen, Zef Hemel, Maartje de Jonge, Lennart Kats and Rob Vermaas. Our
coffee or tea was always accompanied by a more or less research-related dis-
cussion, of which – I am sure – some have altered bits of this dissertation, and
of which – I am glad – some did not.

iii

I thank Scott Adams for providing a daily dose of humor in three pictures.
I also thank Jarkko Oikarinen for providing a convenient means of communi-
cation. A technology, that can be used for good cause, yet – as many posted
URLs from a single website with pictures have shown – can also easily be
abused.

Finally and most importantly, I thank my parents and my sister for their
unconditional support. Whatever happened, I could always count on you and
hope I always can.

Sander Vermolen
August 11, 2012

Aalst

iv

Contents

1 Introduction 1
1.1 Model-Driven Engineering . 1

1.2 YellowGrass – Two example models 2

1.3 Coupled Evolution . 4

1.4 Coupled Evolution Spaces . 6

1.5 Problem Statement . 7

1.6 Challenges & Research Questions 8

1.6.1 Coupled Evolution Across Technological Spaces 8

1.6.2 Coupled Evolution Design 9

1.6.3 Coupled Evolution Implications 10

1.7 Research Methodologies . 11

1.8 Thesis Overview . 12

1.9 Origin of Chapters . 13

2 A Survey on Coupled Software Language Evolution 15
2.1 Introduction . 15

2.2 Terminology . 17

2.3 Publication Selection . 20

2.3.1 Selection Criteria . 20

2.3.2 Pilot Study . 21

2.3.3 Search Strategy . 22

2.3.4 Selection Results . 22

2.4 Approach Classification . 24

2.4.1 Grouping Publications to Approaches 24

2.4.2 Deriving the Feature Model 24

2.4.3 Resulting Feature Model 25

2.4.4 Pilot Study . 28

2.4.5 Classification Results . 28

2.5 Dataware . 28

2.5.1 Technological Space Specifics 29

2.5.2 Relational Dataware . 30

2.5.3 Object-oriented Dataware 32

2.5.4 Intra-Space Interpretations 37

2.6 Grammarware . 38

2.6.1 Technological Space Specifics 38

2.6.2 Approaches . 39

2.6.3 Intra-Space Interpretations 40

2.7 XMLware . 40

2.7.1 Technological Space Specifics 40

v

Contents

2.7.2 Approaches . 41

2.7.3 Intra-Space Interpretations 42

2.8 Modelware . 43

2.8.1 Technological Space Specifics 43

2.8.2 Approaches . 44

2.8.3 Intra-Space Interpretations 47

2.9 Inter-Space Interpretations . 47

2.9.1 Common and Uncommon Features 48

2.9.2 Feature Portability . 49

2.9.3 Feature Correlations . 50

2.10 Evaluation . 52

2.10.1 Publication Selection . 52

2.10.2 Approach Classification 53

2.10.3 Interpretation . 53

2.11 Conclusion . 54

3 A Catalog of Coupled Operators 57
3.1 Introduction . 57

3.2 Metamodeling Formalism . 59

3.2.1 Metamodel . 59

3.2.2 Model . 59

3.2.3 Notational Conventions 59

3.3 Origins of Coupled Operators . 60

3.3.1 Literature . 60

3.3.2 Case Studies . 61

3.4 Classification of Coupled Operators 63

3.4.1 Language Preservation . 63

3.4.2 Model Preservation . 63

3.4.3 Bidirectionality . 64

3.5 Catalog of Coupled Operators 64

3.5.1 Structural Primitives . 65

3.5.2 Non-structural Primitives 66

3.5.3 Specialization / Generalization Operators 68

3.5.4 Inheritance Operators . 70

3.5.5 Delegation Operators . 72

3.5.6 Replacement Operators 75

3.5.7 Merge / Split Operators 77

3.6 Discussion . 79

3.6.1 Completeness . 79

3.6.2 Metamodeling Formalism 80

3.6.3 Tool Support . 80

3.7 Conclusion . 81

vi

Contents

4 Generating Database Migrations for Evolving Web Applications 83
4.1 Introduction . 83

4.2 WebDSL . 85

4.2.1 Data modeling . 85

4.2.2 Object-relational Mapping 85

4.3 Modeling Data Model Evolution 87

4.3.1 Coupled Operators . 87

4.3.2 Linguistic Integration . 88

4.3.3 Migration . 88

4.4 Schema Modification . 89

4.4.1 Property Creation . 89

4.4.2 Entity Creation . 91

4.5 Conservative Data Migration . 91

4.5.1 Entity Renaming . 92

4.5.2 Super Addition . 93

4.5.3 Entity Extraction . 95

4.5.4 Maximum Cardinality Generalization 97

4.5.5 Property Pull-Up . 98

4.6 Lossy Migration . 99

4.6.1 Property Collection . 99

4.6.2 Property Identification . 101

4.7 Implementation . 103

4.8 Discussion . 105

4.8.1 Related Work . 105

4.8.2 Changing Persistence Implementation 106

4.8.3 Performance & Uptime 107

4.9 Conclusion . 108

5 Reconstructing Complex Metamodel Evolution 109
5.1 Introduction . 109

5.2 Modeling Metamodel Evolution 113

5.2.1 Metamodeling Formalism 113

5.2.2 Difference Models . 114

5.2.3 Evolution Traces . 116

5.3 Reconstructing Primitive Evolution 117

5.3.1 Mapping . 117

5.3.2 Dependencies between Operator Instances 118

5.3.3 Dependency Ordering . 123

5.4 Reconstructing Complex Evolution 123

5.4.1 Patterns . 123

5.4.2 Reordering traces . 124

5.4.3 Normal forms . 125

5.5 Reconstructing Masked Operator Instances 126

5.5.1 Masked Operators . 126

vii

Contents

5.5.2 Masked Detection Rules 127

5.5.3 Applying Masked Detection Rules 129

5.6 Related Work . 130

5.6.1 Matching . 130

5.6.2 Complex Detection . 131

5.7 Implementation . 132

5.8 Discussion . 132

5.8.1 Metamodeling Formalism 132

5.8.2 Trace Selection . 133

5.8.3 Completeness . 133

5.8.4 Performance . 133

5.9 Conclusion . 134

6 Heterogeneous Coupled Evolution of Software Languages 137
6.1 Introduction . 137

6.2 Data Model Evolution . 138

6.3 Coupled Data Evolution . 139

6.3.1 Defining Data Model Transformations 140

6.3.2 Deriving Data Migrations 142

6.4 Heterogeneous Coupled Transformation 145

6.4.1 Horizontal Generalization 145

6.4.2 Vertical Generalization . 146

6.5 Generic Architecture . 148

6.5.1 Deriving Domain Specific Transformation Languages . . 149

6.5.2 Automated Transformation 151

6.6 Related Work . 152

6.7 Conclusion . 153

7 Conclusion 155
7.1 Summary of Contributions . 155

7.2 Research Questions Revisited . 156

7.3 Evaluation . 159

7.4 Future Research Recommendations 160

7.4.1 Metamodeling Formalism 160

7.4.2 Coupling Customization 161

7.4.3 Implementing Migrations 162

7.4.4 Coupled Evolution in the Wild 162

A Appendix: Case Study YellowGrass 165
A.1 Context . 165

A.2 Issue tracking in YellowGrass . 165

A.3 YellowGrass.org . 166

A.4 Evolution . 168

viii

Contents

B Appendix: Case Study Researchr 169
B.1 Context . 169

B.2 Researchr.org . 169

B.3 Evolution . 170

C Appendix: Case Study Bugzilla 173
C.1 Bug tracking in Bugzilla . 173

C.2 Evolution . 173

Bibliography 177

Samenvatting 191

Curriculum Vitae 195

Titles in the IPA Dissertation Series 197

ix

List of Acronyms

API Application Programming Interface

AST Abstract Syntax Tree

ATL Atlas Transformation Language

CMOF Complete MetaObject Facility

DSL Domain Specific Language

DSTL Domain Specific Transformation Language

DTD Document Type Definition

EMF Eclipse Modeling Framework

EMOF Essential MetaObject Facility

ETL Extract, Transform and Load

GMF Graphical Modeling Framework

GPL General Purpose Language

IDE Integrated Development Environment

JPA Java Persistence API

MOF MetaObject Facility

QVT Query/View/Transformation

SDF Syntax Definition Formalism

SQL Structured Query Language

TL Transformation Language

UML Unified Modeling Language

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

xi

1
Introduction

This dissertation discusses techniques, tools and theory on coupled evolu-
tion. Coupled evolution is the connection of software evolution patterns and
adequate migrations of conforming artefacts, in order to retain artefact confor-
mance. This dissertation covers various application domains of conformance
and coupled evolution, in particular it addresses coupled evolution of meta-
models and models and of (object-oriented) schemas and databases.

1.1 M O D E L - D R I V E N E N G I N E E R I N G

Software development is hard. Programming languages ease software devel-
opment by offering abstractions through an accessible language. Abstractions
make software descriptions more concise, more readable and easier to under-
stand, thus allowing software developers to write more complex software.

Some programming languages offer support for a broad range of software
domains and are therefore generally referred to as general-purpose program-
ming languages (GPLs). Examples are C, Java and Python. Due to their wide
applicability, GPLs typically offer abstractions over the solution space – the
computing platform – rather than abstractions over the problem space – the
software domain. GPLs focus on exploiting the computing platform, rather
than simplifying software development for a particular problem domain.

The solution-focused abstractions of GPLs enforce a solution-focused soft-
ware description. The software developer is required to link the problem
domain to the solution space in order to describe software. On the one hand,
this requires a thorough understanding of the technical computation space.
On the other hand, it enforces a computation-oriented (or technical) software
description. There is a large semantic gap between the problem and the de-
fined solution.

Model-driven engineering (MDE) aims to create problem-space abstractions
through domain-specific models. Instead of writing program code in a gen-
eral purpose language, software is modeled in a modeling language designed
for one particular domain. For example, object role modeling (ORM) tar-
gets the domain of data structure definition, the hypertext markup language
(HTML) targets the domain of web page layout, a scene description language
(SDL) targets the domain of rendering 3-dimensional scenes, the structured
query language (SQL) targets the domain of relational database querying.
Models are close to the problem they solve and thereby easier to understand,
validate and develop. Models can generally be interpreted, or transformed

1

Introduction Chapter 1

into executable code automatically through compilation. The interpreter im-
plementation, or the generated code are typically set in a GPL, making use of
the solution-space abstractions offered.

Models are the primary software artefacts of model-driven engineering.
The structure of information in a model is described in a metamodel. Meta-
models come in many forms. When the models are textual, their metamodel
is implicitly defined as part of their grammar. When models are graphical,
the metamodel is generally explicitly defined. If models are modeled in terms
of objects and object relations, metamodels describe object types and rela-
tion characteristics. The metamodel defines concepts such as object features,
inheritance structure, relation cardinalities and inverse relations.

A model conforms to a metamodel when the model complies with the struc-
ture defined by the metamodel: All modeled objects must comply with the
structure defined in non-abstract classes, all field values must be correctly
typed, all references must comply with associations and all metamodel re-
strictions, such as cardinalities and inverses, must be satisfied. Although con-
formance can be formalized through a set of constraints [Paige et al., 2007],
conformance restrictions are often implicit.

Being a model itself, a metamodel has a metamodel, generally referred
to as meta-metamodel. It describes the structure of a metamodel. Meta-
metamodels generally conform to themselves.

1.2 Y E L L O W G R A S S – T W O E X A M P L E M O D E L S

Any software of reasonable size is bound to have bugs. Reporting and keeping
track of these bugs is part of software development. Bug trackers ease the
management of bugs. One such bug tracker is YellowGrass1. YellowGrass
is a web application, which uses tags to manage software issues (such as
bugs, new features and improvement suggestions). Tags are simple strings,
which YellowGrass turns into a powerful organization tool. A more extensive
description of YellowGrass can be found in Appendix A. This chapter (and
later chapters) addresses YellowGrass as running example.

When operational, YellowGrass processes information, such as issues, user
names, project descriptions and tags. It uses a database for persistent stor-
age. The data in this database complies with the structure defined by Yellow-
Grass’s class diagram, a simplified version of which is shown in Figure 1.1.
It describes issues, which are grouped into project and reported by users.
Each project has several members (users), who can comment on issues and
tag issues.

The class diagram of YellowGrass is a metamodel. It defines the structure
of a model, namely the data stored in the database. Different YellowGrass

1http://yellowgrass.org

2

Section 1.3 YellowGrass – Two example models

*

*

1

*

**

author

Project
name : String

User
name : String
password : Secret

Issue
title : String
description : Text

Tag
name : String

Comment
timestamp : DateTime
content : Text

1

*

1

*

member

issues

tags comments

reporter

Figure 1.1 Simplified version of the YellowGrass class diagram.

instances can have different databases and thereby different models, yet pro-
vided they use the same YellowGrass version, they share the same metamodel.
Conformance of the data is guarded by the database management system (and
partially by the application as we will see later). A breach of conformance may
cause data loss, as neither the application, nor the database is designed to deal
with incorrectly structured data.

As the data in a database is a model because it conforms to the class dia-
gram, the class diagram itself can also be considered a model (a data model),
as it conforms to a data modeling language. The modeling language defines
the structure of the class diagram, introducing concepts such as classes, class
names, associations and association cardinalities. In Figure 1.1 the modeling
language would be a variant on UML class diagrams. In YellowGrass’s source
code, the data model is defined textually in a language called WebDSL [Vis-
ser, 2008a]. WebDSL is a modeling language for defining web applications.
A sub-language of WebDSL supports the definition of data models. Hence,
in the context of YellowGrass we see different layers of conformance, namely:
the data in a YellowGrass database conforms to the YellowGrass data model,
whereas the YellowGrass data model conforms to the WebDSL data modeling
language.

3

Introduction Chapter 1

MetaModel MetaModel'

Model Model'
Migration

Evolution

conform
s

conform
s

Figure 1.2 Coupled evolution overview

1.3 C O U P L E D E V O L U T I O N

Changing requirements, an increased knowledge of the domain and techno-
logical progress require software to evolve [Lehman and Belady, 1985]. Being
an intrinsic part of software development, metamodels also evolve. Prevent-
ing metamodel evolution by backwards compatible changes is often insuffi-
cient as it reduces the quality of the metamodel [Casais, 1995].

As models conform to metamodels, metamodel evolution may break model
conformance. Consequently, existing models may no longer be suitable as
input to model transformations or code generation, they can sometimes no
longer be edited or validated and their semantics is unclear. To prevent
breaking conformance, metamodel evolution requires model migration [Sprin-
kle, 2003].

Model migration can be applied implicitly by manually editing a model
upon metamodel evolution. However, manual editing is tedious and not fea-
sible for larger models, or larger sets of models. Instead, model migration can
be automated by explicitly specifying a migration. As writing migrations is
generally far from trivial and error-prone, manual migration writing hampers
the evolution process. To completely automate the evolution process, ade-
quate model migrations need to be derived from the metamodel evolution,
which is known as coupled evolution [Lämmel, 2004, Visser, 2008b].

Figure 1.2 shows coupled evolution in the context of conformance graph-
ically. At the top, a metamodel evolves to a new version. At the bottom, a
model conforming to the old metamodel is migrated to a new model conform-
ing to the new metamodel. The dashed lines represent model conformance.
The vertical arrow represents coupled evolution, in which migration is de-
rived from evolution.

Also YellowGrass is subject to evolution. It has evolved from a simple issue
tracker offering support for small projects, to a more feature-rich issue tracker,
offering support for more extensive project management. YellowGrass’s data

4

Section 1.3 Coupled Evolution

1

*

1

*

1

*

**

author

Project
name : String

User
name : String
password : Secret

Issue
title : String
description : Text

Tag
name : String

Comment
timestamp : DateTime
content : Text

1

*

1

*

member

issues

tags comments

reporter

1

*

project

1 *

Figure 1.3 Improved version of the YellowGrass class diagram.

model evolved along with the application. Figure 1.3 shows a revised version
of the data model from Figure 1.1.

The new version offers support for tagging tags. To this end, two associa-
tions are added: one between tags and projects to make tags project-specific
and allow different projects to tag tags differently; and one between tags to
register the tagging of tags. When we try to connect the improved application
to an existing database, the new application will fail. The existing database
neither stores references between tags and projects, nor references between
tags. The existing data does not conform to the new data model. To pre-
vent the loss of existing data, we need to migrate the database to conform to
the revised data model by creating (and instantiating) the added associations.
Figure 1.2 (left) outlines the coupled evolution process for YellowGrass’s data
model.

Additionally, WebDSL – YellowGrass’s modeling language – evolved over
time. The data modeling language was extended with additional constructs
(such as to define default values) and adapted slightly to improve readability.
Some of these changes created new WebDSL versions that were not back-
ward compatible and thus needed existing applications, such as YellowGrass,
to be changed. When a change is not backward compatible, it breaks the
conformance relation. Coupled evolution reestablishes this relation by mi-
gration. Figure 1.4 (right) outlines coupled evolution for WebDSL. Note that
coupled evolution for WebDSL may imply a need to change the YellowGrass
data model. Yet, this change does not necessarily enforce a database migra-

5

Introduction Chapter 1

Data Model Data Model'

Database Database'

conform
s

conform
s

evolution

migration

WebDSL WebDSL'

Data Model Data Model'

conform
s

conform
s

evolution

migration

Figure 1.4 Two scenarios of coupled evolution. One in the context of the Yellow-
Grass data model (left) and one in the context of the WebDSL data modeling sub
language (right).

tion. Migrations in coupled evolution generally persist semantics, thereby not
affecting other conformance relations.

To derive migrations automatically, the evolution – implicitly applied by the
developer – needs to be made explicit. There are three common approaches to
obtain an evolution specification: Firstly, evolution can be specified manually by
the developer. This is likely to yield the correct evolution, yet requires addi-
tional development effort. Secondly, evolution can be recorded. This provides
the correct evolution, but restricts development to a recording editor and the
provided edit operations. Thirdly, evolution can be detected afterwards. This
poses no restrictions on the development process, yet does not guarantee the
correct evolution.

Evolution specifications can either be difference-based or operator-based.
Difference-based approaches use a declarative evolution specification referred to
as difference model [Cicchetti et al., 2008, Garcés et al., 2009]. Difference
models captures differences, rather than how these differences were applied.
Operator-based approaches model evolution by a sequence of operator applica-
tions [Wachsmuth, 2007b]. Each operator represents a change to the meta-
model and can generally be coupled to a suitable model migration to form a
coupled operator.

1.4 C O U P L E D E V O L U T I O N S PA C E S

Both evolution and conformance are common concepts throughout different
technological spaces [Kurtev et al., 2002]. Most spaces commonly address
coupled evolution to ease software maintenance. The terminology and re-
quirements may differ across technological spaces, but the coupled evolution

6

Section 1.5 Problem Statement

principles are equivalent. Coupled evolution occurs most prominently in the
spaces of dataware, grammarware, xmlware and modelware.

In dataware, the structure of data is modeled using data models (or schemas).
When data models evolve, conforming data sets (or databases) need migra-
tion [Roddick, 1992]. For example, evolution of the YellowGrass data model
needs migration of a YellowGrass database. Data sets are generally large, but
frequently small in number. Evolution and migration applies to both object-
oriented as well as relational schemas. Data migration is common, yet most
often defined manually. The space of xmlware is similar to dataware with
respect to the structure definitions, yet xml documents are generally smaller
than the data sets faced in dataware, e.g., [Su et al., 2001] and [Guerrini and
Mesiti, 2008].

The structure of sentences (or words) is captured in a grammar in the tech-
nological space of grammarware. Grammar evolution needs adaptation of sen-
tences, e.g., [Staudt et al., 1987] and [Jürgens and Pizka, 2006]. Sentences are
small compared to data sets, but generally larger in number. As the data mod-
eling language of YellowGrass (WebDSL) is textual, evolution of WebDSL (of
its grammar) and associated migration of YellowGrass is an example of cou-
pled evolution in grammarware. Support for evolution in grammarware is
limited, and in practice, most conformance-breaking evolutions are prevented
by maintaining backward compatibility.

The space currently most active in terms of coupled evolution research
is modelware. Models conform to metamodels. Metamodel evolution needs
model migration, e.g., [Sprinkle, 2003], [Gruschko et al., 2007] and [Garcés
et al., 2009]. As in grammarware, models are generally large in number, but
relatively small and not in constant use.

The following chapters mostly target the modelware and dataware spaces.
Yet, discussed principles can directly be ported to xmlware and are similar
to the principles encountered in grammarware. A complete discussion of
publications for each of the spaces can be found in Chapter 2.

1.5 P R O B L E M S TAT E M E N T

The combination of evolution and conformance implies a need for migra-
tion. Enabling evolution by implementing migrations manually is tedious and
error-prone. Through coupled evolution, the evolution process can be auto-
mated by generating migrations automatically. For example, for databases,
coupled evolution can automate the migration of data when the schema is
adapted. In the metamodeling space, coupled evolution can automate the
transformation of models when their metamodel evolves.

Various approaches to coupled evolution in the context of conformance ex-
ist in various technological spaces within software engineering. Each space
uses its own terminology. Each space faces its own space-specific require-

7

Introduction Chapter 1

ments, such as high performance for migration of large databases, or the
complexity of migrating models under metamodel constraints that go be-
yond the typical structure restrictions found in databases (e.g. inverses, or
cardinalities). Each space offers its own solution directions. New coupled
evolution approaches can benefit from existing approaches by reusing con-
cepts and solutions. Yet, it is largely unknown how approaches from different
technological spaces relate to one another. What are the commonalities and
differences? Which ideas can be ported to other spaces? And which concepts
are space-specific?

Despite a significant body of research, existing approaches are frequently
obtrusive – requiring changes to the development methodologies – or not ap-
plicable to realistic cases – offering support for simplistic evolution scenarios
or small-sized artefacts. The goal of this thesis is to support the evolution
process, by seeking a coupled evolution approach, which is non-obtrusive, in
line with existing development methodologies, requiring little additional ef-
fort and that reduces the likelihood of error and data loss. Next, we seek to
generalize the coupled evolution solution to the various technological spaces.

1.6 C H A L L E N G E S & R E S E A R C H Q U E S T I O N S

1.6.1 Coupled Evolution Across Technological Spaces

Coupled evolution and conformance occur in various technological spaces,
yielding numerous solution approaches. Most of these approaches address a
single space, thus making their implementation space-dependent. Neverthe-
less, ideas and concepts are generally more widely applicable and although
rarely done, they may well be used in other spaces.

Some spaces offer publications comparing approaches [Roddick, 1992, Ca-
sais, 1995, Benatallah, 1999, Rashid and Sawyer, 2005, Rose et al., 2009]. How-
ever, it is largely unknown how approaches from different technological spaces
relate to each other. Consequently, most concepts are reinvented repeatedly
for each space. New techniques facing the coupled evolution problem are
likely to start from scratch, mostly being unaware of existing research.

To prevent having to reinvent solutions, we need to find and compare exist-
ing approaches from the different spaces and to identify their commonalities
and differences across spaces. We aim to reveal reusable concepts, that can
help new approaches to start from a solid and proved basis instead of from
scratch. Also, we target to find avenues for further research, allowing the
discovery of new solution areas.

Surveying publications across spaces is not a simple task. Obtaining a
complete set of publications on coupled evolution for a single space is hard,
obtaining a complete set of publications for multiple spaces, which generally
publish to different venues, or publish in different journals is even harder.

8

Section 1.6 Challenges & Research Questions

Additionally, comparing publications between spaces is difficult. Different
spaces tend to use different terminology, to some extent different concepts
and frequently focus on more or less space-specific restrictions (such as the
large size of a data set in the dataware space, or the rich constraint set defined
in metamodels in the modelware space). We aim to find existing solutions
that can be reused across spaces and to identify avenues for further research.
These problems amount to the following research question:

Research Question 1

How do we characterize and compare coupled evolution approaches across tech-
nological spaces?

The commonalities between different approaches make different solution
approaches implement similar functionality. As coupled evolution in the con-
text of conformance is a domain of active development, new approaches arise
frequently. To prevent the repetition of work, and to alleviate the common-
alities between approaches, we aim to identify the underlying concepts and
capture them in a reusable space-independent framework to coupled evolu-
tion. Therefore we ask the following research question:

Research Question 2

How can coupled evolution concepts and solutions be generalized across tech-
nological spaces?

1.6.2 Coupled Evolution Design

Coupled evolution approaches use a set of coupled operators, which preserve
conformance, to automate evolution. The quality of the approach largely de-
pends on the quality of the operator set. The set should be large enough to
cover common and realistic evolution scenarios. Yet increasing the size of the
set reduces its usability, thus requiring a careful operator selection as well as
an operator organization to ease selection.

Existing approaches implement small sets of operators, offering a proof of
concept of the approach rather than a practically viable solution. They are
neither applied to realistic cases, nor compared to operator sets from other
solutions. Therefore, we analyze evolution for the modelware space. We
aim to find common evolution patterns and to determine their characteristics
(such as their effect on the conformance relation) as well as their automation
potential through coupled evolution.

9

Introduction Chapter 1

Research Question 3

What metamodel evolution patterns can be distinguished, which allow automa-
tion in the context of migration?

Evolution is generally implicit, yet needs to be formalized to be used by
coupled operators. A formalization needs to relate back to the actual evo-
lution, such that it is understandable by a developer; needs to be sufficiently
complete to cover arbitrary evolution scenarios; and needs to be automatically
processable.

Research Question 4

How can software language evolution be formalized, such that it both function-
ally and understandably represents the developer’s evolution intent?

1.6.3 Coupled Evolution Implications

The main goal of coupled evolution in the context of conformance is to ease
software evolution by automating the migration of conforming artefacts. Cou-
pled evolution prevents having to manually construct artefact migration upon
evolution. As evolution is an ongoing process, coupled evolution is not a one-
time event, but needs to be present throughout the software lifetime. Con-
tinuous coupled evolution support needs to fit into the software development
process. Major development process changes are likely to hamper software
development and unlikely to take ground.

Existing approaches to conformance-preserving coupled evolution have a
significant impact on the software development process. Some approaches
require the developer to consider evolution twice: namely, once by applying
the evolution as in regular software development and once by specifying it
explicitly (e.g., [Rashid and Sawyer, 2000, 2005]). Other approaches restrict
development to a specific (generally recording) editor (e.g., [Herrmannsdo-
erfer et al., 2009]). Yet other approaches may pose an implicit and generally
hidden risk of data loss on the migration process (e.g., [Hibernate, 2008]).

To encourage the use of coupled evolution, we focus on reducing the im-
pact coupled evolution has on regular development as much as possible.
Although deriving a migration from an explicit evolution is generally fast
and fully automated, specifying the evolution and executing the migration
requires manual effort. Therefore, we search for ways to improve the process
of both and thereby ease the development process. Additionally, software
evolution poses a risk to software usage. Availability of running systems may
be compromised and information may be lost unintentionally. In particular,
manual migration has a risk of human-error. Coupled evolution automates
the evolution process. On the one hand, this reduces the risk when common

10

Section 1.7 Research Methodologies

evolution steps are reused and repeatedly tested. On the other hand, automa-
tion reduces developer checks and increases the risk of error. The latter can
cause undesired data loss. To prevent data loss, yet not hamper software de-
velopment, we search for techniques to prevent data loss, without requiring
significant development effort.

Research Question 5

How do we support coupled evolution unobtrusively and prevent the undesired
loss of information during migration?

1.7 R E S E A R C H M E T H O D O L O G I E S

In our work, we distinguish two research methodologies. Firstly, we do re-
search of an analytical nature, in which we examine the status quo as to in-
crease our understanding (Chapters 2 and 3). Secondly, we do research of a
constructive nature, in which we develop new techniques, designs and theo-
ries to change and preferably improve the status quo (Chapters 4, 5, 6).

In analytical research, we examine the status quo by analyzing literature, or
existing software evolution cases. As we cannot examine all possible evolution
cases, we aim to select cases that are representative. Thus they need to be
realistic and of significant size and complexity. We include industrial cases
to complete the representation, yet prefer open (public) case studies, to allow
reproduction of the results and to allow the results to be used in comparisons
performed by other researchers.

Research of a constructive nature opens up new opportunities and possibil-
ities. These new possibilities go beyond directly quantifiable improvements
of for example performance. Better evolution support may drastically alter
the evolution of software, not just by shortening or lengthening it, but by
changing its course. Existing case studies only offer evolution using tradi-
tional techniques and are therefore not suited for validation of constructive
research. To enable validation, we therefore developed new cases using new
technologies. Both YellowGrass and Researchr (discussed in appendices A
and B) started out as validation cases, yet grew to be much-used products.
Their development was aided by the tools developed for this thesis. Although
these case studies are less in number than the cases used in our analytical
research, the cases offer valuable research input and because they have been
examined in more detail are in most scenarios more valuable than cases of
which the evolution is only recorded by a set of source code versions and
software documentation.

Finally, research has a high risk of repeating past work. In Chapter 2,
we can see that often publications address similar contributions yet lack a
clear discussion of the differences. To prevent duplication, we performed an

11

Introduction Chapter 1

MetaModel MetaModel'

Model Model'

C
hapter 3

Chapter 4

Evolution

Migration

Detection

Chapter 5

C
hapters 2 &

 6

Figure 1.5 Overview of chapter topics

extensive literature survey and provide thorough reviews of related work in
each of the chapters. We try to explain how our work compares to or differs
from existing work and highlight the contributions it offers.

1.8 T H E S I S O V E RV I E W

The different chapters discuss different topics in the space of coupled evolu-
tion. Figure 1.5 provides a graphical overview.

Chapter 2 discusses existing approaches to coupled evolution by means of
a literature survey (research questions 1 and partially research question 2).
It presents a space-independent feature model, focused on determining com-
monalities and differences between approaches. It addresses the application
of the feature model and the interpretation of its results, thereby discussing
specifics within spaces, avenues for future research, portability of techniques
across spaces, and correlated features.

Operator-based coupled evolution approaches use an operator set to model
evolution and derive migration. The success and applicability of an approach
strongly depend on the quality of its operator set. Chapter 3 discusses a cata-
log of coupled operators, which is based on an analysis of real-life case studies
and a set of existing literature (research questions 3 & 5). It aims to be com-
plete enough to apply to any realistic case, yet small enough to remain usable.
The catalog is organized along operator criteria assessing operator impact on
models and metamodels.

12

Section 1.9 Origin of Chapters

When using a model-driven approach to develop software, the runnable
software is generally generated from the model in several step. When us-
ing coupled evolution to support evolution of the software model, it needs
to bridge these steps in order to derive the correct migration. Chapter 4
presents an implementation of coupled evolution for a web application lan-
guage (WebDSL) and an underlying WebDSL database. It covers evolution
representation, efficient database migration as well as how to bridge an object
relational mapping in coupled evolution (research questions 4 & 5).

Coupled evolution needs an explicit evolution definition. Manually speci-
fying such evolution is redundant and error-prone. Recording such evolution
restricts development to a specific (recording) editor. As to not hamper the
evolution process, Chapter 5 discusses reconstruction of evolution (research
question 5). It discusses reconstruction of complex evolution operators, ad-
dressing operator dependencies; mixed, overlapping and incorrectly ordered
complex operator components; and operator interference, where the effect of
one operator is partially or completely hidden by other operators.

Coupled evolution approaches occur in various technological spaces. These
approaches focus on a single, homogeneous space, solving the coupled evo-
lution problems locally and repeatedly. Chapter 6 presents a systematic, het-
erogeneous approach to coupled evolution, providing space-specific transfor-
mation language generation and heterogeneous evolution interpretation (re-
search question 2).

Chapter 7 concludes the thesis.

1.9 O R I G I N O F C H A P T E R S

Except for chapter 2, the core chapters of this thesis are directly based on
peer-reviewed publications. Chapter 2 to has been submitted for review. Each
chapter has distinct core contributions and contains a certain degree of re-
dundancy to ensure self-containment to allow them to be read separately.
The authors of the publications forming the basis of chapters 2 and 3 are al-
phabetically ordered. There is an equal division of contribution between the
authors of both publications.

• Chapter 2 is submitted for publication in ACM Computing Surveys and
is titled Coupled Software Language Evolution – A Survey across Technical
Spaces – [Herrmannsdoerfer et al., 2011]

• Chapter 3 is an updated version of the SLE 2010 paper An Extensive
Catalog of Operators for the Coupled Evolution of Metamodels and Models.
[Herrmannsdoerfer et al., 2010b]

• Chapter 4 is an updated version of the GPCE 2011 paper Generating
Database Migrations for Evolving Web Applications. [Vermolen et al., 2011]

13

Introduction Chapter 1

• Chapter 5 is an updated version of the SLE 2011 paper Reconstructing
Complex Metamodel Evolution. [Vermolen et al., 2012]

• Chapter 6 is an updated version of the MODELS 2008 paper Hetero-
geneous Coupled Evolution of Software Languages. [Vermolen and Visser,
2008]

Other publications resulting from the research for this dissertation, yet
which have not directly been incorporated in the following chapters are:

• Generating Version Convertors for Domain Specific Languages [G. de Geest
and S. D. Vermolen and A. van Deursen and E. Visser, 2008]

• Software Language Evolution [Vermolen, 2008]

14

2
A Survey on
Coupled Software Language Evolution

A B S T R A C T

Like any software artifact, software languages are subject to evolution. When
a software language evolves, existing language elements may no longer con-
form to the evolved language. To prevent loss of information, existing ele-
ments need to be migrated. Coupled evolution automates the migration of
existing elements by attaching a migration specification to the evolution of a
language definition. Software language evolution affects different technolog-
ical spaces such as dataware, grammarware, XMLware, and modelware. In
each technological space, different coupled evolution approaches have been
proposed. However, it is largely unknown how these approaches relate to
each other. To address this, we perform a systematic literature survey on
coupled evolution approaches. We derive a feature model focused on de-
termining commonalities and differences between approaches from different
technological spaces. In this chapter, we present the application of the feature
model and the interpretation of its results, within each technological space
as well as across technological spaces. We address specifics within spaces,
avenues for future research, portability of techniques across spaces, and cor-
related features.

2.1 I N T R O D U C T I O N

Various areas of computer science deal with information stored in artefacts
(or elements). For example, programs store the description of an application,
databases store application data and an XML document can store the con-
figuration of an application. Together, we refer to these elements as software
[Kleppe, 2008]. Common to all software is that the stored information is struc-
tured to some format. Programs conform to a grammar, databases conform
to a data model and XML documents conform to a schema. The format of a
piece of software, or more generally of a collection of software is described by
the software language.

We say that software elements conform to a software language, when the
software follows the structure outlined in the language. A software language
is needed for the software elements to be understood, to be extended or to be
processed automatically. Breaking conformance generally has as consequence

15

A Survey on Coupled Software Language Evolution Chapter 2

that some, or all of the information stored in the software artefact is lost.
When a database no longer conforms to a data model (gets corrupted), data
stored in the database may be lost. When a program is not syntax-correct, it
cannot be parsed and thus not compiled. A recovery, or manual intervention
is needed to prevent the program from being lost. Conformance to a language
is essential for the preservation of information.

Due to changing requirements, not only software elements are subject to
change, also software languages commonly need to be adapted [Favre, 2005].
A data model needs to be extended when new functionality is added to the
application using the data described by the data model. A grammar needs to
be extended when a new software design construct is introduced. For some
types of software languages (e.g. data models), change is more common than
for others (e.g. grammars), but all of them are bound to change at some point
if they are in use. These changes may break the conformance of software.
The software needs to be transformed to conform to the language again. We
refer to such conformance-recovering transformations as migrations. When
a software element is small (small programs or little data in the database),
manually editing the element may provide a suitable migration. Yet, manual
migration is tedious and error-prone, and thereby often leads to avoiding soft-
ware language changes in practice [Casais, 1995]. Instead, automated migration
is needed to recover the conformance relation.

Software language changes are rarely singular events. Changes are ap-
plied repeatedly and often continuously, constituting software language evolu-
tion. Evolution of software languages does not just require a single migration,
it requires repeated migration to persist the conformance of elements. Even if
a single migration is automated, constructing migration repeatedly is tedious
and has a high risk of introducing bugs and thus losing information. To au-
tomate software language evolution, common evolution steps or patterns can
be related to suitable software migrations, which is known as coupled evolution
[Lämmel, 2004, Visser, 2008b]. Software languages are used in different techno-
logical spaces [Kurtev et al., 2002], such as programming languages, modeling
languages, XML formats, and database schemas. Thereby, coupled evolution
is also used in different spaces, to evolve different types of software elements.

Problem. Different technological spaces propose different approaches
to coupled evolution. Each space comes with its own terminology and ap-
proaches are only positioned within a single technological space. In some
technological spaces, there are publications that compare the approaches pro-
posed for the technological space with each other [Roddick, 1992, Casais, 1995,
Benatallah, 1999, Rashid and Sawyer, 2005, Rose et al., 2009]. However, it is
largely unknown how the approaches from different technological spaces re-
late to each other. Consequently, when a new technological space develops
or the requirements for coupled evolution in a technological space change,
new approaches are often developed from scratch—without considering the
approaches already available in the other technological spaces. To overcome

16

Section 2.2 Terminology

this problem, we are interested in the following five research questions:

1. Which space-independent features can we identify to characterize ap-
proaches for coupled evolution in different technological spaces?

2. To which extent is each of these features represented in the different
technological spaces?

3. What is the relation between the different features across technological
space boundaries?

4. What is the relation between approaches in different technological spaces?

5. What are possible avenues for future research in coupled evolution?

Contribution. To answer these research questions, we perform a sys-
tematic literature survey [Kitchenham and Charters, 2007] on coupled evolu-
tion approaches in different technological spaces. We systematically search
publications on coupled evolution, using 29 initial sources for publications
and exhaustive citation browsing. We select publications using clearly de-
fined selection criteria, which we disambiguated by means of a first pilot
study. We derive a feature model independent of technological spaces and
disambiguate its application by means of a second pilot study. In this chapter,
we present the application of the feature model and the interpretation of its
results, within each technological space as well as across technological spaces.
We address specifics within spaces, avenues for future research, portability of
techniques across spaces, and correlated features.

Outline. In Section 2.2, we first introduce the terminology used through-
out the survey. The next sections follow the survey methodology as visualized
in Figure 2.1. The larger boxes in the figure outline the main sections of the
survey and discuss the methodology in detail: In Section 2.3, we present the
publication selection process used to obtain a complete set of publications.
Section 2.4 discusses the derivation of the feature model and its usage in clas-
sifying coupled evolution approaches. We address the different technological
spaces separately in Sections 2.5 to 2.8, discussing features within each tech-
nological space. Section 2.9 interprets the results of the survey across techno-
logical spaces. In Section 2.10, we evaluate the survey results in light of the
methodology of the literature survey, before we conclude in Section 2.11.

2.2 T E R M I N O L O G Y

Different technological spaces have established different terminology. We rely
on this existing terminology whenever we discuss a particular technological
space. However, a unifying terminology is needed to compare approaches
and solutions from different technological spaces, such as in a feature model

17

A Survey on Coupled Software Language Evolution Chapter 2

Publication Selection

Approach Classification

Interpretation

Feature
Identification

Feature
List

Cross-Space
Generalization &

Refinement

Feature
Model

Publication
GroupingApproachesClassification

Selection
Publications
from Initial
Sources

Selected
Publications

Selection
Criteria

Reference
Exploration

Cited
Publications

Classification
Tables

Compare
Approaches within

Spaces

Intra-Space
Interpretations

Compare
Approaches across

Spaces

Cross-Space
Interpretations

Exhaustively

Pilot

Pilot

Section 3

Section 4

Sections 5-8

Section 9

Figure 2.1 Survey methodology outline

18

Section 2.2 Terminology

intensional
definition

extension

defines

evolution

migration

coupled
evolution

element

conforms to

dataware
grammarware
XMLware
modelware

schema
grammar
schema
metamodel

intensional definition
--
language
format / language
language

extension
database
word / sentence
document
model

element

Figure 2.2 Cross-space terminology

across technological spaces. Thus, we switch to terms adopted from linguis-
tics [van Sterkenburg, 2003] whenever more than one technological space is
involved. We outline these terms and their relations to existing terminology
from different technological spaces in the remainder of the section and in Fig-
ure 2.2. The figure shows the terms from linguistics schematically and in the
top row of the table. The following rows of the table mention the matching
term in each of the technological spaces that we will be addressing.

Various technological spaces deal with intensional definitions of possibly infi-
nite sets. Depending on the technological space, different terms have been
established for such a definition, its extension—i.e., the defined set—and the
elements of the set. Grammarware and modelware specify languages by gram-
mars respectively metamodels. In grammarware, the elements of a language
are either called words or sentences. In modelware, these elements are called
models. XMLware and dataware rely on schemas to define sets of documents re-
spectively databases. While dataware provides no term for a set of databases,
a set of documents is either called format or language in XMLware. For an
element of the extension of a definition, we say the element conforms to the
definition.

Intensional definitions are subject to evolution, triggering the need for el-
ement migration. This migration is often called co-evolution, since it depends
on the evolution of the intensional definition. Coupled evolution addresses

19

A Survey on Coupled Software Language Evolution Chapter 2

the automation of element migration based on its dependency on evolution
of intensional definitions. Coupled evolution is an example for coupled soft-
ware transformations where multiple software artifacts must be transformed in
such a way that they remain consistent with each other [Lämmel, 2004, Visser,
2008b].

Figure 2.2 summarizes the various terms used in the different technological
spaces. It is important to not mistake the columns in the figure for metalevels.
As the figure above the table shows, the terminology applies to a pair of
metalevels — any pair of metalevels. The intensional definition resides at
the higher level of such pair, the various elements and the extension reside
at the lower level of such pair. Yet, when considering three meta levels (e.g.
model, metamodel and meta-metamodel), the terminology can be applied to
the lower two adjacent metalevels (to model and metamodel), but also to the
upper two adjacent metalevels (to metamodel and meta-metamodel).

For example, the dataware space distinguishes three levels: Data at the
lowest level, schema definitions at the second level, and data definition lan-
guages at the top level. Typically, data definition languages employ grammar-
ware technology and are defined by a grammar. Such grammars reside in a
metalevel above schema definitions. In a similar way, we find grammars for
grammar definition languages residing in another metalevel above. Thus, we
find grammars at different metalevels.

All grammars, schema definitions, and metamodels are intensional defini-
tions of possibly infinite sets—regardless of their metalevel.

2.3 P U B L I C AT I O N S E L E C T I O N

A systematic literature survey requires a thorough publication search strategy
to cover all research conducted within the scope of the survey [Kitchenham
and Charters, 2007]. Unambiguous selection criteria are needed to refine the
set of found publications on relevance. Figure 2.1 outlines our process for
publication selection in the topmost box. In this section, we discuss the selec-
tion criteria, the disambiguation of the selection criteria by a pilot study, and
the application of the criteria in a search strategy to yield a complete set of
publications.

2.3.1 Selection Criteria

The survey covers published literature, with the exclusion of workshop publi-
cations and technical reports. We set out the scope of the survey by means of
a set of inclusion and exclusion criteria, presented below. Publications falling
within the relevant technological space, yet rejected based on the selection

20

Section 2.3 Publication Selection

criteria, are recorded along with the reason for rejection.1

This survey focuses on coupled evolution of an intensional definition and its
elements. We speak of evolution, when external factors cause the intensional
definition to vary over time, yielding different versions of the same defini-
tion. Subsequent versions should show clear resemblance. External factors
are influences not enforced by the surrounding system itself—examples are a
changing domain, an increased knowledge or understanding of the system,
or a changing user base. We speak of coupled evolution, when the evolution
of the intensional definition primarily determines element migration. Manual
migration of individual elements falls outside the scope of the survey due to
a lack of coupling to evolution. Tool-supported manual construction of an
executable migration specification falls within the scope of the survey.

We exclude work focused on comparison of intensional definitions, since
these do not discuss a coupling of migration to evolution. Such compari-
son includes work on change detection, model comparison, difference cal-
culation and difference representation. We also exclude work on schema
matching, schema integration, database integration and migration of legacy
database systems, since in these works, subsequent versions of the intensional
definition—if even existent—do not have to show clear resemblance. As such,
there is no clear focus on evolution. Finally, we also exclude work on views on
elements, when these were not explicitly called in to prevent or aid coupled
evolution.

The space of ontology evolution is considered out of scope of the survey,
since it currently does not take into account element migration. API evolution
is considered out of scope, since the extension is not completely defined by
the intensional definition.

2.3.2 Pilot Study

To ensure unambiguously defined criteria, we perform a first pilot study: We
randomly selected 25 potentially relevant publications from our set of initial
sources (discussed below). Subsequently, each of the three author of this
survey independently applied the selection criteria to each of the publications,
yielding three independent sets of selected publications. We compare the
resulting sets.

Out of the 25 publications, there appears to be disagreement in two cases
and the selection criteria appear to be hard to apply to a third. Consequently,
we have improved the criteria: To resolve the first disagreement, we have
added the restriction on subsequent versions in evolution to show clear resem-
blance to exclude migrations between independent intensional definitions.
Due to the second disagreement, we have excluded manual migration, but
included manually written migration specifications. To resolve the difficulty
to apply the criteria, we have included publications on views only if these

1http://swerl.tudelft.nl/twiki/pub/Main/SanderVermolen/ce_survey_excl.pdf

21

http://swerl.tudelft.nl/twiki/pub/Main/SanderVermolen/ce_survey_excl.pdf

A Survey on Coupled Software Language Evolution Chapter 2

views are explicitly used to support coupled evolution, and have excluded
publications addressing views which may support coupled evolution, but are
not actually used to this extent by its authors.

2.3.3 Search Strategy

The rigor of the search process is a distinguishing factor for systematic lit-
erature surveys versus traditional surveys [Kitchenham and Charters, 2007].
Following an iterative process, we have set a search strategy and follow it
throughout the survey. The search strategy comprises two stages: A selection
of relevant publications from a large set of conferences and journals (the ini-
tial sources), and by exhaustive recursion, following relevant references of all
publications included in the survey. Figure 2.1 outlines the search strategy
graphically in the topmost box.

As a starting point of the survey, we comprise the set of relevant confer-
ences and journals shown in Figure 2.3. By studying all editions of each
of these journals and all occurrences of each of these conferences, we select
relevant publications by application of the selection criteria. The set of confer-
ences and journals is not intended to be a complete set containing all relevant
literature. It merely provides an initial set of publications.

To complement the initial sources, for each publication, we include all cited
publications relevant to the survey. By applying reference inclusion recur-
sively, we expand the survey outside the scope of the initial sources. By ap-
plying the recursive reference inclusion exhaustively, we complete the set of
selected publications.

We deliberately do not use keyword searches to find initial sources. Due
to the differences in terminology within or across technological spaces, com-
pleteness is hard to achieve. Moreover, Brereton et al. [2007] recently observed
that “current software engineering search engines are not designed to support
systematic literature reviews”; this result was confirmed by Staples and Niazi
[2007].

2.3.4 Selection Results

Exhaustive application of the search strategy yielded a total of 86 publications.
Figure 2.4 shows the number of publications for each technological space as
well as for each of the last decades. Coupled evolution appears to be a topic
of increasing interest. It first drew attention in the dataware space, where it
reached a publication peak in the 1990s. In the same decade, coupled evolu-
tion spread into the grammarware space, before it found its way to XMLware
and modelware in the last decade. Though being a relatively new topic in
the modelware space, this is where coupled evolution currently draws most
attention.

22

Section 2.4 Publication Selection

Acronym Full Name Years # P.

Conferences

BNCOD British National Conf. on Databases 1981 - 2009 505

CAiSE Int. Conf. on Advanced Information Systems Engineering 1989 - 2009 1,418

CIKM Int. Conf. on Information and Knowledge Management 1992 - 2009 2,489

CSMR Europ. Conf. on Software Maintenance and Reengineering 1997 - 2009 518

ECMFA Europ. Conf. on Modeling Foundations and Applications 2005 - 2009 155

ECOOP Europ. Conf. on Object-Oriented Programming 1987 - 2009 692

EDOC Int. “Enterprise Computing Conference” 2000 - 2009 474

ER Int. Conf. on Conceptual Modeling 1979 - 2009 1,893

GTTSE Generative and Transformational Techniques in Softw. Eng. 2005 - 2007 39

ICDE Int. Conf. on Data Engineering 1988 - 2010 3,441

ICMT Int. Conf. on Model Transformation 2008 - 2009 57

ICSE Int. Conf. on Software Engineering 1976 - 2009 3,338

ICSM Int. Conf. on Software Maintenance 1993 - 2009 1,094

MODELS Int. Conf. on Model Driven Eng. Languages and Systems 1997 - 2009 495

OOPSLA Object-Oriented Progr., Systems, Languages & Applications 1986 - 2009 1,823

SLE Int. Conf. on Software Language Engineering 2008 - 2009 47

VLDB Int. Conf. on Very Large Databases 1975 - 2009 2,525

WCRE Working Conf. on Reverse Engineering 1993 - 2009 606

Journals

JSME Journal of Software Maintenance and Evolution 1989 - 2010 266

JVLC Journal of Visual Languages and Computing 1993 - 2010 500

KAIS Knowledge and Information Systems 1999 - 2010 502

SIGMOD ACM’s Special Interest Group on Management of Data 1977 - 2009 1,552

SIGPLAN ACM’s Special Interest Group on Programming Languages 1987 - 2010 1,453

SoSyM Software and Systems Modeling 2002 - 2010 237

TKDE IEEE Transactions on Knowledge and Data Engineering 1989 - 2010 2,084

TOPLAS ACM Transactions on Programming Languages and Systems 1979 - 2010 920

TOSEM ACM Transactions on Software Eng. and Methodology 1992 - 2010 267

TSE IEEE Transactions on Software Engineering 1975 - 2010 2,972

VLDBJ Journal on Very Large Databases 1992 - 2010 492

Figure 2.3 Initial publication sources

23

A Survey on Coupled Software Language Evolution Chapter 2

0

30

60

data
ware

gramm.
ware

XML
ware

model
ware

1970-
1979

1980-
1989

1990-
1999

2000-
2010

P
ub

lic
at

io
n

C
ou

nt

Figure 2.4 Selected publications

2.4 A P P R O A C H C L A S S I F I C AT I O N

To be able to compare approaches from different technological spaces, we
need a scheme according to which we can classify all approaches. We use a
feature model to represent this classification scheme, as it allows us to define
the features of the different approaches as well as how they can be composed.
Figure 2.1 outlines our process for classifying the approaches. In this section,
we present the grouping of publications to approaches, the derivation of the
feature model, the resulting feature model, its disambiguation in a pilot study,
and its application to approaches.

2.4.1 Grouping Publications to Approaches

Different publications frequently address the same approach. Consequently,
they generally offer similar characteristics. To prevent duplicating classifica-
tions, we focus on approaches rather than individual publications. We group
several publications into one approach if they address the same tool, tool set,
or methodology and offer the same characteristics. They generally also share
some or all of the authors. The result is a list of approaches which are shown
in Figures 2.6 to 2.10.

2.4.2 Deriving the Feature Model

Figure 2.1 shows how we derived the feature model from the selected pub-
lications: we identified features in publications from different technological
spaces, generalized them across technological spaces, and structured them
into a feature model.

First, we studied all the selected publications and extracted properties that
characterize the presented approaches. The result after studying all the pub-
lications is a (large) list of used features. Next, we identified and combined
similar features, thus condensing the feature list. Additionally, we generalized
features to make them applicable to all technological spaces. Repeated com-

24

Section 2.4 Approach Classification

re
la

tio
na

l

ob
je

ct
-o

rie
nt

ed

pr
el

im
in

ar
y

co
m

pa
ris

on

re
gu

la
r

coupling

fix
ed

ex
te

nd
ab

le

ov
er

w
rit

ab
le

cu
st

om

ge
ne

ra
l p

ur
po

se

tra
ns

fo
rm

at
io

n

in
-p

la
ce

ou
t-o

f-p
la

ce

on
lin

e

of
fli

ne

language target execution

migration

dataware grammarware modelwareXMLware
us

er
-d

efi
ne

d

de
te

ct
ed

re
co

rd
ed

im
pe

ra
tiv

e

sourcespecification

evolution

de
cl

ar
at

iv
e

si
m

pl
e

co
m

pl
ex

technical space evaluation

approach

alternatives

exclusive
alternatives

mandatory
feature

optional
feature

Figure 2.5 Feature model for the classification of coupled evolution approaches

bination and generalization yielded a list of consolidated features. Finally,
we grouped alternative features into composite features, yielding a feature
model. At the topmost level, we grouped the features according to the ter-
minology introduced in Section 2.2. The resulting feature model is shown in
Figure 2.5 and explained in the following section.

To ensure that the feature model is sufficiently unambiguous when apply-
ing it to approaches, we performed a pilot study as explained in Section 2.4.4.

2.4.3 Resulting Feature Model

Figure 2.5 presents the feature model to classify approaches from different
technological spaces. We now discuss all the features in detail.

Technological Space. An approach is typically restricted to a partic-
ular technological space. We cover the technological spaces of dataware, gram-
marware, XMLware, and modelware. In dataware, we distinguish approaches
which address relational and object-oriented database management systems.

25

A Survey on Coupled Software Language Evolution Chapter 2

Evolution. When a developer edits and thus evolves an intentional def-
inition, for example a metamodel, he applies changes (edits) to create a new
metamodel version. When changes are done, it is the result of the changes —
the new metamodel version — which is saved, not the changes themselves.
The evolution of a metamodel, or more generally, an intensional definition,
is thereby implicitly recorded in the original and the evolved version of the
definition.

However, many coupled evolution approaches are based on explicit evolu-
tion specifications. They need the applied changes, rather than the result of
these changes. Thus the changes need to be made explicit in a change speci-
fication, known as an evolution specification. We distinguish two styles of such
specifications: Imperative specifications describe the evolution by a sequence of
applications of change operators. Change operators are representations of ed-
its applied to the intensional definition, such as renaming a class, moving an
attribute from one class to another, or merging two classes in a metamodel.
In contrast, declarative specifications model the evolution by a set of differ-
ences between the original and evolved version of a definition. They do not
record the changes that a developer has applied in the evolution and thus do
not record how the evolution took place. Rather, they record the effect of the
evolution.

In most development environments, evolutions are stored implicitly by
storing versions in a versioning system. The explicit evolution specification
then needs to be derived from these versions in a process known as evolu-
tion detection. We distinguish two kinds of detections: First, detections which
are only able to detect simple changes. Simple changes are atomic and can
thus not be decomposed further, they typically include additions, deletions
and renamings. Examples are adding an inheritance link, deleting a class, or
renaming an attribute. For some approaches, simple changes include moves
as well, when these are considered atomic. Second, detections which can also
detect complex changes. Complex changes can be decomposed into (more than
one) simple changes. They capture part of the intention that the developer had
with his edit. For example, the merge of two classes can in simple changes
be recorded implicitly as a several attribute additions, and a class removal,
whereas in complex changes we can record the intention by specifying the
class merge explicitly.

As an alternative to detection, the evolution can be recorded while the user
edits a definition, or user-defined where the user specifies the evolution manu-
ally.

Migration. In contrast to evolution, migration is always specified ex-
plicitly. Modelware uses model transformations, dataware uses database mi-
grations and grammarware uses program transformations. The migration has
a direct relation to the evolution it is constructed for. For example, when a
class is deleted in evolution, any objects of that class need to be deleted in
migration. The relation between evolution and migration, is used to couple

26

Section 2.4 Approach Classification

particular migrations to particular evolutions, or evolution patterns. For ex-
ample, the deletion of class x in evolution can be coupled to the removal of
all x objects in migration. By coupling a suitable migration to an evolution
(pattern), the migration can be reused when the same evolution needs to be
addressed, or in the case of an evolution pattern, when a similar evolution
needs to be addressed. A combination of evolution pattern to a suitable mi-
gration, provides a reusable evolution step, which we call a coupled operator. A
coupled operator transforms both the intensional definition and a conforming
element, thus preserving the conformance relation between the two.

We distinguish three kinds of couplings: With a fixed coupling, the migra-
tion is completely defined by the evolution. Only the developer of a coupled
evolution tool can add new couplings. With an overwritable coupling, the
user can overwrite single applications of a coupling with custom migration
specifications. With an extendable coupling, the user can add completely new
couplings between elements of evolution and migration specifications.

Approaches with overwritable coupling need to provide a language to
specify the custom migration. Such a language might be customly defined as a
domain-specific migration language. Alternatively, an existing transformation
language (TL) can be reused. Typically, this language comes from the techno-
logical space addressed by a coupled evolution approach. Common examples
are SQL or OQL for dataware, XLT or XQuery for xmlware and ATL or QVT
for modelware. Another way is to add migration support to a general-purpose
programming language (GPL) in form of an API or an internal domain-specific
language (DSL).

Migration might be performed either in-place or out-of-place. In the first case,
the target of the migration is the original element itself which is modified dur-
ing migration. In the second case, the target is a new migrated element which
is created during migration. The original element is preserved. Creating new
elements is only possible when the element-size allows. Thus out-of-place mi-
grations are mostly applied to smaller elements, such as models and in-place
migrations are mostly applied to larger elements, such as databases.

Furthermore, the migration might be executed offline where applications
cannot use some of the elements during the migration, or online where ap-
plications can still use all elements and where the usage of an element by an
application triggers lazy migration. Online migrations are needed when the
element is in constant need. Databases, may serve live applications and need
to stay online, thus needing an online migration. On the other hand, models
are typically only used as input to transformations such as compilation and
can thus be transformed offline while not in use.

Evaluation. Evaluation is crucial for the validation of coupled evolu-
tion approaches. It is not a characteristic of the approach itself, but rather
of the development of the approach and the publications on the approach.
Approaches might receive no evaluation at all. They might receive only eval-
uation of preliminary nature, e.g. by toy examples. Other approaches include

27

A Survey on Coupled Software Language Evolution Chapter 2

regular evaluation on industrial or open-source systems of medium to large
scale. Some authors provide a comparison of their approach with existing ap-
proaches.

2.4.4 Pilot Study

Using the feature model, we classified all approaches by reviewing their re-
spective publications. To ensure that different reviewers classify an approach
according to the same features, we conducted a second pilot study. We ran-
domly selected five approaches from different technological spaces and clas-
sified them independently of one another. We compared the classifications
with respect to inter-rater agreement.

We found a high agreement for all features except for the following is-
sues: First, it was difficult to distinguish user-defined from recorded evolu-
tion source, because user-defined evolution can be considered a variant of
recording using a regular editor. To alleviate this issue, we decided that in
case of recording, an explicit representation of changes is directly recorded
by the editor. Second, the difference between GPL and custom language was
not unambiguously defined, due to internal languages and APIs. We refined
the definition of the features to classify internal languages and APIs as GPLs,
since the host language is a GPL. Third, it was difficult to distinguish in-place
from out-of-place migration for database views. However, we classified them
as out-of-place, since the original data is not changed in response to the cal-
culation of views.

2.4.5 Classification Results

In the following sections, we organize approaches by technological spaces.
Each section covers one technological space. A table at the beginning of a
section summarizes the approaches for a technological space and their classi-
fication according to the feature model. Each approach and its classification
is then discussed in more detail throughout the section. Some publications
do not present or discuss a particular approach for coupled evolution, but
still contribute to the research on coupled evolution in a technological space.
These publications cannot be classified as approaches, but we discuss them
separately at the end of each section.

2.5 D ATAWA R E

Dataware deals with data stored in databases (the elements). The structure of
this data is described by a schema or data model (the intensional definition).
A data model defines a collection of databases which can be processed by

28

Section 2.5 Dataware

an application (the extension). As any other type of application, database
applications evolve over time. As data models are an intrinsic component
of database applications, application changes that result in changes to the
data model are relatively frequent [Sjøberg, 1992]. Consequently, modifying
database application without support for evolution of the data model is a
troublesome task.

As an example, consider a case study by Sjøberg [1993]. He measured evo-
lution and its impact in a health management system, comprising 150k lines
of code. Various types of names (such as class and relation names) and their
usage are tracked, detecting additions and deletions over time. Renaming and
more complex changes are left undetected. Over 18 months, while transition-
ing from development to production, relations increased by 139% and fields
by 274%. In one month, comprising 140 schema changes, one third of the
names were deleted, and one tenth were added, affecting nearly 6000 code
locations.

Schema evolution has been a field of study for several decades, yielding
a substantial body of research. Due to the large number of approaches,
dataware is further subdivided—according to the data modeling paradigm—
into relational [Codd, 1970] and object-oriented [Kim, 1990] dataware.

On the topic of database schema evolution, Roddick [1992] presents an
annotated bibliography. The bibliography also categorizes publications along
the evolving formalism into evolution of relational data models and object-
oriented data models as well as miscellaneous works. The relational papers
present temporal extensions for the relational model to deal with schema
evolution, discuss the implementation of schema changes and propose to
use schema evolution for schema integration. The object-oriented papers
present taxonomies of operations for schema evolution, propose versioning
approaches and discuss different techniques for converting data, including
immediate and lazy conversion. The miscellaneous papers present extensions
of existing languages to support schema evolution and discuss the impact of
domain evolution on schema evolution. Relevant publications from the bib-
liography are included in this survey.

2.5.1 Technological Space Specifics

There exists a long line of development and innovation on dataware—both in
academia and industry—yielding a broad range of schema evolution traces
and (large) databases. On the one hand, database migration, which is the
transformation of both the data and data structure (schema) inside a database,
faces wide-spread adoption. On the other hand, a coupling of such migrations
to the evolution of the schema to allow reuse, receives much research, yet less
adoption.

Dataware generally deals with few large (or very large) elements, applying
the following restrictions on coupled evolution:

29

A Survey on Coupled Software Language Evolution Chapter 2

• Manual editing of elements, manual validation of elements and manual
intervention during migration is hard or impossible.

• Performance of migration is an important factor.

• Schema evolution and data sets are mostly distributed across machines.

• Evolution of a schema frequently requires migration of multiple ele-
ments, implying the need for a distributable migration.

• Loss of data generally has significant consequences, as it usually takes
time to restore backups of the data and the migrated data may already
be changed.

Database management systems frequently have internal support for ver-
sioning of data [Roddick, 1995] and views on data [Halevy, 2001]. Addition-
ally, databases are generally at the heart of running software, which cannot
be stopped for migration, setting demands on the availability of the data set.

2.5.2 Relational Dataware

In relational dataware, schemas define tables and relations between tables.
Tables consist of records, which are products of primitive values. Relations
are modeled implicitly within records, yet their consistency is generally en-
sured by the database system. Figure 2.6 lists the approaches from relational
dataware together with their classification according to the feature model pre-
sented in Section 2.4. We distinguish a manual specification approach and
operator-based approaches.

Manual Specification Approaches. When a user constructs a
database migration manually and preserves the coupling to evolution, we
speak of manual specification approaches, referring to the manual specifica-
tion of the migration. Ronström [2000] presents an approach for online
schema evolution and migration of a telecom database. Schema evolution is
performed by first creating the new schema elements, copying old data and
keeping the data in sync by appropriate triggers. Next, the new schema el-
ements are tested, and if successful, new transactions may be executed, and
old data and schema elements are removed.

Operator-based Approaches. Operator-based approaches specify
coupled evolution as a sequence of coupled operators. Coupled operators
encapsulating both schema evolution and database migration. When applied,
they preserve the conformance between schema and database.

Shneiderman and Thomas [1982] propose an architecture for the coupled
evolution of relational schemas and databases as well as applications and pro-
grams. They present 15 coupled operators for schema transformation and dis-
cuss their effect on databases in terms of a relational algebra. Though based

30

Section 2.5 Dataware

Evolution Migration Eval.

Spec. Source Coupl. Lang. Tgt. Exec.

pr
el

im
in

ar
y

re
gu

la
r

co
m

pa
ri

so
n

im
pe

ra
ti

ve
de

cl
ar

at
iv

e

us
er

-d
efi

ne
d

re
co

rd
ed detec.

fix
ed

ov
er

w
ri

ta
bl

e
ex

te
nd

ab
le

cu
st

om TL G
PL

in
-p

la
ce

ou
t-

of
-p

la
ce

on
lin

e
of

fli
ne

si
m

pl
e

co
m

pl
ex

Manual specification

Ronström • • • • • •
Operator-based

Shneiderman • • • • • •
Ambler SQL • • • •1 • • •
PRISM • • • •1 • • •

1 SQL

Figure 2.6 Classification of the relational dataware approaches

on previous practical experiences with their own schema definition language,
the approach is completely theoretical. Nevertheless, deducing from the fact
that it is often cited by other coupled evolution approaches, it provided in-
spiration much inspiration. It is, amongst others, cited by [Sprinkle, 2003],
[Lerner, 2000] and [Curino et al., 2008a].

Ambler and Sadalage [2006] propose an agile and evolutionary design of a
relational database. Their book discusses database refactoring, evolutionary
data modeling, database regression testing, configuration management for
database artifacts and sandboxes for developers.

PRISM is a schema evolution workbench providing schema modification
operators, tools to evaluate schema change effects, translation of old queries,
automatic data migration, and documentation of intervened changes [Curino
et al., 2009, 2008a,b]. Migration predictability is achieved by characterizing
the extent of information preservation in response to schema changes, and by
automating data conversion.

Additional Publications. Some publications do not discuss ap-
proaches to coupled evolution, yet are still relevant to the domain of coupled
evolution. These publications improve the understanding of coupled evolu-
tion in the technological space, present approach-independent case studies,
or discuss causes and consequences of coupled evolution. We discuss these
publications per technological space. In relational dataware, there are four
such publications.

Sockut and Goldberg [1979] introduce basic concepts of database reorgani-
zation. They classify database reorganizations into levels along the affected

31

A Survey on Coupled Software Language Evolution Chapter 2

construct. The end-user level represents data views, the infological level de-
fines attributes and relationships, the string level defines access paths, the
encoding level defines physical representation, and the physical device level
maps representation onto storage.

Ventrone and Heiler [1991] argue that, similar to database integration, do-
main evolution can create problems of semantic heterogeneity—i.e. clashes of
implicit semantics. These are similar to those encountered in database inte-
gration and similar solutions apply.

Roddick [1995] discusses schema versioning issues. He concludes for any
versioning solution: A database administrator should guide schema modi-
fications; Schema modifications should be symmetric—i.e. existing data is
viewable through new schema and later recorded data is viewable through
previous schema; And schema modifications should be expressed in algebraic
operations for formal verification.

2.5.3 Object-oriented Dataware

In object-oriented dataware, schemas are defined using classes, which can
inherit from other classes and which define attributes or associations to other
classes. A database consists of objects which are instances of these classes.

Casais [1995], Benatallah [1999], as well as Rashid and Sawyer [2005] present
categories of approaches for object-oriented data-ware which we have com-
bined to group the many approaches in this technological space. Operator-
based and matching approaches modify the schema and database in-place and
specify the schema evolution either imperatively or declaratively. Versioning
and view-based approaches allow to have different schema versions present
at the same time and transform the database between these versions out-of-
place. Hybrid approaches combine complementary approaches. Figure 2.7
enumerates the approaches from object-oriented dataware together with their
classification.

Operator-based Approaches. Operator-based approaches specify
schema evolution imperatively as a sequence of schema modification opera-
tors. An operator application not only adapts the schema, but also triggers
in-place migration of the database to restore a consistent state.

Banerjee et al. [1987a, 1987b] present the semantics of a fixed set of primi-
tive operators for ORION. The operators are sound—i.e., preserve the schema
invariants—and complete—i.e., are expressive enough to transform between
any two schemas. They are implemented by hiding values from the database
which can be performed online. Similar approaches are proposed for Gem-
Stone by Penney and Stein [1987] , for Sherpa by Nguyen and Rieu [1989] and
for F2 by Al-Jadir and Léonard [1998] . While GemStone supports only offline
migration, Sherpa automatically propagates changes of a class to its instances.
To improve implementation and performance, F2 splits objects into multiple

32

Section 2.5 Dataware

Evolution Migration Eval.

Spec. Source Coupl. Lang. Tgt. Exec.

pr
el

im
in

ar
y

re
gu

la
r

co
m

pa
ri

so
n

im
pe

ra
ti

ve
de

cl
ar

at
iv

e

us
er

-d
efi

ne
d

re
co

rd
ed detec.

fix
ed

ov
er

w
ri

ta
bl

e
ex

te
nd

ab
le

cu
st

om TL G
PL

in
-p

la
ce

ou
t-

of
-p

la
ce

on
lin

e
of

fli
ne

si
m

pl
e

co
m

pl
ex

Operator-based

Banerjee ORION • • • • •
Penney GemStone • • • • •
Ngyuen Sherpa • • • • •
Al-Jadir F2 • • • • • •
Ferrandina O2 • • • •1 • •
SERF PSE • • • •2 • •
Schema matching

OTGen • • • • • •
TESS • • • • • • •
Draheim • • • •3 • • •
Class versioning

Skarra ENCORE • • • • • •
Monk CLOSQL • • • • • •
SADES Jasmine • • • • • • •
Schema versioning

Kim ORION • • • • •
Andany Farandole • • • • •
Clamen • • • • • •
Lautemann COAST • • • • • •
Bouneffa GORM • • • • • •
View-based

Tresch COCOON • • • •4 • •
EVER • • • •5 • •
Brèche O2 • • • •6 • •
TSE GemStone • • • •7 • • •
Hybrid

Benatallah • • • •2 • • •
1 C++ 2 OQL 3 Java 4 COOL 5 EVER 6 VDL 7 MultiView

Figure 2.7 Classification of the object-oriented dataware approaches

33

A Survey on Coupled Software Language Evolution Chapter 2

objects (multi-objects), distributing inherited attributes to objects specific to
the class they were inherited from.

In addition to high-level operators that are composed of primitive opera-
tors [Zicari, 1991, Brèche, 1996], Ferrandina et al. present operators to redefine
and remove a class as a whole in O2 [Ferrandina et al., 1995, Brèche and
Wörner, 1995]. To guarantee consistency between schema and data, a default
migration function is associated to each class that has been modified. O2 of-
fers the possibility to overwrite the default migration functions by attaching
custom migration functions encoded in a general-purpose language.

Besides a language to implement custom migrations, SERF (Schema evolu-
tion through an Extensible, Re-usable and Flexible framework) also provides
a template mechanism to extend the predefined couplings with a new oper-
ator [Claypool et al., 1998, 2000]. However, the flexibility comes at the price
that the migration can no longer be performed online.

Schema Matching Approaches. Schema matching approaches de-
rive the in-place migration based on a difference between schema versions that
is either recorded or detected. The difference is a declarative specification of
the changes between the two schema versions.

OTGen (Object Transformer Generator) records changes performed on a
schema by updating a transformation specification from which a migrator
can be generated [Lerner and Habermann, 1990]. For each simple change
applied to the schema, OTGen adds default rules to the transformation that
preserve consistency between database and schema, and affect the database
as little as possible. To support more complex migrations, the transformation
can be manually modified using commands to initialize variables, perform
context-dependent changes, move data, create objects and share information
among objects.

TESS (Type Evolution Software System) derives migration rules by detect-
ing changes between two schema versions [Lerner, 1997, 2000]. The detection
is based on a comparison algorithm with three stages that compare classes
by their name, use sites or structurally. TESS allows to customize the com-
parison by selecting which stages are used, which classes are compared and
which rules have to be acknowledged. TESS verifies whether the resulting mi-
gration rules are complete, i.e., cover the whole schema. TESS was evaluated
by means of a case study and two experiments, showing that it performs well
in case of strong naming and structural similarities.

Draheim et al.propose a matching approach for object-oriented schemas
that are mapped to relational schemas via object-relational mapping [Dra-
heim et al., 2004, Bordbar et al., 2005]. For simple changes, they generate SQL
statements for updating the relational schema and Java code for data migra-
tion which can be customized. The migration is performed offline by cloning
the data and in-place by turning off the constraints during migration. The
approach has been evaluated in an industrial system for collecting distributed
measurement data.

34

Section 2.5 Dataware

Class Versioning Approaches. Class versioning approaches allow
several versions of the same class to be present at the same time. They provide
mechanisms to perform an out-of-place migration of instances from one class
version to another.

Skarra and Zdonik [1986] propose to manage all versions of a class interface
in a common version set interface. Additional error handling is added to
existing classes, to prevent invalid (outside domain) and undefined properties.
To support database migration, an object of class can be transformed into an
object of another as part of the interface.

Monk and Sommerville [1992, 1993] propose to use update and backdate
functions on classes to allow for more flexible migration. The update and
backdate functions are user-defined with the query language CLOSQL, but
applied automatically when needed. Combination of update and backdate
functions allows objects of any class version to be transformed online to any
other version.

SADES (Semi-Autonomous Database Evolution System) employs aspect-
orientation to make migration code independent of the changed classes [Rashid
and Sawyer, 2000]. Thereby, SADES can be easily adapted to different def-
initions of conformance of the objects to the classes. SADES was exten-
sively evaluated by a qualitative and quantitative comparison to related ap-
proaches [Rashid and Sawyer, 2005].

Schema Versioning Approaches. Schema versioning approaches
version the schema as a whole in contrast to class versioning approaches.

Kim and Chou [1988] extend Banerjee’s approach for ORION to derive new
schema versions instead of changing the schema. Schema evolution is speci-
fied imperatively using the same operators, but new invariants and operators
are necessary to manage schema versions. Andany et al. [1991] propose a
similar approach for Farandole 2 which is also able to version sub schemas.

Clamen [1994] proposes to specify evolution declaratively by relating differ-
ent schema versions which can also be used for schema integration. For each
schema version, an interface is provided. Attributes can be shared between,
independent of, derived from, or dependent on other interfaces. Whenever
an attribute value is modified, dependent attributes in other interfaces need
to be updated.

Lautemann [1996, 1997] proposes an approach which specifies the evolu-
tion imperatively. Migration between objects of different schema versions is
specified by forward and backward migration functions. For certain schema
changes, default migration functions are derived automatically, and can be
overwritten by custom functions. Bouneffa and Boudjlida [1995] presents a
comparable approach, in which each object-schema version combination is
represented by a facet. User-defined mapping functions map objects from
one facet into another.

35

A Survey on Coupled Software Language Evolution Chapter 2

View-based Approaches. View-based approaches use the view mech-
anism of database systems to simulate schema evolution. View definition lan-
guages provide a declarative way to specify schema evolution. The database
is not modified, but is transformed out-of-place, when calculating the view
online.

Tresch and Scholl [1993] are the first to propose database views as a means
to manage schema evolution, as database migrations are expensive and break
compatibility of existing applications. Views can be used to simulate capacity-
preserving and -reducing changes, but cannot be used to simulate capacity-
increasing transformations. They envision an implementation in COCOON
using the view definition language COOL. Brèche et al.propose a similar ap-
proach for simulating schema changes in O2 using VDL (View Definition Lan-
guage).

Liu et al., Liu et al. [1993, 1994] enhance the graphical constructs used
in Entity Relationship diagrams, and develop EVER (EVolutionary ER dia-
grams). EVER diagrams can be translated into relational or object-oriented
database schemas. For each schema version, a consistent, updatable view is
maintained. The user has to specify derivation relationships between schema
versions. For capacity-increasing changes, new attributes are added to the
underlying database schema.

TSE (Transparent Schema Evolution) also supports a view-based simu-
lation of capacity-increasing changes [Ra and Rundensteiner, 1995b, 1997,
Crestana-Jensen et al., 2000]. Schema changes mapped onto views are ex-
pressed in the view definition language MultiView. Thereby, each object in-
stance can be accessed directly using different schema versions. Only for
capacity-increasing changes, the actual database schema is changed. Besides
the set of primitive changes known from other approaches, TSE was extended
to handle more complex changes [Ra and Rundensteiner, 1995a].

Hybrid Approaches. Benatallah [1999] proposes a hybrid approach
that combines schema versioning and schema modification. When a schema
change operator is applied, the user can decide whether the current schema
version is modified or a new version is created. A language based on the
standardized Object Query Language (OQL) is provided to define arbitrary
migration semantics. Depending on whether the schema is modified or not,
the migration specification is used to migrate the database in-place or out-of-
place.

Additional Publications. In object-oriented dataware, five publica-
tions do not address approaches, but focus on coupled evolution from differ-
ent perspectives.

Casais [1995] presents a survey of techniques to manage class evolution in
object-oriented systems. On the class level, he distinguishes: tailoring which
creates subclasses; surgery which uses change primitives; versioning; and

36

Section 2.5 Dataware

reorganization which performs more complex changes. On the object level,
Casais distinguishes: change avoidance, conversion, and filtering.

Meyer [1996] addresses schema evolution from the perspective of appli-
cations which need to persist objects. He discusses different forms of persis-
tency, i.e., files, relational databases and object-oriented databases. Migrations
are performed online but need to be implemented manually without any cou-
pling to the evolution.

Pons and Keller [1997] propose to organize operators in a multi-level cat-
alog in which operators from higher levels are implemented using operators
from lower levels. The catalog shows which modifications can be performed
to the schema, starting from the primitives a database system provides.

Li [1999] identifies important issues in research on object-oriented schema
evolution. The issues are semantic integrity consisting of referential integrity
and consistency of constraints, schema evolvability encompassing structural
and behavioral evolution, as well as application compatibility consisting of
downward and upward compatibility.

Vermolen and Visser [2008] present a cross-space generalization of coupled
evolution and propose to generate a domain-specific transformation language
for the metalevel . The generalized solution is applied by a coupled evolution
tool set for object-oriented schemas and relational databases.

2.5.4 Intra-Space Interpretations

Schema evolution is generally user-defined to achieve flexibility. This is the
case for 23 out of the 26 approaches we identified. More recent approaches
generally focus on in-place and preferably lazy migrations, to cope with the
trend of increasing database size.

Due to the risks of migrating large data sets, research on dataware has
a stronger focus on preventing loss of data. Additionally, there is a more
explicit focus on the impact of schema evolution on other artifacts than the
database—mostly queries. Also, attention goes to the process of applying
coupled evolution [Roddick, 1995].

Originating in database support for versioning, an extension to schema
and class versioning is found in 8 out of the 26 approaches. Continuing this
extension, research has focused on supporting different software and differ-
ent versions of the same software in parallel on a single data set, thereby
satisfying availability requirements on the data set. Continuous support for
multiple versions involves support for reading and writing to the same data
from different perspectives of different schema versions, as well as support
for forward and backward migrations to convert data from one perspective to
another [Monk and Sommerville, 1993]. A field of research within dataware
focuses on using data views for schema evolution, comprising 4 out of the 26

approaches we found. Views neither change nor version the data, but allow
reading and generally writing of data from different version perspectives.

37

A Survey on Coupled Software Language Evolution Chapter 2

Evolution Migration Eval.

Spec. Source Coupl. Lang. Tgt. Exec.

pr
el

im
in

ar
y

re
gu

la
r

co
m

pa
ri

so
n

im
pe

ra
ti

ve
de

cl
ar

at
iv

e

us
er

-d
efi

ne
d

re
co

rd
ed detec.

fix
ed

ov
er

w
ri

ta
bl

e
ex

te
nd

ab
le

cu
st

om TL G
PL

in
-p

la
ce

ou
t-

of
-p

la
ce

on
lin

e
of

fli
ne

si
m

pl
e

co
m

pl
ex

Grammar matching

TransformGen • • • • • • •
Operator-based

Lever • • • •1 • • •
1 Jython

Figure 2.8 Classification of the grammarware approaches

From the rich history of dataware, one would expect that evaluation of
approaches is most thorough. This is clearly not the case. Only 6 out of 26

approaches received some form of non-preliminary evaluation.

2.6 G R A M M A RWA R E

Grammarware deals with grammars (the intensional definition), which define
a language (the extension). An element of a language is referred to as a word,
sentence, or in the context of a programming language, a program.

In contrast to the dataware space, migration is less common in the gram-
marware space. Main programming languages (such as Java or C++) try to
avoid the need for migration. New versions of such languages typically in-
clude older versions of the same language. Although this may degrade the
quality of the language, and thus the quality of the programs, it appears sus-
tainable for slowly evolving languages. Domain specific languages on the
other hand are less stable and need more extensive evolution support.

2.6.1 Technological Space Specifics

Grammarware is the traditional technological space of programming and pro-
gramming languages. In comparison to databases, a program is typically
spread over several textual artifacts, each of it tending to be rather small
than big. Programs are edited manually or transformed automatically into
other programs or other software artifacts. There is a long tradition in pro-
gram transformation, typically performed out-of-place. Even typical in-place
transformations like refactorings are often performed by out-of-place trans-

38

Section 2.6 Grammarware

formation systems. In contrast to other technological spaces, there is a strong
emphasis on language semantics in grammarware. If a language evolves syn-
tactically, migration is required to preserve the semantics of programs. Typi-
cally, this is hard to achieve and thus programming language evolution tries
to avoid the need for migration by maintaining backward compatibility.

2.6.2 Approaches

There are a few approaches which address migration explicitly by coupled
evolution. As is shown in Figure 2.8, we group them into the two categories
of grammar matching and operator-based approaches. Though originally pro-
posed for modelware approaches [Rose et al., 2009], these categories fit here
as well.

Grammar Matching Approaches. TransformGen comprises a gram-
mar matching approach that infers the migration specification between two
grammar versions from a recorded grammar history [Staudt et al., 1987, Gar-
lan et al., 1994]. The migration is specified as a transformation on the abstract
syntax tree. Starting from an identity transformation, the transformation is
altered when editing operations are applied to the grammar. Additionally
the migration specification can be customized by the user. Thereby, a static
analysis helps to prevent errors. TransformGen was applied to evolve the
tree-oriented programming language ARL.

Operator-based Approaches. Lever is an operator-based approach
that provides a suite of operators coupling grammar evolution with word mi-
gration [Jürgens and Pizka, 2006, Pizka and Jürgens, 2007b,a]. Furthermore,
it supports the migration of compilers. Lever comes with three DSLs embed-
ded in a scripting language: One for specifying grammar evolution, one for
specifying word migration, and another one offering abstractions on top of
the other two for defining coupled operators. It has been evaluated using a
fictitious evolution of a catalog description language.

Additional Publications. In grammarware, language evolution is
considered an interesting problem on its own. Lämmel [2001] presents an
operator suite just for grammar evolution. A similar operator suite is used in
a lightweight verification method to maintain the correspondence between
grammar versions [Lämmel and Zaytsev, 2009a], e.g.between different re-
leases of the Java Language Standard [Lämmel and Zaytsev, 2009b].

Overbey and Johnson [2009] discuss a side effect when programming lan-
guages like Fortran and Java evolve but migration is avoided. In this case, old
programs use outdated constructs instead of newer ones introduced later. For
example, the introduction of assert statements, more advanced for loops or
generics to the Java language, rendered older (generally more elaborate) con-
structions that had a similar goal outdated. They envision a refactoring-based

39

A Survey on Coupled Software Language Evolution Chapter 2

solution to the problem where refactorings replace the old constructs with the
new and better ones.

2.6.3 Intra-Space Interpretations

Since languages are more stable than metamodels and schema, there are only
two approaches for coupled evolution in grammarware. Furthermore, migra-
tion is often avoided by backward compatible evolution. Most research on
language evolution focuses on understanding language evolution in gram-
marware by formalizing the effect of different evolution operators. One of
the approaches for coupled evolution is also based on such operators, and
the other is based on declarative evolution specifications. Since programs are
development time artifacts which are most of the time unused, there is no
need for online migration in grammarware. Thus, both approaches perform
migrations offline. Using a general-purpose language for the migration is
somehow surprising, since grammarware offers many program transforma-
tion languages. But these languages typically support only out-of-place trans-
formations, while the Lever approach focuses on in-place migrations. Both
approaches allow for user-defined extensions of couplings and are evaluated.

As opposed to general purpose languages, domain specific languages tend
to evolve faster and more extensively. The rapidly increasing use of domain
specific languages implies an increasing need for coupled evolution in the
grammarware domain. Similar to what we see in the modelware domain over
the past ten years, research on coupled evolution in the grammarware domain
is therefore likely to expand in the upcoming years.

2.7 X M LWA R E

In XMLware an XML schema (intensional definition) defines a language or
format of XML documents (element). Schemas are expressed in schema lan-
guages like DTD [200, 2008] or XML Schema (XSD) [Walmsley, 2001], both
recommended by the World Wide Web Consortium. Similar to databases in
the dataware space, XML documents are often used by applications. The
structure of the documents therefore needs to evolve when requirements or
the context of the application change.

2.7.1 Technological Space Specifics

We can distinguish two kinds of XML documents: user and application doc-
uments. User documents are edited manually by a user and are automat-
ically processed or transformed into other software artifacts. Examples are
HTML documents, or XML configuration files. Like programs in grammar-

40

Section 2.7 XMLware

Evolution Migration Eval.

Spec. Source Coupl. Lang. Tgt. Exec.

pr
el

im
in

ar
y

re
gu

la
r

co
m

pa
ri

so
n

im
pe

ra
ti

ve
de

cl
ar

at
iv

e

us
er

-d
efi

ne
d

re
co

rd
ed detec.

fix
ed

ov
er

w
ri

ta
bl

e
ex

te
nd

ab
le

cu
st

om TL G
PL

in
-p

la
ce

ou
t-

of
-p

la
ce

on
lin

e
of

fli
ne

si
m

pl
e

co
m

pl
ex

Manual specification

Tan XSD • • • • • •
Operator-based

XEM DTD • • • • • •
Lämmel DTD • • • •1 • •
XEvolution XSD • • • •2 • •

1 XSLT 2 XQuery

Figure 2.9 Classification of the XMLware approaches

ware, these kinds of documents are unused most of the time. Application
documents are employed by applications to store or retrieve data. Examples
are XML databases, or XML-based log files. In contrast to the dataware space,
XML documents are more portable than databases, but due to their relatively
inefficient format XML documents are typically not accessed as frequently.

XML documents vary largely in size. Large documents like genome de-
scriptions can reach a size which makes it impossible to entirely parse them.
Furthermore, the XMLware space provides mature language and tool sup-
port for transforming XML documents. These transformations are typically
performed out-of-place.

2.7.2 Approaches

Figure 2.9 shows the XMLware approaches as well as their classification.
We distinguish manual specification and operator-based approaches. Again,
these categories where originally proposed for modelware approaches [Rose
et al., 2009] but fit here as well.

Manual Specification Approaches. Tan and Goh [2005] present
a manual specification approach which requires the user to manually spec-
ify the migration of documents from one schema version to another. They
propose an extension to XML Schema that allows to declaratively specify the
differences to previous versions directly in the schema. Additions, removals,
moves, and renames of elements and attributes are supported. The informa-
tion is then used for migrating documents between different schema versions.

41

A Survey on Coupled Software Language Evolution Chapter 2

Operator-based Approaches. Operator-based approaches provide
a set of reusable coupled operators, which are for xmlware mostly different
from the operators found in dataware approaches. The user specifies schema
evolution imperatively by a sequence of operator applications. Since the op-
erators work at the schema level as well as at the document level, such a
sequence specifies both schema evolution and document migration.

The XML Evolution Manager XEM addresses the evolution of DTD schemas
[Su et al., 2001]. It provides a complete, minimal and sound suite of primitive
operators. At the schema level, these operators work on DTD schemas rep-
resented as labeled graphs. At the document level, they operate on labeled
ordered trees.

Lämmel and Lohmann [2001] suggest transformation operators for DTD
schemas from which specifications for document migration are induced. The
effect of the operators at the schema level are described as informal text,
whereas the migrations are specified by XSLT. The operators preserve the
well-formedness of both DTD schemas and XML documents. Moreover, the
operators are classified whether they preserve, extend, or reduce the structure
of XML documents.

X-Evolution is a tool addressing the evolution of schemas defined in XML
Schema [Guerrini et al., 2007]. Like XEM, it provides a complete, minimal
and sound suite of primitive operators. At the schema level, the operators
work on schemas represented as labeled trees. At the document level, an
incremental validation algorithm performs a minimal number of insertions,
modifications and deletions to make a document valid again. To overwrite
this default migration, a DSL provides means for the specification of custom
migrations [Guerrini and Mesiti, 2008]. This DSL extends the standardised
XQuery Update.

2.7.3 Intra-Space Interpretations

There are few approaches for coupled evolution in XMLware. Main stream
schema evolution seems to be either restricted to backward compatibility in
order to avoid migration or to go hand in hand with manually written migra-
tion specifications. 2 of the 4 approaches address XSD as a schema definition
language; The other two approaches cover DTD. Operator-based approaches
dominate the technological space of XMLware, comprising a total of 3 out of
4. Only 2 of the 4 approaches allow user-defined extensions of the migra-
tion specification by overwriting. Though transformation is a central concept
in XMLware, only two approaches reuse standard XMLware transformation
technology for the migration. Because XML documents are typically not ac-
cessed frequently at runtime, there is not much need for online migration in
XMLware. All approaches support only offline migration. Moreover, they
have in common that they require user-defined specification of the evolu-

42

Section 2.8 Modelware

tion and are not evaluated. 2 of the 4 approaches support in-place migration
needed for large XML documents.

2.8 M O D E LWA R E

In the modelware space, a metamodel (intensional definition), defines a mod-
eling language (extension). An element of a modeling language is called a
model. Metamodels are expressed in a metamodeling formalism like MOF
as standardized by the Object Management Group [2006], Ecore of the Eclipse
Modeling Framework (EMF) [Steinberg et al., 2009], or MetaGME of the Generic
Modeling Environment (GME) [Ledeczi et al., 2001]. All these formalisms
provide object-oriented means similar to UML class diagrams.

Evolution of metamodels is common and can have large impact on exist-
ing models. Additionally, because of the relative small model size, lack of
need for constant availability of models and well defined model structure
(rich metamodels), there is much potential for automation of migration upon
evolution.

Street and Pettit [2005] analyzed the evolution of UML from version 1.4 to
2.0. They classified changes to the UML metamodel into additions, modifi-
cations, and deletions. Most of the changes were additions which allow to
improve existing models. Required migrations for modifications and dele-
tions could be mostly automated.

Another study on automated coupled evolution was performed by Her-
rmannsdoerfer et al. [2008]. They present a classification of changes with
respect to their potential for automation. Applying the classification to the
evolution of two industrial metamodels indicated a high potential for automa-
tion: For over 80 percent of the changes, the corresponding migration could
be given automatically.

The combination of frequent evolution and high potential for automation
triggered a large body of research and high number of publications on the
topic.

2.8.1 Technological Space Specifics

Specification and execution of model migration is always separated in time,
since there might be several models for a metamodel, possibly distributed
over several machines. In addition to the metamodel, modeling languages of-
ten have an explicit semantics, and thus a migration specification is required
to preserve the semantics of all the models. Models are usually rather small,
since modeling is about abstracting away unnecessary details, and thus mi-
gration performance is usually not an issue.

43

A Survey on Coupled Software Language Evolution Chapter 2

The transformation of models from one metamodel to another is a well-
established research area in modelware. However, existing model transfor-
mation languages are not particularly suited for specifying migration [Sprin-
kle, 2003]. Exogenous transformation languages [Mens and Van Gorp, 2006]
target completely different source and target metamodels and thus require to
specify the complete mapping from the source to the target metamodel, lead-
ing to a lot of identity rules. Endogenous transformation languages [Mens
and Van Gorp, 2006] focus on the transformation of a model within the same
metamodel and thus require the metamodel to stay the same, which is not the
case for metamodel evolution. Exogenous transformation languages usually
perform transformation out-of-place, and endogenous languages in-place.

Another research area related to model migration is model matching and
differencing, which can be employed to compare different metamodel ver-
sions.

2.8.2 Approaches

Rose et al. [2009] compare different approaches to automate model migra-
tion in response to metamodel evolution. They identify three categories of
approaches: manual specification, metamodel matching, and operator-based
approaches. We take this comparison which is restricted to Ecore as a meta-
modeling formalism as a starting point, but consider the other metamodeling
formalisms as well. Figure 2.10 lists all the modelware approaches and groups
them according to three categories.

Manual Specification Approaches. Model migrations are spec-
ified manually through custom model transformation languages in manual
specification approaches. Thereby, specific model migration constructs reduce
the effort for building a migration specification.

Sprinkle et al.[Sprinkle, 2003, Sprinkle and Karsai, 2004] introduce a vi-
sual language to declaratively specify the differences between two versions
of a GME-based metamodel. The Model Change Language MCL is another
visual migration language targeting GME [Narayanan et al., 2009, Balasubra-
manian et al., 2009]. With both languages, the user does not only specify the
metamodel differences, but defines a model migration based on them. This
overwrites the default copying behavior. The migration is performed out-of-
place and offline. MCL permits a number of idioms that—according to the
authors’ experience—cover most common migration cases. Migration algo-
rithms not covered by MCL can be specified imperatively using a C++ API.
Sprinkle’s approach is evaluated by an experience report about its application
in an industrial context.

Flock is a textual migration language for EMF-based models [Rose et al.,
2010]. Here, only the model migration is specified. Differences between meta-
model versions are not made explicit. Instead, Flock automatically copies

44

Section 2.8 Modelware

Evolution Migration Eval.

Spec. Source Coupl. Lang. Tgt. Exec.

pr
el

im
in

ar
y

re
gu

la
r

co
m

pa
ri

so
n

im
pe

ra
ti

ve
de

cl
ar

at
iv

e

us
er

-d
efi

ne
d

re
co

rd
ed detec.

fix
ed

ov
er

w
ri

ta
bl

e
ex

te
nd

ab
le

cu
st

om TL G
PL

in
-p

la
ce

ou
t-

of
-p

la
ce

on
lin

e
of

fli
ne

si
m

pl
e

co
m

pl
ex

Manual specification

Sprinkle GME • • • • • • •
MCL GME • • • • • •
Flock Ecore • • • • •
Metamodel matching

Gruschko Ecore • • • •1 • •
Geest MS DSL • • • •2 • • •
Cicchetti Ecore • • • •3 • •
AML Ecore • • • •3 • • •
Operator-based

Hößler MOF • • • • •
Wachsmuth MOF • • • •4 • •
COPE Ecore • • • •5 • • •

1 ETL 2 C# 3 ATL 4 QVT 5 Groovy

Figure 2.10 Classification of the modelware approaches

only those model elements which conform to the evolved metamodel. The
user then iteratively redefines the migration specification to migrate non-
conforming elements. Using the Petri net example from Wachsmuth [2007b],
Flock has been compared to migration specifications in model transformation
languages ATL and Ecore2Ecore as well as to an operator-based approach
with COPE which we introduce later.

Metamodel Matching Approaches. In metamodel matching ap-
proaches, the differences between two metamodel versions are automatically
detected. These are stored in a declarative difference model from which a
migration specification is generated.

Gruschko et al.support the automatic detection of simple changes in Ecore
metamodels [Gruschko et al., 2007, Becker et al., 2007]. They propose au-
tomatic migration steps for resolvable changes and envision to support the
user in overwriting the migration specification for unresolvable changes. The
approach is only prototypically implemented and thus not yet evaluated.

45

A Survey on Coupled Software Language Evolution Chapter 2

G. de Geest and S. D. Vermolen and A. van Deursen and E. Visser [2008] ap-
ply a similar approach in the context of Microsoft DSL Tools. The difference
model is obtained by a possibly human-aided comparison of the metamodel
versions. Only simple changes can be detected and the generated migration
specification can be overwritten. The approach has been evaluated on evolv-
ing metamodels from the Web Service Software Factory (WSSF).

Cicchetti et al. [2008] also detect complex changes. Here, the difference
model consists of simple changes which are interpreted in terms of complex
changes. The migration specification consists of a set of model transforma-
tions to be executed consecutively. Since this is prevented by interdependent
changes, they characterize dependencies between complex changes [Cicchetti
et al., 2009].

The Atlas Matching Language AML allows the user to parametrize the de-
tection of complex changes [Garcés et al., 2009]. Therefore, the user combines
existing or user-defined heuristics to a matching algorithm. From a difference
model obtained by such an algorithm, an ATL transformation specifying the
migration is automatically generated. The approach was evaluated on the
Petri net example from Wachsmuth [2007b], and on the Java metamodel from
NetBeans.

Operator-based Approaches. Operator-based approaches provide—
similar to corresponding grammarware and XMLware approaches—a set of
reusable coupled operators that work at the metamodel level as well as at the
model level. The operator sets often show much resemblance to the operator
sets found in approaches for evolution of object-oriented databases.

Hößler et al. [2005] formalize a fixed suite of reusable coupled operators.
The completely theoretical approach is based on a generic instance model
supporting versioning and is neither implemented nor evaluated.

Wachsmuth [2007b] presents an operator suite for the MOF metamodeling
formalism. Based on ideas from grammar evolution [Lämmel, 2001], opera-
tors are classified according to language and model preservation properties.
For migration, the evolution specification is translated into a QVT Relations
model transformation.

COPE adds tool support for the evolution of Ecore-based metamodels to
EMF [Herrmannsdoerfer et al., 2009]. It provides an extendable suite of cou-
pled operators. In addition to user-defined evolution specifications, COPE
supports recording of operator applications. The operators are specified in
a DSL embedded into a general-purpose language. COPE is the only mod-
elware approach performing in-place migration. Its evaluation by reverse
engineering the evolution of the Palladio Component Model and the Graph-
ical Modeling Framework [Herrmannsdoerfer et al., 2009, 2010a] proved the
applicability of operator-based approaches in modelware.

Additional Publications. There is one remaining publications which
does not propose an approach, but which analyzes evolution operator suites.

46

Section 2.9 Inter-Space Interpretations

Based on literature and several case studies, Herrmannsdoerfer et al. [2010b]
derive a library of coupled operators for evolution of EMOF-like metamodels
(Chapter 3). The library is complete with respect to practical usage, which is
validated against several case studies. They classify the operators and present
and apply coupled operator features, such as language preservation, model
preservation and bidirectionality, which are further discussed in Chapter 3.

2.8.3 Intra-Space Interpretations

Most approaches target MOF or its implementations, in total 7 out of the
10 identified approaches. MOF is a well-recognized standard in modelware.
Approaches targeting the same modeling framework can be easily compared
with each other, leading to evaluations by comparison.

6 out of the 10 approaches use declarative evolution specifications, since
they define or make use of declarative model transformation languages. In
modelware, there is only one recording approach which is probably more
complex to implement, i.e., most approaches focus on specifying the model
migration after the metamodel evolution has been performed.

To be able to specify semantics-preserving model migrations, most ap-
proaches allow at least to overwrite the migration specification 7 out of the
10 in total. But only two approaches can be extended by reusable couplings.
Most of the approaches reuse or refine existing model transformation lan-
guages (7 out of 10): Manual specification approaches tailor model trans-
formation languages to migration (3 approaches), metamodel matching ap-
proaches synthesize difference specifications (3 approaches), and Wachsmuth’s
operator-based approach specifies operators in QVT (1 approach). Only one
approach performs in-place migration, since exogenous transformation lan-
guages that are required for metamodel evolution do not support in-place mi-
gration. None of the 10 approaches can perform migration online—probably
since models are design-time artifacts, thus being stored most of the time and
not in use.

Finally, 5 out of the 10 approaches are evaluated, 4 of which at least on a
regular level, thus exceeding a preliminary state.

2.9 I N T E R - S PA C E I N T E R P R E TAT I O N S

In the previous sections, we addressed the various technological spaces indi-
vidually. In this section, we interpret approach classifications across techno-
logical space boundaries, yielding avenues for future research. We address
common and uncommon features, discuss portability of techniques across
space boundaries, and analyze correlations between features.

47

A Survey on Coupled Software Language Evolution Chapter 2

2.9.1 Common and Uncommon Features

To derive avenues for future research, we assessed which features received
much attention and which features received little attention. To this end, we
counted occurrences of each feature individually and compared these feature
counts within each composite feature, thus obtaining a cross-space interpre-
tation. In the following, we discuss the most common and most uncommon
features and derive avenues for future research.

Most approaches (32 out of 42) choose to have evolution defined by the
developer. Although this offers a user-verified and thereby most likely correct
evolution trace, it also requires a developer to first apply needed evolution by
editing the intensional definition and subsequently specify the same evolution
to be used as input to coupled evolution. Most approaches acknowledge the
redundancy in these steps, yet refrain from countermeasures such as detec-
tion or recording due to their complexity or practical limitations. Detection
and recording are often mentioned as directions of future work. Yet, only
6 approaches actually support detection and merely 3 approaches support
recording. The lack of means for obtaining evolution hampers the usability of
coupled evolution approaches. Detection, recording, or other approaches to
obtaining evolution need to be addressed in future research, to allow coupled
evolution approaches to be used in real-life development.

Most approaches (22 out of 35 that are overwritable) choose to use a trans-
formation language for specifying migration. 4 others choose to define a cus-
tom language, which generally resembles a transformation language, but of-
fers language constructs particularly useful for migration, such as automatic
identity migration of element parts that do not require adaptation. Neverthe-
less, still 9 approaches choose to use a general purpose language. Although
this choice is usually not explicitly motivated, it suggests a lack of a suitable
transformation languages within the technological space at hand. Transforma-
tion languages ease the construction of migrations and thus of coupled evo-
lution. Yet they also ease overwriting existing coupled operators and thereby
coupled evolution usability. Future research should fill the gap that many
coupled evolution approaches face.

The type of migration is primarily determined by the element under mi-
gration. Modelware, XMLware and grammarware all deal with elements that
do not require continuous availability, and therefore the approaches all favor
the simpler offline migration. In dataware, 18 out of the 26 approaches choose
to support online migration, as their database systems support live software.
Along the same lines, the small element size in modelware, XMLware and
grammarware enables a choice for out-of-place migrations for 12 out of the
16 approaches. In dataware, the database size generally enforces in-place mi-
grations. Out-of-place migration is only used if the migration is online and
the approach either uses versioning or views, which allow the migration to be
executed lazily or be postponed until needed.

48

Section 2.9 Inter-Space Interpretations

Finally, only 9 out of the 42 approaches present a regular evaluation. Addi-
tionally, 2 approaches compare to related approaches and 3 approaches pro-
vide preliminary (toy example) results. The remaining 28 approaches do not
present evaluation at all. On the one hand, this opens evaluation and ap-
proach comparisons (possibly within a technological space) as directions of
future research. On the other hand, it emphasizes the lack of evaluation cases
and benchmarks, thereby proposing development of such.

2.9.2 Feature Portability

With the feature model from Section 2.4, we are able to classify approaches
from the different technological spaces along the same criteria. Furthermore,
we found approaches from all technological spaces to fit into categories which
were originally proposed by Rose et al. [2009] for the modelware space. These
categories are manual specification, matching approaches, and operator-based ap-
proaches. The unique feature of manual specification approaches is a cus-
tom migration language for overwriting a default migration manually. For
matching approaches, it is a declarative evolution specification which is ei-
ther recorded or detected. The unique feature of operator-based approaches is
an imperative evolution specification as a sequence of operator applications.
Notably, the dataware space offers a wider range of evolution techniques be-
yond these categories. Some of these techniques are specific to databases or
schemas, yet others can be ported to different spaces. In this section, we
discuss such portable techniques and features.

Element views offer a different presentation of the element, yet leave the
element unchanged. Views are an integral part of many database systems and
are commonly used to continuously support different versions of a schema [Liu
et al., 1993, 1994, Ra and Rundensteiner, 1995a,b, 1997, Crestana-Jensen et al.,
2000], or to support coupled evolution without having to change or recreate
the original database [Tresch and Scholl, 1993, Brèche et al., 1995]. In mod-
elware, grammarware and XMLware, (editable) views are not widely used,
hence their application to coupled evolution is lacking. Nevertheless, the
solutions that views can offer may prove equally beneficial in other spaces,
posing views for coupled evolution as a direction for future research.

In addition to the features present in the feature model, dataware ap-
proaches can also be classified along the type of versioning they use. Ver-
sioning can be class-based [Skarra and Zdonik, 1986, Monk and Sommerville,
1992, Rashid and Sawyer, 2000], schema-based [Kim and Chou, 1988, Andany
et al., 1991, Clamen, 1994, Lautemann, 1997, Bouneffa and Boudjlida, 1995],
view-based or hybrid (a combination of the previous) [Benatallah, 1999]. Both
data and schema versioning are common. As versioning primarily applies to
dataware approaches at present, we decided to exclude it from the feature
model. Yet, although versioning is not explicitly used in coupled evolution
approaches in modelware or grammarware, there is generally an implicit and

49

A Survey on Coupled Software Language Evolution Chapter 2

frequently manual approach to versioning. Furthermore, there is a body of
research covering versioning in the modelware space [Altmanninger et al.,
2009], and its usage in the dataware space suggests direct applicability in the
other spaces.

Similar to databases, models may be used for live systems. Coupled evolu-
tion of live systems requires in-place migrations. Similarly, the size of a model
or a program may enforce in-place transformations. Yet, few techniques exist
to support in-place transformations in modelware or grammarware. In-place
transformations and their application in coupled evolution provides a direc-
tion for future research.

2.9.3 Feature Correlations

Correlations between features can help to identify feature combinations that
are often used together or combinations that are rarely used together. Of-
ten used combinations may suggest that the features can be easily combined,
and that these combinations should be exploited, when implementing an ap-
proach for a new technological space. In contrast, rarely used combinations
may indicate that the features are hard to combine, and thus hint at possible
avenues for future research.

To identify correlations between two features, the presence of a feature in
an approach can be modeled as a binary variable. To measure correlations
between two binary variables, we use the Phi correlation test [Hilderman and
Peckham, 2007]. We have applied the Phi correlation test to all combina-
tions of two features from different composite features. We excluded features
within the same composite feature, as they are largely orthogonal to each
other and thus by definition show a strong negative correlation. We also
excluded the technological spaces as features, since the presence of certain
features within technological spaces is already covered by the intra-space in-
terpretations. In the remaining combinations, we found no two features that
exhibit strong correlation. Figure 2.11 gives an overview over the weak cor-
relations that we identified. In the following, we discuss the positive and
negative correlations together, as they often imply each other.

Since declarative approaches define the evolution as a mapping between
the versions of the intensional definition, they often detect the evolution spec-
ification, allow to overwrite the migration specification, and perform the mi-
gration out-of-place. However, they rarely allow the users to define the speci-
fication or restrict them to fixed couplings, and seldom perform the migration
in-place. To improve declarative approaches, predefined couplings provide
a means to reuse recurring migration specifications across intensional def-
initions, user-defined evolution specifications enable the definition of more
correct migrations, and in-place migration increases migration performance—
especially for large elements.

50

Section 2.9 Inter-Space Interpretations

weak positive (+) weak negative (–)
user-defined online .48 user-defined regular .53

imperative user-defined .47 user-defined offline .48

imperative fixed .47 imperative overwritable .48

imperative in-place .45 declarative fixed .44

detected regular .45 imperative detected .43

declarative detected .45 declarative in-place .42

declarative overwritable .44 imperative out-of-place .41

declarative out-of-place .38 declarative user-defined .39

detected offline .35 detected online .35

offline regular .34 imperative custom .34

custom comparison .31 GPL out-of-place .34

GPL in-place .31 out-of-place regular .34

in-place regular .31 fixed TL .34

recorded regular .31 online regular .34

Figure 2.11 Weak feature correlations ordered by strength

In contrast, since imperative approaches define the evolution as a sequence
of operators, they often require the user to define the evolution specifica-
tion, only support fixed sets of couplings, and perform the migration in-place.
However, they rarely detect the evolution, allow to overwrite the migration,
perform the migration out-of-place, and implement a custom migration lan-
guage. Whereas out-of-place migration does not provide a clear advantage,
detecting the operation sequence automates the migration definition, over-
writable migration specifications enable more expressive specifications, and
custom migration languages better support the verification of migration spec-
ifications.

Approaches that detect the evolution specification often perform migration
offline and rarely online. In contrast, approaches with user-defined specifi-
cations often perform migration online and rarely offline. However, online
migration is desired in situations in which the elements are used at the same
time when the migration is performed. Approaches that extend a GPL to
specify migrations often perform migration in-place and rarely out-of-place.
It seems that embedded languages can be more easily extended to perform in-
place transformation. Approaches that are restricted to fixed couplings rarely
use an existing transformation language. Apparently, existing transformation
languages provide appropriate means to specify expressive migrations, but
do not provide a way to reuse migration specifications.

A regular evaluation is often conducted for approaches that are detected or
recorded, perform the migration in-place or offline, but rarely for approaches
that allow the user to define the evolution or perform the migration out-of-
place or online. We conjecture that such approaches currently do not provide
adequate tool support for applying them in practice. Therefore we recom-

51

A Survey on Coupled Software Language Evolution Chapter 2

mend further research into tool support for user-defined, in-place and offline
coupled evolution approaches.

2.10 E VA L U AT I O N

Finally, we evaluate the survey results in light of the methodology of the liter-
ature survey by discussing potential threats to the validity of our results. We
structure the threats according to the main phases of the survey methodology
as depicted in Figure 2.1.

2.10.1 Publication Selection

When selecting publications, we might miss publications important for the
survey due to a multitude of reasons.

The initial sources may not be complete enough to find all important pub-
lications: we might miss old or new publications, publications within a tech-
nological space, or a complete technological space. We mitigated the first two
issues by exhaustive citation browsing, which however only helps to complete
publications within a single technological space. To address the last issue, we
also took cross technological space publications into account in which experts
tie the ideas of different technological spaces together. Since there are however
not many of these publications, our survey may be biased.

The selection criteria may not be appropriate for unambiguously finding
all important publications. They may be too strict—e.g.we excluded schema
matching which can arguably also be applied for schema evolution. To mit-
igate this issue, we clearly excluded publications which do not directly sup-
port the migration of elements in response to the evolution of the intensional
definition. Moreover, the selection criteria may yield different results when
applied by different people. To ensure their unambiguity, we conducted a
pilot study as explained in Section 2.3.2. While the study confirmed the al-
ready high degree of unambiguity of the selection criteria, it also helped us to
further improve them.

Nevertheless, although we carefully selected the scope, some of the top-
ics outside the scope of this survey may be of interest to coupled evolution
in the context of a conformance relation. In particular, we excluded schema
matching (and schema integration) from the scope since in these approaches,
schemas do not have to show clear resemblance. Yet, schema matching can
thereby be considered to solve a more complex problem. This may yield dif-
ferent solutions, yet the solutions may still be of interest to coupled evolution.
Additionally, we excluded the domain of ontology evolution, as it does not
take element migration into account and API evolution as the extension is
not completely defined by the intensional definition. Although approaches

52

Section 2.11 Evaluation

in these domains may thereby not directly be applicable to coupled evolution
of artefacts related by conformance, indirectly they could provide inspiration
to new approaches. Further research is needed to include these additional
domains into the survey and into the classification.

2.10.2 Approach Classification

When classifying approaches according to the feature model, we might mis-
classify approaches due to a number of reasons.

We might have built a feature model that exhibits non-orthogonal features
within the same composite feature. To mitigate this threat, we checked cor-
relations between the features contained in each composite feature. Since all
these correlations have been strong negative, we concluded that the features
are orthogonal to each other.

To prevent duplicated classifications, we decided to classify approaches and
not publications. However, this may lead to an unbalance in representation,
since an approach with one publication gets as much attention as approaches
with more than one publication. To avoid this issue, we covered approaches
with more than one publication more extensively in the text. Moreover, se-
lected publications may either address multiple approaches (e.g.surveys), or
may not address a concrete approach (e.g.empirical studies). We decided to
not leave these publications out, but mentioned them in the “Additional Pub-
lications” section within the appropriate technological space.

The application of the feature model may yield different results, when ap-
plied by different people. To ensure the unambiguity of the features, we
conducted a pilot study as explained in Section 2.4.4. The study showed that
most of the approaches could be classified unambiguously, but also helped to
remove a few unambiguities in the feature model.

2.10.3 Interpretation

The interpretations of the classification within or across technological spaces
may be biased. To avoid the bias in the interpretations, we derived most
of the interpretations using a systematic approach. We derived intra-space
interpretations from the numbers of approaches for a certain feature within
a technological space. Similarly, we derived cross-space interpretations by
exploiting the feature model common to all technological spaces: we used
common and uncommon features, as well as correlations between features.

53

A Survey on Coupled Software Language Evolution Chapter 2

2.11 C O N C L U S I O N

In this chapter, we have reported on a systematic literature survey on coupled
evolution in the technological spaces of dataware, grammarware, XMLware
and modelware. While our initial focus was on eighteen conferences and
eleven journals, exhaustive reference browsing to include publications from
other venues yielded a research body that is comprised of 86 relevant publi-
cations of up to 40 years old.

Through a detailed reading of this research body, we identified 42 different
approaches to coupled evolution and derived a feature model that is indepen-
dent of technological spaces and was consequently used to characterize these
approaches systematically. We have characterized the approaches on the basis
of four main features: technological space, evolution, migration, and evalua-
tion. The resulting classification is useful as a reference work for researchers
in the field of coupled evolution, and helps them to identify both related work
and avenues of future research in different technological spaces.

In advance, we posed five research questions pertaining to: the identifi-
cation of a space-independent feature model; the application of the feature
model to the various approaches, identification of feature and approach rela-
tions; and the distillation of directions of future research.

We identified a set of space-independent features and organized them in
the feature model shown in Figure 2.5. We characterized the surveyed ap-
proaches along the feature model, shown in Figures 2.6 to 2.10. We iden-
tified positive and negative correlations between the features, provided by
Figure 2.11. And finally, we provided an interpretation of approach classi-
fications across technological space boundaries and pointed out avenues for
future research in Section 2.9.

Based on this interpretation, we have learned three significant lessons:
First, we were able to identify space-independent categories of approaches,

namely manual specification approaches, matching approaches, and operator-
based approaches. Each of these three categories can be characterized by
unique features from the feature model, namely a custom migration language,
a declarative evolution specification, and an imperative evolution specification
respectively. We identified two more categories which are still unique to the
dataware space but can give rise to new approaches in the other technolog-
ical spaces, namely versioning approaches and view-based approaches (Sec-
tion 2.9.2).

Second, we observed that most approaches require the user to define the
evolution. Though detection and recording of evolution are often mentioned
as possible directions for future work, only few approaches actually follow
these directions (Section 2.9.1). Considering most approaches recognize the
need for detection or recording, it opens a much-needed direction of research.

Third, we have learned that most approaches lack significant evaluation.
This holds particularly for the many approaches with user-defined evolu-

54

Section 2.11 Conclusion

tions (Section 2.9.1 and 2.9.3). It implies a need for more thorough evaluation,
but also a need for open case studies or benchmarks.

In summary, the work described in this chapter makes the following con-
tributions:

• A selection of key publications on coupled evolution in different tech-
nological spaces, based on explicit selection criteria.

• An overview of coupled evolution approaches discussed in these publi-
cations.

• A feature model that can be used to characterize coupled evolution ap-
proaches from different technological spaces.

• An actual characterization of the presented approaches in terms of the
features in this model.

• An intra-space interpretation of the features found in each technological
space.

• An inter-space interpretation of these features.

• A series of recommendations on future research directions based on this
interpretation.

A C K N O W L E D G M E N T S

At the Technische Universität München, this research was funded by by the
German Federal Ministry of Education and Research (BMBF), grants “SPES
2020, 01IS08045A” and “Quamoco, 01IS08023B”. At Delft University of Tech-
nology, this research was supported by NWO/JACQUARD, project 638.001.610,
MoDSE: Model-Driven Software Evolution. We thank Lennart Kats, Andreas
Vogelsang and Stefan Wagner for providing feedback to improve this chap-
ter.

55

3
A Catalog of Coupled Operators

A B S T R A C T

Modeling languages and thus their metamodels are subject to change. When
a metamodel evolves, existing models may no longer conform to it. Man-
ual migration of these models in response to metamodel evolution is tedious
and error-prone. To significantly automate model migration, operator-based
approaches provide reusable coupled operators that encapsulate both meta-
model evolution and model migration. The success of an operator-based ap-
proach highly depends on the library of reusable coupled operators it pro-
vides. In this chapter, we thus present an extensive catalog of coupled opera-
tors that is based both on a literature survey as well as real-life case studies.
The catalog is organized according to a number of criteria to ease assessing
the impact on models as well as selecting the right operator for a metamodel
change at hand.

3.1 I N T R O D U C T I O N

Just as any other type of software, modeling languages are subject to evolu-
tion due to changing requirements and technological progress [Favre, 2005].
A modeling language is adapted to the changed requirements by evolving
its metamodel. Due to metamodel evolution, existing models may no longer
conform to the evolved metamodel and thus need to be migrated to reestab-
lish conformance to the evolved metamodel. Avoiding model migration by
downwards-compatible metamodel changes is often a poor solution, since it
reduces the quality of the metamodel and thus the modeling language [Ca-
sais, 1995]. Manual migration of models is tedious and error-prone, and hence
model migration needs to be automated. In coupled evolution of metamodels
and models, the association of a model migration to a metamodel evolution is
managed automatically. There are two major coupled evolution approaches:
difference-based and operator-based approaches.

Difference-based approaches use a declarative evolution specification, gener-
ally referred to as difference model [Cicchetti et al., 2008, Garcés et al., 2009].
The difference model is mapped onto a model migration. The model migra-
tion can be specified declaratively as well as imperatively.

Operator-based approaches specify metamodel evolution by a sequence of
operator applications [Wachsmuth, 2007b, Herrmannsdoerfer et al., 2009]. Each
operator application can be coupled to a model migration separately. Operator-

57

A Catalog of Coupled Operators Chapter 3

based approaches generally provide a set of reusable coupled operators which
work at the metamodel level as well as at the model level. At the metamodel
level, a coupled operator defines a metamodel transformation capturing a
common evolution. At the model level, a coupled operator defines a model
transformation capturing the corresponding migration. Application of a cou-
pled operator to a metamodel and a conforming model preserves model con-
formance.

In both operator-based and difference-based approaches, evolution can be
specified manually [Wachsmuth, 2007b], can be recorded [Herrmannsdoerfer
et al., 2009], or can be detected automatically, as discussed in Chapter 5. When
recording, the user is restricted to a recording editor. Using automated detec-
tion, the building process can be completely automated, but may lead to an
incorrect model migration.

In this chapter, we follow an operator-based approach to automate building
a model migration for EMOF-like metamodels [Object Management Group,
2006].

Problem. The success of an operator-based approach highly depends on
the library of reusable coupled operators it provides [Rose et al., 2009]. The
library of an operator-based approach needs to fulfill a number of require-
ments. A library should seek completeness so as to be able to cover a large set
of evolution scenarios. However, the higher the number of coupled operators,
the more difficult it is to find a coupled operator in the library. Consequently,
a library should also be organized in a way that it is easy to select the right
coupled operator for the change at hand.

Contribution. To provide guidance for building a library, we present
an extensive catalog of coupled operators in this chapter. To ensure com-
pleteness, the coupled operators in this catalog are either motivated from the
literature or from case studies that we performed. However, we do not tar-
get theoretical completeness—to capture all possible migrations—but rather
practical completeness—to capture migrations that likely happen in practice.
To ease usability, the catalog is organized according to a number of criteria.
The criteria do not only allow to select the right coupled operator from the
catalog, but also to assess the impact of the coupled operator on the mod-
eling language and its models. For difference-based approaches, the catalog
serves as a set of composite changes that such an approach needs to be able
to handle.

Outline. The chapter is structured as follows: Section 3.2 presents the
EMOF-like metamodeling formalism on which the set of coupled operators
is based. Section 3.3 introduces the papers and case studies from which the
coupled operators originate. Section 3.4 defines different classification criteria
for coupled operators. Section 3.5 lists and groups the coupled operators of
the catalog. Section 3.6 discusses the catalog, and Section 3.7 concludes the
chapter.

58

Section 3.2 Metamodeling Formalism

3.2 M E TA M O D E L I N G F O R M A L I S M

Metamodels can be expressed in various metamodeling formalisms. Well-
known examples are the Meta Object Facility (MOF) [Object Management
Group, 2006], the metamodeling standard proposed by the Object Manage-
ment Group (OMG) and Ecore [Steinberg et al., 2009], the metamodeling for-
malism underlying the Eclipse Modeling Framework (EMF). In this chapter,
we focus only on the core metamodeling constructs that are interesting for
coupled evolution of metamodels and models. We leave out annotations, de-
rived features, and operations, since these cannot be instantiated in models.
An operator catalog will need additional operators addressing these meta-
modeling constructs in order to reach full compatibility with Ecore or MOF.

3.2.1 Metamodel

Figure 3.1 gives a textual definition of the metamodeling formalism used in
this chapter. A metamodel is organized into Packages which can themselves
be composed of sub packages. Each package defines a number of Types which
can be either primitive (PrimitiveType) or complex (Class). Primitive types are
either DataTypes like Boolean, Integer and String or Enumerations of literals.
Classes consist of a number of features. They can have super types to inherit
features and might be abstract, i.e. are not allowed to have objects. The name of
a feature needs to be unique among all features of a class, including inherited
ones. A Feature has a multiplicity (lower bound and upper bound) and is either
an Attribute or a Reference. An attribute is a feature with a primitive type,
whereas a reference is a feature with a complex type. An attribute can serve
as an identifier for objects of a class, i.e. the values of this attribute must be
unique among all objects. A reference may be composite and two references
can be combined to form a bidirectional association by making them opposite
of each other.

3.2.2 Model

At the model level, instances of classes are called objects, instances of primitive
data types are called values, instances of features are called slots, and instances
of references are called links. The set of all links of composite references forms
a containment structure, which needs to be tree-shaped and span all objects
in a model.

3.2.3 Notational Conventions

Throughout the chapter, we use the textual notation from Figure 3.1 for meta-
models. In this notation, features are represented by their name followed by a
separator, their type, and an optional multiplicity. The separator indicates the

59

A Catalog of Coupled Operators Chapter 3

abstract class NamedElement {
name :: String (1..1)

}

class Package : NamedElement {
subPackages ♦

Package (0..*)
types ♦

Type (0..*)
}

abstract class Type : NamedElement
{}

abstract class PrimitiveType : Type
{}

class DataType : PrimitiveType
{}

class Enumeration : PrimitiveType {
literals ♦

Literal (0..*)
}

class Literal : NamedElement
{}

class Class : Type {
isAbstract :: Boolean
superTypes → Class (0..*)
features ♦

Feature (0..*)
}

abstract class Feature
: NamedElement {

lowerBound :: Integer
upperBound :: Integer
type → Type

}

class Attribute : Feature {
isId :: Boolean

}

class Reference : Feature {
isComposite :: Boolean
opposite → Reference

}

Figure 3.1 Metamodeling formalism providing core metamodeling concepts. The
used integers are signed integers, such that -1 can refer to a missing lower or upper
bound.

kind of a feature. We use :: for attributes, → for ordinary references, and ♦
for composite references.

3.3 O R I G I N S O F C O U P L E D O P E R AT O R S

The coupled operators are either motivated from the literature or from case
studies that we performed.

3.3.1 Literature

First, coupled operators originate from the literature on the evolution of meta-
models as well as object-oriented database schemas and code.

Wachsmuth [2007b] first proposes an operator-based approach for meta-
model evolution and classifies a set of operators according to the preservation
of metamodel expressiveness and existing models. Gruschko et al. envision
a difference-based approach and therefore classify all primitive changes ac-
cording to their impact on existing models [Becker et al., 2007, Burger and

60

Section 3.3 Origins of Coupled Operators

Gruschko, 2010]. Cicchetti et al. [2008] list a set of composite changes which
they are able to detect using their difference-based approach.

Banerjee et al. [1987b] present a complete and sound set of primitives for
schema evolution in the object-oriented database system ORION and character-
ize the primitives according to their impact on existing databases. Brèche
[1996] introduces a set of high-level operators for schema evolution in the
object-oriented system O2 and shows how to implement them in terms of
primitive operators. Pons and Keller [1997] propose a three-level catalog of
operators for object-oriented schema evolution which groups operators ac-
cording to their complexity. Claypool et al. [2000] list a number of primitives
for the adaptation of relationships in object-oriented systems.

Fowler [1999] presents a catalog of operators for the refactoring of object-
oriented code. Dig and Johnson [2006] show—by performing a case study—that
most changes on object-oriented code can be captured by a rather small set of
refactoring operators.

3.3.2 Case Studies

Second, coupled operators originate from a number of case studies that we
have performed. Figure 3.2 gives an overview of these case studies. It men-
tions the tool that was used in a case study, the name of the evolving meta-
model, and whether the evolution was obtained in a forward or reverse engi-
neering process. In forward engineering, the tool is used to aid and possibly
record evolution as it happens, whereas in reverse engineering, the tool is
used to reconstruct evolution after it occurred. To provide evidence that the
case studies are considerable in size, the table also shows the number of dif-
ferent kinds of metamodel elements at the end of the evolution as well as the
number of operator applications needed to perform the evolution.

Herrmannsdoerfer et al. [2008] performed a case study on the evolution
of two industrial metamodels to show that most of the changes can be cap-
tured by reusable coupled operators: Flexible User Interface Development
(FLUID) for the specification of automotive user interfaces and Test Automa-
tion Framework - Generator (TAF-Gen) for the generation of test cases for
these user interfaces.

Based on the requirements derived from this study, Herrmannsdoerfer
et al. [2009] implemented the operator-based tool COPE1 which records change
histories on metamodels of the Eclipse Modeling Framework (EMF). To demon-
strate its applicability, COPE has been used to reverse engineer the operator
history of a number of metamodels: Palladio Component Model (PCM) for
the specification of software architectures [Herrmannsdoerfer et al., 2009] and
Graphical Modeling Framework (GMF) for the model-based development of
diagram editors [Herrmannsdoerfer et al., 2010a]. Currently, COPE is applied

1COPE web site, http://cope.in.tum.de

61

http://cope.in.tum.de

A Catalog of Coupled Operators Chapter 3

Tool Case Kind Pa
ck

ag
es

C
la

ss
es

A
tt

ri
bu

te
s

R
ef

er
en

ce
s

D
at

a
Ty

pe
s

En
um

er
at

io
ns

Li
te

ra
ls

O
pe

ra
to

r
A

pp
lic

at
io

ns

[H08]
FLUID

reverse
8 155 95 155 0 1 10 223

TAF-Gen 15 97 81 114 1 13 76 134

COPE

PCM [H09]
reverse

19 99 18 135 0 4 19 101

GMF [H10a] 4 252 379 278 0 27 166 737

Unicase
forward

17 77 88 161 0 11 49 58

Quamoco 1 22 14 35 0 1 2 423

Acoda
BugZilla

reverse
– 51 208 64 – – – 237

Researchr – 125 380 278 – 6 31 64

YellowGrass forward – 12 33 21 – 0 0 30

Figure 3.2 Statistics for case studies. [H08] abbreviates [Herrmannsdoerfer et al.,
2008]; [H09] abbreviates [Herrmannsdoerfer et al., 2009]; and [H10a] abbreviates
[Herrmannsdoerfer et al., 2010a]

to forward engineer the operator history of a number of metamodels: Uni-
case2 for UML modeling and project management and Quamoco3 for model-
ing the quality of software products.

We implemented the operator-based tool Acoda4 (Chapters 4 and 5), which
detects operator histories on object-oriented data models. To demonstrate its
applicability, Acoda has been used to reverse engineer the operator history of
the data model behind BugZilla which is a well-known tool for bug tracking
and the operator history behind Researchr5, a web application for maintain-
ing scientific publication meta data. Currently, Acoda is applied to forward
engineer the operator-based evolution of YellowGrass6, a web application for
tag-based issue tracking.

The crossed-out cells in Figure 3.2 indicate that the metamodeling con-
structs are currently not supported by the used data modeling formalism.

2Unicase web site, http://unicase.org
3Quamoco web site, http://www.quamoco.de
4Acoda web site, http://swerl.tudelft.nl/bin/view/Acoda
5Researchr web site, http://researchr.org
6YellowGrass web site, http://yellowgrass.org

62

http://unicase.org
http://www.quamoco.de
http://swerl.tudelft.nl/bin/view/Acoda
http://researchr.org
http://yellowgrass.org

Section 3.4 Classification of Coupled Operators

3.4 C L A S S I F I C AT I O N O F C O U P L E D O P E R AT O R S

Coupled operators can be classified according to several properties. We are
interested in language preservation, model preservation, and bidirectionality.
Therefore, we stick to a simplified version of the terminology from [Wachsmuth,
2007b].

3.4.1 Language Preservation

A metamodel is an intensional definition of a language. Its extension is a set of
conforming models. When an operator is applied to a metamodel, this has an
impact on its extension and thus on the expressiveness of the language. We
distinguish different classes of operators according to this impact [Lämmel,
2001, Wachsmuth, 2007b]: An operator is a refactoring if there exists always a
bijective mapping between extensions of the original and the evolved meta-
model. An operator is a constructor if there exists always an injective mapping
from the extension of the original metamodel to the extension of the evolved
metamodel. An operator is a destructor if there exists always a surjective map-
ping from the extension of the original metamodel to the extension of the
evolved metamodel.

3.4.2 Model Preservation

Model preservation properties indicate when migration is needed. An op-
erator is model-preserving if all models conforming to an original metamodel
also conform to the evolved metamodel. Thus, model-preserving operators
do not require migration. An operator is model-migrating if models conform-
ing to an original metamodel might need to be migrated in order to con-
form to the evolved metamodel. It is safely model-migrating if the migration
preserves distinguishability, i.e. different models (conforming to the origi-
nal metamodel) are migrated to different models (conforming to the evolved
metamodel). In contrast, an unsafely model-migrating operator might yield the
same model when migrating two different models.

Classification of operators w.r.t. model preservation is related to the clas-
sification with respect to language preservation: Refactorings and construc-
tors are either model-preserving or safely model-migrating operators. De-
structors are unsafely model-migrating operators. Furthermore, the classifi-
cation is related to a classification of changes known from difference-based ap-
proaches [Becker et al., 2007, Burger and Gruschko, 2010]: model-preserving
operators perform non-breaking changes, whereas model-migrating operators
perform breaking, resolvable changes. However, there is no correspondence for
breaking, non-resolvable changes, since coupled operators always provide a mi-
gration to resolve the breaking change.

63

A Catalog of Coupled Operators Chapter 3

3.4.3 Bidirectionality

Another property we are interested in is the reversibility of evolution. Bidi-
rectionality properties indicate that an operator can be safely undone on the
language or model level. An operator is self-inverse iff a second application
of the operator—possibly with other parameters—always yields the original
metamodel. An operator is the inverse of another operator iff there is always
a sequential composition of both operators which is a refactoring. Finally, an
operator is a safe inverse of another operator iff there is always a sequential
composition of both operators which is model-preserving.

3.5 C ATA L O G O F C O U P L E D O P E R AT O R S

Metamodel adaptation requires migration of instances to reestablish confor-
mance. Similar metamodel adaptations frequently require similar instance
migrations. Metamodel adaptation operators can thereby be coupled to an
instance migration operator. Such coupled operators ensure instance confor-
mance on metamodel adaptation. Similar metamodel operators may require
different types of instance migration operators and may thereby occur in dif-
ferent coupled operators. Coupled operators prove reusable in practice.

In this section, we present a catalog of 61 coupled operators that we con-
sider complete for practical application. As discussed in Section 3.3, we in-
cluded all coupled operators found in nine related papers as well as all cou-
pled operators identified by performing nine real-life case studies. In the fol-
lowing, we explain the coupled operators in groups which help users to nav-
igate the catalog. We start with primitive operators which perform an atomic
metamodel evolution step that can not be further subdivided. Here, we distin-
guish structural primitives which create and delete metamodel elements and
non-structural primitives which modify existing metamodel elements. After-
wards, we continue with complex operators. These can be decomposed into a
sequence of primitive operators which has the same effect at the metamodel
level but not neccessarily at the model level. We group complex operators
according to the metamodeling techniques they address—distinguishing spe-
cialization and generalization, delegation, and inheritance operators—as well
as their semantics—distinguishing replacement, and merge and split opera-
tors.

Each group is discussed separately in the subsequent sections. For each
group, a table provides an overview over all operators in the group. Using
the classifications from Section 3.4, the table classifies each coupled operator
according to language preservation into refactoring (r), constructor (c) and de-
structor (d) as well as according to model preservation into model-preserving
(p), safely (s) and unsafely (u) model-migrating. The table further indicates
the safe (s) and unsafe (u) inverse of each operator by referring to its number.

64

Section 3.5 Catalog of Coupled Operators

Class. MM OODB OOC H08 COPE Acoda

Operator Name la
ng

ua
ge

pr
es

er
va

ti
on

m
od

el
pr

es
er

va
ti

on

in
ve

rs
e

[W
ac

hs
m

ut
h,

2
0
0
7
b]

[B
ec

ke
r

et
al

.,
2
0
0
7
]

[C
ic

ch
et

ti
et

al
.,

2
0
0
8

]

[B
an

er
je

e
et

al
.,

1
9
8
7

b]

[B
rè

ch
e,

1
9
9
6

]

[P
on

s
an

d
K

el
le

r,
1
9
9
7

]

[C
la

yp
oo

le
t

al
.,

2
0
0
0

]

[F
ow

le
r,

1
9
9
9

]

[D
ig

an
d

Jo
hn

so
n,

2
0
0
6
]

FL
U

ID

TA
F-

G
en

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
0
9
]

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
1
0

a]
U

ni
ca

se
Q

ua
m

oc
o

Bu
gZ

ill
a

R
es

ea
rc

hr
Ye

llo
w

G
ra

ss

1 Create Package r p 2s x x x

2 Delete Package r p 1s x x

3 Create Class c p 4s x x x x x x x x x x x x x

4 Delete Class d u 3u x x x x x x x x x x x x

5 Create Attribute c s 7s x x x x x x x x x x x x x

6 Create Reference c s 7s x x x x x x x x x x x x x

7 Delete Feature d u 5/6u x x x x x x x x x x x x

8 Create Opposite Ref. d u 9u x x x x x x x x

9 Delete Opposite Ref. c p 8s x x x x

10 Create Data Type r p 11s x

11 Delete Data Type r p 10s x x

12 Create Enum r p 13s x x x x x x

13 Delete Enum r p 11s x x

14 Create Literal c p 15s x x

15 Merge Literal d u 14u x x

Figure 3.3 Structural Primitives

Finally, each paper and case study has a column in each table. An x in such a
column denotes occurrence of the operator in the corresponding paper or case
study. Papers are referred to by citation, while case studies are referred to by
the name of the case. For each coupled operator, we discuss its semantics in
terms of metamodel evolution and model migration.

3.5.1 Structural Primitives

Structural primitive operators (Figure 3.3) modify the structure of a meta-
model, i.e. create or delete metamodel elements. Creation operators are pa-
rameterized by the specification of a new metamodel element, and deletion
operators by an existing metamodel element.

Creation of non-mandatory metamodel elements (packages, classes, op-
tional features, enumerations, literals and data types) is model-preserving.

65

A Catalog of Coupled Operators Chapter 3

Creation of mandatory features is safely model-migrating. It requires initial-
ization of slots using default values or default value computations.

Deleting metamodel elements, such as classes and references, requires delet-
ing instantiating model elements, such as objects and links, by the migration.
However, deletion of model elements poses the risk of migration to inconsis-
tent models: For example, deletion of objects may cause links to non-existent
objects and deletion of references may break object containment. Therefore,
deletion operators are bound to metamodel level restrictions: Packages may
only be deleted when they are empty. Classes may only be deleted when they
are outside inheritance hierarchies and are targeted neither by non-composite
references nor by mandatory composite references. Several complex opera-
tors discussed in subsequent sections can deal with classes not meeting these
requirements. References may only be deleted when they are neither compos-
ite, nor have an opposite. Enumerations and data types may only be deleted
when they are not used in the metamodel and thus obsolete.

Deletion operators which may have been instantiated in the model (with
the exception of Delete Opposite Reference) are unsafely model-migrating due
to loss of information. Deletion provides a safe inverse to its associated cre-
ation operator. Since deletion of metamodel elements which may have been
instantiated in a model is unsafely model-migrating, creation of such elements
provides an unsafe inverse to deletion: Lost information cannot be restored.

Creating and deleting references which have an opposite are different from
other creation and deletion operators. Create Opposite Reference restricts the set
of valid links and is thus an unsafely model-migrating destructor, whereas
Delete Opposite Reference removes a constraint from the model and is thus a
model-preserving constructor.

Create / Delete Data Type and Create / Delete Enumeration are refactorings, as
restrictions on these operators prevent usage of created or deleted elements.
Deleting enumerations and data types is thus model-preserving. Merge Literal
deletes a literal and replaces its occurrences in a model by another literal.
In migration, occurrences of merged literals are replaced by the single target
literal. Merging a literal provides a safe inverse to Create Literal.

A number of literals l1, . . . , ln defined in the same enumeration can be
merged into a single literal l1. In migration, these literals are all replaced
by l1. Merging literals provides a safe inverse to creating literals. Vice versa
provides an unsafe inverse.

3.5.2 Non-structural Primitives

Non-structural primitive operators (Figure 3.4) modify a single, existing meta-
model element, i.e. change properties of a metamodel element. All non-
structural operators take the affected metamodel element, their subject, as
parameter.

66

Section 3.5 Catalog of Coupled Operators

Class. MM OODB OOC H08 COPE Acoda

Operator Name la
ng

ua
ge

pr
es

er
va

ti
on

m
od

el
pr

es
er

va
ti

on

in
ve

rs
e

[W
ac

hs
m

ut
h,

2
0
0
7
b]

[B
ec

ke
r

et
al

.,
2
0
0
7
]

[C
ic

ch
et

ti
et

al
.,

2
0
0
8

]

[B
an

er
je

e
et

al
.,

1
9
8
7

b]

[B
rè

ch
e,

1
9
9
6

]

[P
on

s
an

d
K

el
le

r,
1
9
9
7

]

[C
la

yp
oo

le
t

al
.,

2
0
0
0

]

[F
ow

le
r,

1
9
9
9

]

[D
ig

an
d

Jo
hn

so
n,

2
0
0
6
]

FL
U

ID

TA
F-

G
en

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
0
9
]

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
1
0

a]
U

ni
ca

se
Q

ua
m

oc
o

Bu
gZ

ill
a

R
es

ea
rc

hr
Ye

llo
w

G
ra

ss

1 Rename r s 1s x x x x x x x x x x x x x x x

2 Change Package r s 2s x x x x x

3 Make Class Abstract d u 4u x x x x

4 Drop Class Abstract c p 3s x x x

5 Add Super Type c p 6s x x x x x x x x x

6 Remove Super Type d u 5u x x x x x x x

7 Make Attr. Identifier d u 8u x x x

8 Drop Attr. Identifier c p 7s x x x

9 Make Ref. Composite d u 10u x x x x x x

10 Switch Ref. Composite c s 9s x x x x x x

11 Make Ref. Opposite d u 12u x x x x x

12 Drop Ref. Opposite c p 11s x x x x

Figure 3.4 Non-structural Primitives

Change Package can be applied to both package and type. Additionally, the
value-changing operators Rename, Change Package and Change Attribute Type
are parameterized by a new value. Make Class Abstract requires a subclass pa-
rameter indicating to which class objects need to be migrated. Switch Reference
Composite requires an existing composite reference as target.

Packages, types, features and literals can be renamed. Rename is safely
model-migrating (when parametrized by an unused name) and finds a self-
inverse in giving a subject its original name back. Change Package changes
the parent package of a package or type. Like renaming, it is safely model-
migrating and a safe self-inverse.

Classes can be made abstract, requiring migration of objects to a subclass,
because otherwise, links targeting the objects may have to be removed. Conse-
quently, mandatory features that are not available in the super class have to be
initialized to default values. Make Class Abstract is unsafely model-migrating,
due to loss of type information and has an unsafe inverse in Drop Class Ab-
stract.

Super type declarations may become obsolete and may need to be removed.
Remove Super Type S from a class C implies removing slots of features inher-

67

A Catalog of Coupled Operators Chapter 3

ited from S. Additionally, references targeting type S, referring to objects of
type C, need to be removed. To prevent breaking multiplicity restrictions, Re-
move Super Type is restricted to types S which are not targeted by mandatory
references—neither directly, nor through inheritance. The operator is unsafely
model-migrating and can be unsafely inverted by Add Super Type. A special
type of super type declaration removal is removing a superfluous super type
declaration. A super type declaration is superfluous when its features are
already inherited through other super type declarations. Superfluous super
type removal is strictly instance preserving and language preserving. It has a
safe inverse in adding the removed declaration.

Attributes defined as identifier need to be unique. Make Attribute Identifier
requires a migration which ensures uniqueness of the attribute’s values and is
thus unsafely model-migrating. Drop Attribute Identifier is model-preserving
and does not require migration.

References can have an opposite and can be composite. An opposite ref-
erence declaration defines the inverse of the declaring reference. References
combined with a multiplicity restriction on the opposite reference restrict the
set of valid links. Make Reference Opposite needs a migration to make the link
set satisfy the added multiplicity restriction. The operator is thereby unsafely
model-migrating. Drop Reference Opposite removes cardinality constraints from
the link set and does not require migration, thus being model-preserving.

Make Reference Composite ensures containment of referred objects. Since
all referred objects were already contained by another composite reference,
all objects must be copied. To ensure the containment restriction, copying
has to be recursive across composite references (deep copy). Furthermore, to
prevent cardinality failures on opposite references, there may be no opposite
references to any of the types of which objects are subject to deep copying.
Switch Reference Composite changes the containment of objects to an existing
composite reference. If objects of a class A were originally contained in class
B through composite reference b, Switch Reference Composite changes contain-
ment of A objects to class C, when it is parameterized by reference b and a
composite reference c in class C. After applying the operator, reference b is
no longer composite. Switch Reference Composite provides an unsafe inverse to
Make Reference Composite.

3.5.3 Specialization / Generalization Operators

Specializing a metamodel element reduces the set of possible models, whereas
generalizing expands the set of possible models. Generalization and special-
ization can be applied to features and super type declarations (Figure 3.5).
All specialization and generalization operators take two parameters: a subject
and a generalization or specialization target. The first is a metamodel element
and the latter is a class or a multiplicity (lower and upper bound).

68

Section 3.5 Catalog of Coupled Operators

Class. MM OODB OOC H08 COPE Acoda

Operator Name la
ng

ua
ge

pr
es

er
va

ti
on

m
od

el
pr

es
er

va
ti

on

in
ve

rs
e

[W
ac

hs
m

ut
h,

2
0
0
7
b]

[B
ec

ke
r

et
al

.,
2
0
0
7
]

[C
ic

ch
et

ti
et

al
.,

2
0
0
8

]

[B
an

er
je

e
et

al
.,

1
9
8
7

b]

[B
rè

ch
e,

1
9
9
6

]

[P
on

s
an

d
K

el
le

r,
1
9
9
7

]

[C
la

yp
oo

le
t

al
.,

2
0
0
0

]

[F
ow

le
r,

1
9
9
9

]

[D
ig

an
d

Jo
hn

so
n,

2
0
0
6
]

FL
U

ID

TA
F-

G
en

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
0
9
]

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
1
0

a]
U

ni
ca

se
Q

ua
m

oc
o

Bu
gZ

ill
a

R
es

ea
rc

hr
Ye

llo
w

G
ra

ss

1 Generalize Attribute c p 2s x x x x x x x x x x x

2 Specialize Attribute d u 1u x x x x x x x

3 Generalize Reference c p 4s x x x x x x x x x

4 Specialize Reference d u 3u x x x x x x x x

5 Specialize Comp. Ref. d u 3u x x x

6 Generalize Super Type d u 7u x x x

7 Specialize Super Type c s 6s x x x x x x x

Figure 3.5 Specialization / Generalization Operators

Generalization of feature types does not only generalize the feature itself,
but also generalizes the metamodel as a whole. Feature generalizations are
thus model-preserving constructors. Generalizing a super type declaration
may require removal of feature slots and is only unsafely model-migrating.
Feature specialization is a safe inverse of feature generalization. Due to the
unsafe nature of the migration resulting from feature specialization, general-
ization provides an unsafe inverse to specialization. Super type generalization
is an safe inverse of super type specialization which is an unsafe inverse vice
versa.

Specialize Attribute either reduces the attribute’s multiplicity or specializes
the attribute’s type. When reducing multiplicity, either the lower bound is
increased or the upper bound is decreased. When specializing the type, a
type conversion maps the original set of values onto a new set of values
conforming the new attribute type. Specializing type conversions are sur-
jective. Generalize Attribute extends the attribute’s multiplicity or generalizes
the attribute’s type. Generalizing an attribute’s type involves an injective type
conversion. Type conversions are generally either implemented by transfor-
mations for each type to an intermediate format (e.g. by serialization) or by
transformations for each combination of types. The latter is more elaborate
to implement, yet less fragile. Most generalizing type conversions from type
x to y have a specializing type conversion from type y to x as safe inverse.
Applying the composition vice versa yields an unsafe inverse.

69

A Catalog of Coupled Operators Chapter 3

Similar to attributes, reference multiplicity can be specialized and general-
ized. Specialize / Generalize Reference can additionally specialize or generalize
the type of a reference by choosing a sub type or super type of the origi-
nal type, respectively. Model migration of reference specialization requires
deletion of links not conforming the new reference type. Specialize Composite
Reference is a special case of reference specialization at the metamodel level,
which requires contained objects to be migrated to the targeted subclass at the
model level, to ensure composition restrictions. Specialize Composite Reference
is unsafely model-migrating.

Super type declarations are commonly adapted, while refining a meta-
model. Consider the following example, in which classes A, B and C are part
of a linear inheritance structure and remain unadapted:

class A { }
class B : A {

f :: Integer (1..1)
}

class C : A
{ }

class A {}

class B : A {
f :: Integer (1..1)

}

class C : B
{ }

From left to right, Specialize Super Type changes a declaration of super type
A on class C to B, a sub type of A. Consequently, a mandatory feature f is
inherited, which needs the creation of slots by the migration. In general,
super type specialization requires addition of feature slots which are declared
mandatory by the new super type. From right to left, Generalize Super Type
changes a declaration of super type B on class C to A, a super type of B. In the
new metamodel, feature f is no longer inherited in C. Slots of features which
are no longer inherited need to be removed by the migration. Furthermore,
links to objects of A that target class B, are no longer valid, since A is no longer
a sub type of B. Therefore, these links need to be removed, if multiplicity
restrictions allow, or adapted otherwise.

3.5.4 Inheritance Operators

Inheritance operators (Figure 3.6) move features along the inheritance hier-
archy. Most of them are well-known from refactoring object-oriented code
[Fowler, 1999]. There is always a pair of a constructor and destructor, where
the destructor is the safe inverse of the constructor, and the constructor is the
unsafe inverse of the destructor.

Pull up Feature is a constructor which moves a feature that occurs in all
subclasses of a class to the class itself. The operator is a constructor since
instances of the class can now convey additional information. It is in general
instance-preserving modulo variation. For migration, slots for the pulled up

70

Section 3.5 Catalog of Coupled Operators

Class. MM OODB OOC H08 COPE Acoda

Operator Name la
ng

ua
ge

pr
es

er
va

ti
on

m
od

el
pr

es
er

va
ti

on

in
ve

rs
e

[W
ac

hs
m

ut
h,

2
0
0
7
b]

[B
ec

ke
r

et
al

.,
2
0
0
7
]

[C
ic

ch
et

ti
et

al
.,

2
0
0
8

]

[B
an

er
je

e
et

al
.,

1
9
8
7

b]

[B
rè

ch
e,

1
9
9
6

]

[P
on

s
an

d
K

el
le

r,
1
9
9
7

]

[C
la

yp
oo

le
t

al
.,

2
0
0
0

]

[F
ow

le
r,

1
9
9
9

]

[D
ig

an
d

Jo
hn

so
n,

2
0
0
6
]

FL
U

ID

TA
F-

G
en

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
0
9
]

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
1
0

a]
U

ni
ca

se
Q

ua
m

oc
o

Bu
gZ

ill
a

R
es

ea
rc

hr
Ye

llo
w

G
ra

ss

1 Pull up Feature c p 2s x x x x x x x x

2 Push down Feature d u 1u x x x x x x

3 Extract Super Class c p 4s x x x x x x x x x x x x

4 Inline Super Class d u 3u x x x x x x x x x

5 Fold Super Class c s 6s x x

6 Unfold Super Class d u 5u x x

7 Extract Sub Class c s 8s x x x x x

8 Inline Sub Class d u 7u x x x x

Figure 3.6 Inheritance Operators

feature are added to objects of the class and filled with default values. The
corresponding destructor Push down Feature moves a feature from a class to
all its subclasses. It is the safe inverse of Pull up Feature while the latter is
only a unsafe inverse of the first. This makes it a destructor since instances of
the class can convey less information. It is only partially instance-preserving.
While objects of the subclasses stay unaltered, slots for the original feature
must be removed from objects of the class itself. As an alternative, objects of
the class might be converted into objects of subclasses.

Extract Super Class is a constructor which introduces a new class, makes
it the super class of a set of classes, and pulls up one or more features from
these classes. In general, it is a constructor because the new class adds expres-
siveness to the language. It is strictly instance-preserving. The corresponding
destructor Inline Super Class is the safe inverse for it. pushes all features of
a class into its subclasses and deletes the class afterwards. References to the
class are not allowed but can be generalized to a super class in a previous step.
The operator is a destructor since the removed class restricts expressiveness of
the language. It is partially instance-preserving modulo variation. Objects of
the class need to be migrated to objects of the subclasses. This might require
the addition of slots for features of the subclasses. In general, this migration
is irreversible which makes Extract Super Class only an unsafe inverse of Inline
Super Class.

The constructor Fold Super Class is related to Extract Super Class. Here, the

71

A Catalog of Coupled Operators Chapter 3

new super class is not created but exists already. This existing class has a
set of (possibly inherited) features. In another class, these features are de-
fined as well. The operator then removes these features and adds instead an
inheritance relation to the intended super class. In the same way, the destruc-
tor Unfold Super Class is related to Inline Super Class. This operator copies all
features of a super class into a subclass and removes the inheritance relation
between both classes. Here is an example for both operators:

class A {
f1 :: Integer

}

class B : A {
f2 :: Integer

}

class C {
f1 :: Integer
f2 :: Integer
f3 :: Integer

}

class A {
f1 :: Integer

}

class B : A {
f2 :: Integer

}

class C : B {
f3 :: Integer

}

From left to right, the super class B is folded from class C which includes all
the features of B. These features are removed from C, and B becomes a super
class of C. From right to left, the super class B is unfolded into class C by
copying features A.f1 and B.f2 to C. B is not longer a super class of C.

The constructor Extract Subclass introduces a new class, makes it the sub-
class of another, and pushes down one or more features from this class. In
general, it is a constructor because the new class adds expressiveness to the
language. Objects of the original class must be converted to objects of the new
class, in order not to loose instantiations of pushed down features. The corre-
sponding destructor Inline Subclass pulls up all features from a subclass into
its non-abstract super class and deletes the subclass afterwards. References in
other classes pointing to the class are not allowed but can be generalized to a
super class in a previous step. The operator is a destructor since the removed
class restricts expressiveness of the language. Objects of the subclass need to
be migrated to objects of the super class. Extract Subclass is an unsafe inverse
of Inline Subclass.

3.5.5 Delegation Operators

Delegation operators (Figure 3.7) move metamodel elements along composi-
tions or ordinary references. Most of the time, they come as pairs of corre-
sponding refactorings being safely inverse to each other.

Extract Class moves features to a new delegate class and adds a composite
reference to the new class together with an opposite reference. It takes the
original class, the set of features, the name for the delegate class, and the name

72

Section 3.5 Catalog of Coupled Operators

Class. MM OODB OOC H08 COPE Acoda

Operator Name la
ng

ua
ge

pr
es

er
va

ti
on

m
od

el
pr

es
er

va
ti

on

in
ve

rs
e

[W
ac

hs
m

ut
h,

2
0
0
7
b]

[B
ec

ke
r

et
al

.,
2
0
0
7
]

[C
ic

ch
et

ti
et

al
.,

2
0
0
8

]

[B
an

er
je

e
et

al
.,

1
9
8
7

b]

[B
rè

ch
e,

1
9
9
6

]

[P
on

s
an

d
K

el
le

r,
1
9
9
7

]

[C
la

yp
oo

le
t

al
.,

2
0
0
0

]

[F
ow

le
r,

1
9
9
9

]

[D
ig

an
d

Jo
hn

so
n,

2
0
0
6
]

FL
U

ID

TA
F-

G
en

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
0
9
]

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
1
0

a]
U

ni
ca

se
Q

ua
m

oc
o

Bu
gZ

ill
a

R
es

ea
rc

hr
Ye

llo
w

G
ra

ss

1 Extract Class r s 2s x x x x x x x x x x x x

2 Inline Class r s 1s x x x x x x x x

3 Fold Class r s 4s x x x

4 Unfold Class r s 3s

5 Move Feature over Ref. c s 6s x x x x x x x x x

6 Collect Feature over Ref. d u 5u x x

Figure 3.7 Delegation Operators

for the containment reference as arguments. This refactoring is language-
preserving and instance-preserving modulo variation. During migration, an
object of the delegate class is created for each object of the original class, slots
for the moved features are moved to the new delegate object, and a link to
the delegate object is created. The corresponding Inline Class is a safe inverse
for Extract Class and vice versa. Like its counterpart, it is a refactoring which
is model-preserving modulo migration. On the metamodel level, it removes
a delegate class and adds its features to the referring class. There must be no
other references to the delegate class. On the model level, slots of objects of
the delegate class are moved to objects of the referring class. Objects of the
delegate class and links to them are deleted.

Fold and Unfold Class are quite similar to Extract and Inline Class. Both
operators are model-preserving modulo migration as well as safe inverses
of each other. The only difference is that the delegate class exists already
and thus is not created or deleted. The names of these operators have been
adopted from grammar adaptation [Lämmel, 2001]. The following example
illustrates the difference:

73

A Catalog of Coupled Operators Chapter 3

class A {
a1 :: Integer
a2 :: Boolean
r1 → B (1..1)
r2 → B (0..*)

}

class B
{ }

class C {
a1 :: Integer
r1 → B (1..1)

}

class A {
c ♦ C (1..1)
d ♦ D (1..1) opposite a

}

class B
{ }

class C {
a1 :: Integer
r1 → B (1..1)

}

class D {
a2 :: Boolean
r2 → B (0..*)
a → A (1..1) opposite d

}

From left to right, the features a1 and r1 of class A are folded to a composite
reference A.c to class C which has exactly these two features. In contrast, the
features a2 and r2 of class A are extracted into a new delegate class D. From
right to left, the composite reference A.c is unfolded which keeps C intact
while A.d is inlined which removes D.

Move Feature along Reference is a constructor which moves a feature over a
single-valued reference to a target class. This operator is a constructor since
objects of the target class which are not referenced by instances of the source
class can now convey additional information. It is instance-preserving mod-
ulo variation. Slots of the original feature must be moved over links to objects
of the target class. For objects of the target class which are not linked to
an object of the source class, slots with default values must be added. The
destructor Collect Feature over Reference is a safe inverse of the last operator.
It moves a feature backwards over a reference. The multiplicity of the fea-
ture might be altered during the move depending on the multiplicity of the
reference. For optional and/or multi-valued references, the feature becomes
optional respectively multi-valued too, or remains such if it already was. Slots
of the feature must be moved over links from objects of the source class. If an
object of the source class is not linked from objects of the target class, slots of
the original feature are removed. Here is an example for both operators:

class A {
f1 :: Integer (1..*)
r1 → B (1..1)
r2 → C (0..*)

}

class B
{ }

class C {
f2 :: Integer (1..1)

}

class A {
f2 :: Integer (0..*)
r1 → B (1..1)
r2 → C (0..*)

}

class B {
f1 :: Integer (1..*)

}

class C
{ }

74

Section 3.5 Catalog of Coupled Operators

Class. MM OODB OOC H08 COPE Acoda

Operator Name la
ng

ua
ge

pr
es

er
va

ti
on

m
od

el
pr

es
er

va
ti

on

in
ve

rs
e

[W
ac

hs
m

ut
h,

2
0
0
7
b]

[B
ec

ke
r

et
al

.,
2
0
0
7
]

[C
ic

ch
et

ti
et

al
.,

2
0
0
8

]

[B
an

er
je

e
et

al
.,

1
9
8
7

b]

[B
rè

ch
e,

1
9
9
6

]

[P
on

s
an

d
K

el
le

r,
1
9
9
7

]

[C
la

yp
oo

le
t

al
.,

2
0
0
0

]

[F
ow

le
r,

1
9
9
9

]

[D
ig

an
d

Jo
hn

so
n,

2
0
0
6
]

FL
U

ID

TA
F-

G
en

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
0
9
]

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
1
0

a]
U

ni
ca

se
Q

ua
m

oc
o

Bu
gZ

ill
a

R
es

ea
rc

hr
Ye

llo
w

G
ra

ss

1 Subclasses to Enum. r s 2s x

2 Enum. to Subclasses r s 1s x x

3 Reference to Class r s 4s x x x

4 Class to Reference r s 3s x x

5 Inheritance to Delegation r s 6s x x x x x

6 Delegation to Inheritance r s 5s x x

7 Reference to Identifier c s 8s x

8 Identifier to Reference d u 7u x x x x

Figure 3.8 Replacement Operators

From left to right, the feature A.f1 is moved along the reference A.r1 to class
B. Furthermore, the feature C.f2 is collected over the reference A.r2 and ends
up in class A. Since A.r2 is optional and multi-valued, A.f2 becomes optional
and multi-valued, too. From right to left, the feature B.f1 is collected over the
reference A.r1. Its multiplicity stays unaltered. Note that there is no single
operator for moving A.f2 to class C which makes Collect Feature over Reference
in general uninvertible. For the special case of a single-valued reference, Move
Feature along Reference is an unsafe inverse.

3.5.6 Replacement Operators

Replacement operators (Figure 3.8) replace one metamodeling construct by
another, equivalent construct. Thus replacement operators typically are refac-
torings and safely model-migrating. With the exception of the last two opera-
tors, an operator to replace the first construct by a second always comes with
a safe inverse to replace the second by the first, and vice versa.

To be more flexible, empty subclasses of a class can be replaced by an
attribute which has an enumeration as type, and vice versa. Subclasses to Enu-
meration deletes all subclasses of the class and creates the attribute in the class
as well as the enumeration with a literal for each subclass. In a model, objects
of a certain subclass are migrated to the super class, setting the attribute to
the corresponding literal. Thus, the class is required to be non-abstract and to

75

A Catalog of Coupled Operators Chapter 3

have only empty subclasses without further subclasses. Enumeration to Sub-
classes does the inverse and replaces an enumeration attribute of a class by
subclasses for each literal. The following example demonstrates both direc-
tions:

class C {
. . .

}

class S1 : C
{ }

class S2 : C
{ }

class C {
e :: E
. . .

}

enum E {
s1, s2

}

From left to right, Subclasses to Enumeration replaces the subclasses S1 and
S2 of class C by the new attribute C.e which has the enumeration E with
literals s1 and s2 as type. In a model, objects of a subclass S1 are migrated to
class C, setting the attribute e to the appropriate literal s1. From right to left,
Enumeration to Subclasses introduces a subclass to C for each literal of E. Next,
it deletes the attribute C.e as well as the enumeration E. In a model, objects
of class C are migrated to a subclass according to the value of attribute e.

To be able to extend a reference with features, it can be replaced by a class,
and vice versa. Reference to Class makes the reference composite and creates
the reference class as its new type. Single-valued references are created in
the reference class to target the source and target class of the original refer-
ence. In a model, links conforming to the reference are replaced by objects of
the reference class, setting source and target reference appropriately. Class to
Reference does the inverse and replaces the class by a reference. To not lose
expressiveness, the reference class is required to define no features other than
the source and target references. The following example demonstrates both
directions:

class S {
r → T (l..*)
. . .

}

class S {
r ♦ R (l..*)
. . .

}

class R {
s → S (1..1) opposite r
t → T (1..1)

}

From left to right, Reference to Class retargets the reference S.r to a new ref-
erence class R. Source and target of the original reference can be accessed via
references R.s and R.t. In a model, links conforming to the reference r are
replaced by objects of the reference class R. From right to left, Class to Reference

76

Section 3.5 Catalog of Coupled Operators

removes the reference class R and retargets the reference S.r directly to the
target class T.

Inheriting features from a superclass can be replaced by delegating them
to the superclass, and vice versa. Inheritance to Delegation removes the in-
heritance relationship to the superclass and creates a composite, mandatory
single-valued reference to the superclass. In a model, the slots of the features
inherited from the superclass are extracted to a separate object of the super
class. By removing the super type relationship, links of references to the su-
perclass are no longer allowed to target the original object, and thus have to
be retargeted to the extracted object. Delegation to Inheritance does the inverse
and replaces the delegation to a class by an inheritance link to that class. The
following example demonstrates both directions:

class C : S {
. . .

}

class C {
s ♦ S (1..1)
. . .

}

From left to right, Inheritance to Delegation replaces the inheritance link of class
C to its superclass S by a composite, single-valued reference from C to S. In a
model, the slots of the features inherited from the super class S are extracted to
a separate object of the super class. From right to left, Delegation to Inheritance
removes the reference C.s and makes S a super class of C.

To decouple a reference, it can be replaced by an indirect reference using
an identifier, and vice versa. Reference to Identifier deletes the reference and
creates an attribute in the source class whose value refers to an id attribute in
the target class. In a model, links of the reference are replaced by setting the
attribute in the source object to the identifier of the target object. Identifier to
Reference does the inverse and replaces an indirect reference via identifier by
a direct reference. Our metamodeling formalism does not provide a means to
ensure that there is a target object for each identifier used by a source object.
Consequently, Reference to Identifier is a constructor and Identifier to Reference a
destructor, thus being an exception in the group of replacement operators.

3.5.7 Merge / Split Operators

Merge operators (Figure 3.9) merge several metamodel elements of the same
type into a single element, whereas split operators split a metamodel element
into several elements of the same type. Consequently, merge operators typi-
cally are destructors and split operators constructors. In general, each merge
operator has an inverse split operator. Split operators are more difficult to de-
fine, as they may require metamodel-specific information about how to split
values. There are different merge and split operators for the different meta-
modeling constructs.

77

A Catalog of Coupled Operators Chapter 3

Class. MM OODB OOC H08 COPE Acoda

Operator Name la
ng

ua
ge

pr
es

er
va

ti
on

m
od

el
pr

es
er

va
ti

on

in
ve

rs
e

[W
ac

hs
m

ut
h,

2
0
0
7
b]

[B
ec

ke
r

et
al

.,
2
0
0
7
]

[C
ic

ch
et

ti
et

al
.,

2
0
0
8

]

[B
an

er
je

e
et

al
.,

1
9
8
7

b]

[B
rè

ch
e,

1
9
9
6

]

[P
on

s
an

d
K

el
le

r,
1
9
9
7

]

[C
la

yp
oo

le
t

al
.,

2
0
0
0

]

[F
ow

le
r,

1
9
9
9

]

[D
ig

an
d

Jo
hn

so
n,

2
0
0
6
]

FL
U

ID

TA
F-

G
en

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
0
9
]

[H
er

rm
an

ns
do

er
fe

r
et

al
.,

2
0
1
0

a]
U

ni
ca

se
Q

ua
m

oc
o

Bu
gZ

ill
a

R
es

ea
rc

hr
Ye

llo
w

G
ra

ss

1 Merge Features d u x x x

2 Split Reference by Type r s 1s x

3 Merge Classes d u 4u x x x x x x

4 Split Class c p 3s

5 Merge Enumerations d u x

Figure 3.9 Merge / Split Operators

Merge Features merges a number of features defined in the same class into a
single feature. In the metamodel, the source features are deleted and the target
feature is required to be general enough—through its type and multiplicity—
so that the values of the other features can be fully moved to it in a model.
Depending on the type of feature that is merged, a repeated application of
Create Attribute or Create Reference provides an unsafe inverse. Split Reference
by Type splits a reference into references for each subclass of the type of the
original reference. In a model, each link instantiating the original reference
is moved to the corresponding target reference according to its type. If we
require that the type of the reference is abstract, this operator is a refactoring
and has Merge Features as a safe inverse.

Merge Classes merges a number of sibling classes—i.e. classes sharing a
common superclass—into a single class. In the metamodel, the sibling classes
are deleted and their features are merged to the features of the target class
according to name equality. Each of the sibling classes is required to define
the same features so that this operator is a destructor. In a model, objects
of the sibling classes are migrated to the new class. Split Class is an unsafe
inverse and splits a class into a number of classes. A function that maps each
object of the source class to one of the target classes needs to be provided to
the migration.

Merge Enumerations merges a number of enumerations into a single enu-
meration. In the metamodel, the source enumerations are deleted and their
literals are merged to the literals of the target enumeration according to name
equality. Each of the source enumerations is required to define the same liter-
als so that this operator is a destructor. Additionally, attributes that have the

78

Section 3.6 Discussion

source enumerations as type have to be retargeted to the target enumeration.
In a model, the values of these attributes have to be migrated according to how
literals are merged. A repeated application of Create Enumeration provides a
safe inverse.

3.6 D I S C U S S I O N

3.6.1 Completeness

At the metamodel level, an operator catalog is complete if any source meta-
model can be evolved to any target metamodel. This kind of completeness is
achieved by the catalog presented in the chapter. An extreme strategy would
be the following [Banerjee et al., 1987b]: In a first step, the original metamodel
needs to be discarded. Therefore, we delete opposite references and features.
Next, we delete data types and enumerations and collapse inheritance hi-
erarchies by inlining subclasses. We can now delete the remaining classes.
Finally, we delete packages. In a second step, the target metamodel is con-
structed from scratch by creating packages, enumerations, literals, data types,
classes, attributes, and references. Inheritance hierarchies are constructed by
extracting empty subclasses.

Completeness is much harder to achieve, when we take the model level
into account. Here, an operator catalog is complete if any model migration
corresponding to an evolution from a source metamodel to a target model can
be expressed. In this sense, a complete catalog needs to provide a full-fledged
model transformation language based on operators. A first useful restriction
is Turing completeness. But reaching for this kind of completeness comes at
the price of usability. Given an existing operator, one can always think of a
slightly different operator having the same effect on the metamodel level but a
slightly different migration. But the higher the number of coupled operators,
the more difficult it is to find an operator in the catalog. And with many
similar operators, it is hard to decide which one to apply.

We therefore do not target theoretical completeness to capture all possible
migrations, but rather practical completeness to capture migrations that likely
happen in practice. When we started our case studies, we found the set of
operators from the literature rather incomplete. For each case study, we added
frequently reoccurring operators to the catalog. The number of operators we
added to the catalog declined with every new case study, thus approaching a
stable catalog. Our latest studies revealed no new operators. Although, most
case studies showed some operators which were only applied once. They
were never reused in other case studies. Therefore, we decided not to include
them in the catalog.

We expect similar special cases in practical applications where only a few
evolution steps can not be modeled by operators from the catalog. These

79

A Catalog of Coupled Operators Chapter 3

cases can effectively be handled by providing a means for overwriting a
coupling [Herrmannsdoerfer et al., 2009]: The user can specify metamodel
evolution by an operator application but overwrites the model migration for
this particular application. This way, theoretical completeness can still be
achieved.

3.6.2 Metamodeling Formalism

In this chapter, we focus only on core metamodeling constructs that are in-
teresting for coupled evolution of metamodels and models. But a metamodel
defines not only the abstract syntax of a modeling language, but also an API
to access models expressed in this language. For this purpose, concrete meta-
modeling formalisms like Ecore or MOF provide metamodeling constructs
like interfaces, operations, derived features, volatile features, or annotations.
An operator catalog will need additional operators addressing these meta-
modeling constructs to reach full compatibility with Ecore or MOF. Such ad-
ditional operators are relevant for practical completeness.

In the GMF case study [Herrmannsdoerfer et al., 2010a], we found 25% of
the applied operators to address changes in the API. Most of these operators
do not require migration. The only exceptions were annotations containing
constraints. An operator catalog accounting for constraints needs to deal with
two kinds of adaptations: First, the constraints need to be co-evolved when the
metamodel evolves. Operators need to provide this co-evolution in addition
to model migration. Second, evolving constraints might invalidate existing
models and thus require model migration. Here, new coupled operators for
the evolution of constraints are needed.

Things become more complicated when it comes to CMOF [Object Man-
agement Group, 2006]. Concepts like package merge, feature subsetting, and
visibility affect the semantics of operators in the chapter and additional opera-
tors are needed to deal with these concepts. For example, we would need four
different kinds of Rename due to the package merge: 1) Renaming an element
which is not involved in a merge neither before nor after the renaming (Re-
name Element). 2) Renaming an element which is not involved in a merge in
order to include it into a merge (Include by Name). 3) Renaming an element
which is involved in a merge in order to exclude it from the merge (Exclude by
Name). 4) Renaming all elements which are merged to the same element (Re-
name Merged Element).

3.6.3 Tool Support

In operator-based tools, operators are usually made available to the user
through an operator browser [Wachsmuth, 2007a, Herrmannsdoerfer et al.,
2009]. Here, the organization of the catalog into groups can help to find an
operator for a change at hand. The preservation properties can be used to

80

Section 3.7 Conclusion

reason about the impact on language expressiveness and on existing models.
In grammarware, similar operators have been successfully used in [Lämmel
and Zaytsev, 2009b] to reason about relationships between different versions
of the Java grammar. To make the user aware of the impact on models, it can
be shown by a traffic light in the browser: green for model-preserving, yellow
for safely and red for unsafely model-migrating. Additionally, the operator
browser may have different modes for restricting the presented operators in
order to guarantee language- and/or model-preservation properties. Bidirec-
tionality can be used to invert an evolution that has been specified erroneously
earlier. Recorded operator applications can be automatically undone with dif-
ferent levels of safety by applying the inverse operators. Tools that support
evolution detection should evade of destructors in favor of refactorings to
increase the preservation of information by the detected evolution.

Difference-based tools [Cicchetti et al., 2008, Garcés et al., 2009] need to be
able to specify the mappings underlying the operators from the catalog. When
they allow to specify complex mappings, they could introduce means to spec-
ify the mappings of the operators in a straightforward manner. Introducing
such first class constructs reduces the effort for specifying the migration. For
instance, the declarative language presented by Narayanan et al. [2009] pro-
vides patterns to specify recurrent mappings.

3.7 C O N C L U S I O N

We presented a catalog of 61 operators for the coupled evolution of metamod-
els and models. These so-called coupled operators evolve a metamodel and
in response are able to automatically migrate existing models. The catalog
covers not only well-known operators from the literature, but also operators
which have proven useful in a number of case studies we performed. The
catalog is based on the widely used EMOF metamodeling formalism [Object
Management Group, 2006] which was stripped of the constructs that cannot
be instantiated in models. When a new construct is added to the metamod-
eling formalism, new operators have to be added to the catalog: Primitive
operators to create, delete and modify the construct as well as complex opera-
tors to perform more intricate evolutions involving the construct. The catalog
not only serves as a basis for operator-based tools, but also for difference-
based tools. Operator-based tools need to provide an implementation of the
presented operators. Difference-based tools need to be able to specify the
mappings underlying the presented operators.

81

A Catalog of Coupled Operators Chapter 3

A C K N O W L E D G M E N T S

At the Technische Universität München, this research was funded by by the
German Federal Ministry of Education and Research (BMBF), grants “SPES
2020, 01IS08045A” and “Quamoco, 01IS08023B”. At Delft University of Tech-
nology, this research was supported by NWO/JACQUARD, project 638.001.610,
MoDSE: Model-Driven Software Evolution. We thank Lennart Kats, Andreas
Vogelsang and Stefan Wagner for providing feedback to improve this chap-
ter.

82

4
Generating Database Migrations
for Evolving Web Applications

A B S T R A C T

WebDSL is a domain-specific language for the implementation of dynamic
web applications with a rich data model. It provides developers with object-
oriented data modeling concepts but abstracts over implementation details
for persisting application data in relational databases. When the underlying
data model of an application evolves, persisted application data has to be
migrated. While implementing migration at the database level breaks the
abstractions provided by WebDSL, an implementation at the data model level
requires to intermingle migration with application code. In this chapter, we
present a domain-specific language for the coupled evolution of data models
and application data. It allows to specify data model evolution as a separate
concern at the data model level and can be compiled to migration code at the
database level. Its linguistic integration with WebDSL enables static checks
for evolution validity and correctness.

4.1 I N T R O D U C T I O N

WebDSL is a domain-specific language for the implementation of dynamic
web applications with a rich data model [Visser, 2008a]. It provides devel-
opers with object-oriented data modeling concepts. These concepts abstract
over implementation details for persistence. These details are added in a
two-step compilation process. In the first step, the WebDSL compiler gen-
erates application code in an object-oriented general purpose programming
language, which is Java. To achieve persistence, the generated code relies on
the Hibernate framework. This framework realizes an object-relational map-
ping (ORM): Application data is kept in objects at runtime but is persisted
in a relational database. In the second step, the generated application code
is compiled and the persistence framework generates a relational database
schema. When deploying the application, a relational database management
system (RDBMS) generates an initial, empty database from this schema. The
deployed application will interact with the RDMBS to store and to retrieve its
data.

83

Generating Database Migrations for Evolving Web Applications Chapter 4

Problem. As any other software, web applications and their data mod-
els evolve. An evolved application has to be recompiled and redeployed.
During recompilation, the persistence framework generates a new database
schema. Typically, the original database no longer complies with the new
schema and original application data cannot be accessed from the evolved
application anymore. During redeployment, the RDBMS instead generates a
new initial database from the new schema. But original application data is a
valuable asset. It needs to be migrated to co-evolve with the application and
its data model.

Implementing migrations at the database level breaks the abstractions pro-
vided by WebDSL. Developers have to be aware of the persistence framework
and its ORM to make sure that the migrated database complies with the new
schema. They also have to be aware of the RDBMS to provide details such as
character set definitions, collations, and storage engines.

To avoid breaking abstractions, migrations can be implemented at the data
model level in WebDSL. Since the generated code will make extensive usage
of the ORM, migration does not scale to large amounts of data and is typically
performed lazily. The application migrates original data only when it needs
to access this data. As a consequence, the original data model has to remain
part of the evolving data model and application code is intermingled with
migration code. Maintenance of data model, application code, and migration
code becomes harder with every new evolution step.

Contribution. In Chapter 3, we compiled an extensive catalog of cou-
pled operators for the evolution of object-oriented data models. These op-
erators couple common evolution steps at the data model level with their
corresponding migrations at the data level. In this chapter, we focus on the
implementation of these operators in Acoda, a tool for the coupled evolution
of WebDSL data models and databases.

Acoda provides a domain-specific language for specifying data model evo-
lution as a separate concern at the data model level. Its IDE offers static checks
for evolution validity and correctness. While evolution validity ensures that
an evolution can be applied to the original data model, evolution correctness
secures that the evolution yields the evolved data model.

Acoda implements coupled operators as a mapping from evolution steps
to migration code in SQL. In this chapter, we discuss this mapping for par-
ticular operators in detail, including complex operators that work along the
inheritance hierarchy or over references. Thereby, we distinguish three kinds
of migrations. First, schema modifications change only the database schema.
Second, conservative migrations rearrange data without data loss. Third, lossy
migration supports potential data loss on purpose.

Outline. We briefly introduce WebDSL’s data modeling concepts and its
ORM in the next section. In Section 4.3, we discuss evolution specification. In

84

Section 4.2 WebDSL

Sections 4.4 to 4.6, we address the generation of migration code for selected
operators in detail. We conclude the chapter with a discussion in Section 4.8.

4.2 W E B D S L

WebDSL is a domain-specific language for the development of dynamic web
applications that integrates data models, user interface models, actions, vali-
dation, access control, and workflow [Visser, 2008a]. The WebDSL compiler
verifies the consistency of web applications and generates complete imple-
mentations in Java. In this section, we focus on WebDSL’s data modeling
concepts and the ORM underlying the generated Java code.

4.2.1 Data modeling

A data model definition in WebDSL features entity declarations, which com-
prise a name and a set of properties. An entity declaration might inherit from
another entity declaration, indicated with : . Each property has a name and
a type. We distinguish two kinds of properties: Value properties, indicated
with :: , and associations, indicated with → . For value properties, WebDSL
supports basic data types such as Bool and String , but also domain-specific
types such as Email, Secret, and WikiText, which all provide addi-
tional functionality. Associations refer either to entities declared in the data
model (single-valued) or to a Set or List thereof (multi-valued).

Figure 4.1 (left) shows a data model for a publication management appli-
cation similar to Researchr1. It models publications written by authors and
a special type of publication, namely the published volume. Additionally,
users can register and create personal bibliographies, which are collections of
publications.

4.2.2 Object-relational Mapping

WebDSL’s data modeling concepts abstract over implementation details for
persistence. These details are added by the WebDSL compiler which ad-
dresses Hibernate as a persistence framework. At runtime, application data
is kept in objects which are stored persistently in a relational database. There
is a database table for each hierarchy of entities, named after the root en-
tity declaration in a hierarchy. Throughout the chapter, we will call these
tables hierarchy tables. In the running example, there will be four tables _User,
_Bibliography, _Publication, and _Author. Each of these tables has at
least two columns: id stores object ids and acts as the primary key of the ta-

1Researchr is a web application for finding, collecting, sharing, and reviewing scientific publi-
cations: http://researchr.org.

85

http://researchr.org

Generating Database Migrations for Evolving Web Applications Chapter 4

entity Author {
name :: String

}

entity User {
email :: Email
password :: Secret
public :: Bool

}

entity Bibliography {
owner
→ User (not null)

publications
→ Set<Publication>

}

entity Publication {
key :: String
title :: String
abstract :: WikiText
authors → List<Author>

}

entity PublishedVolume
: Publication {
publisher :: String

}

entity Person {
alias
→ Set<Alias> (not empty)

email :: Email
}

entity Alias {
name :: String (id)

}

entity User : Person {
password :: Secret

}

entity Bibliography {
public :: Bool
owner
→ User (not null)

publications
→ Set<Publication>

}

entity Publication {
registrant → User
key :: String
title :: String
abstract :: WikiText
authors → List<Person>

}

entity PublishedVolume
: Publication {
editors → List<Person>
publisher :: String

}

Figure 4.1 Original and evolved data model for the running example

1 create Publication.registrant → User;
2 collect Bibliography.public over owner;

3 rename entity Author to Person;
4 create PublishedVolume.editors → List<Person>;
5 add super Person to User;
6 pull up Person.email;

7 extract
entity Alias{ name::String }
from Person
as alias;

8 make Alias.name id;
9 generalize Person.alias to Set;

Figure 4.2 Evolution Model for the running example

86

Section 4.3 Modeling Data Model Evolution

ble while DISCRIMINATOR is used to distinguish which entity in the hierarchy
is instantiated by an object. Object ids are implemented by universally unique
identifiers (UUIDs) and are therefore database-wide (and beyond) unique.

Additional columns are added for each value property and for each single-
valued association declared in one of the entities in an entity hierarchy. Since
columns for single-valued associations will store the ID of a referred object,
they act as implicit references. The implicit references are made explicit by
a foreign key to the id column in the table corresponding to the type of an
association. The RDBMS enforces foreign keys by preventing (or canceling)
database operations that break integrity. The _Bibliography table will have
three columns: id (primary key), DISCRIMINATOR, and Bibliography_owner

(with a foreign key to id in _User).
Multi-valued associations are stored in separate connection tables. The names

of these tables are composed from the names of the declaring entity, the asso-
ciation, and the association type. Each connection table has two columns to
store pairs of object ids (referring and referred object). Both columns are for-
eign keys to the id column of the table corresponding to the declaring entity
respectively the association type. A multi-valued association can either be a
Set or a List . For sets, we place a primary key on the two columns, since we
may not store a pair of objects twice. For lists, an additional index column is
needed to persist order. Here we place a primary key on the combination of
declaring entity reference and the index, since there can just be one reference
per position in a list. For example, the association Publication.authors is
stored in a connection table named Publication_authors_Author compris-
ing three columns, namely: _Publication_id (with a foreign key to id in
_Publication), Publicationauthorindex, and authors_id (with a foreign
key to id in _Author), where the first two columns act as the primary key.

4.3 M O D E L I N G D ATA M O D E L E V O L U T I O N

Typically, the evolution of a data model is only implicitly defined by its orig-
inal and evolved version. For example, the right part of Figure 4.1 shows an
evolved version of the data model. In this section, we discuss means to model
this evolution explicitly.

4.3.1 Coupled Operators

Informally, the example evolution follows three stages: First, bibliography
management is extended by allowing users to submit new publications, hence
they are linked to publications as registrant and can now individually
set bibliography visibility. This requires adding an association from User

to Publication and a public property to bibliographies. The latter is

87

Generating Database Migrations for Evolving Web Applications Chapter 4

collected from the owner of a bibliography as not to lose the user settings.
Second, the system is refactored to support editors. This requires addition of
an editors association, as well as renaming Author to a more general Person

. Consequently, User can become a sub entity of Person , since they may also
be editor or author of publications. The email of users is then generalized to
be able to store email addresses for editors and authors. Third, the system is
extended to support people (authors, editors, or users) to have different name
aliases. Therefore, a person’s name is extracted into a new entity, in which
names are stored uniquely.

We can model evolution as a sequence of coupled operator applications.
At the data model level, coupled operators capture common evolution steps.
Thereby, they go beyond simple creations, changes, and deletions of entities
and properties. For example, the evolution model from Figure 4.2 includes
the collection of a property over an association, the pull-up of a property
into a parent entity, and the extraction of an entity. Each of these operators
couples the evolution step at the data model level with a corresponding mi-
gration. This allows us to compile evolution models into migration code for
the database level.

4.3.2 Linguistic Integration

The language for evolution models is linguistically integrated with WebDSL.
It reuses WebDSL’s data modeling concepts and parts of their syntax defi-
nition. For example, constructs for property and entity creation reuse the
syntax for properties and entities. An evolution model includes references to
the original and evolved data model. Static checks ensure evolution valid-
ity and correctness with respect to these data models. For evolution validity,
preconditions for operator applications are checked in the context of the orig-
inal data model (Chapter 5). These preconditions secure that the evolution
can be applied to the original data model. For evolution correctness, it is
checked whether the evolution maps the original data model to the evolved
data model.

4.3.3 Migration

To migrate the original database, each operator application in an evolution
model is compiled to its corresponding migration code. Thereby, the compiler
follows the same ORM as the WebDSL compiler, namely Hibernate. This en-
sures that migrating the original database and generating an initial schema for
the evolved data model will result in the same database schema. Furthermore,
the compiler is aware of the RDMBS and generates details such as character
set definitions, collations, and storage engines2.

2In the examples, we omit these details for readability.

88

Section 4.4 Schema Modification

In the following sections, we discuss database migration for selected cou-
pled operators. Thereby, we distinguish three kinds of migrations. Operators
such as property and entity creation only require schema modification. Their
corresponding migrations affect the database schema but not the stored data.
We discuss such operators in Section 4.4. Many other operators such as entity
renaming, entity extraction, super addition, or cardinality generalization al-
low for conservative data migration. Their corresponding migrations affect both
the database schema and the stored data. But the stored data is completely
preserved during migration, no data is lost. We discuss such operators in
Section 4.5. Only few operators such as property collection or property iden-
tification require lossy migration. Their corresponding migrations may not pre-
serve the stored data completely. Some data may be lost intentionally during
migration. We discuss such operators in Section 4.6.

4.4 S C H E M A M O D I F I C AT I O N

Schema modifying migrations change the database schema, but leave the per-
sistent data untouched. They generally allow for more information to be
stored and are thereby most commonly needed while extending application
functionality.

4.4.1 Property Creation

In Chapter 3, we identified two coupled operators for property creation: one
for value properties and one for associations. But in WebDSL and its Hiber-
nate configuration, single-valued associations and multi-valued associations
are dealt with differently. The first is stored inside the containing entity’s ta-
ble, the second is stored in its own connection table. Thus, Acoda provides
three different coupled operators for property creation: one for value proper-
ties, one for single-valued associations, and one for multi-valued associations.

When we create a new value property in a data model, the original database
schema is missing a column for this property. To be precise, the hierarchy
table corresponding to the entity containing the new property is missing a
column. We need to create the missing column in order to migrate the original
database.

For the creation of a new single-valued association, the migration is similar.
Again, the hierarchy table corresponding to the containing entity is missing
a column for storing ids of the associated entity. Additionally, a foreign key
needs to be created to enforce validity. This foreign key needs to point to the
id column of the hierarchy table corresponding to the associated entity.

Example. Acoda generates the following migration for the creation of the
association registrant in the running example:

89

Generating Database Migrations for Evolving Web Applications Chapter 4

1 create Publication.registrant → User;

ALTER TABLE _Publication
ADD COLUMN ‘Publication_registrant‘

VARCHAR(32) default NULL,
ADD CONSTRAINT f_Publication_registrant

FOREIGN KEY ‘f_Publication_registrant‘
(Publication_registrant)

REFERENCES _User (id);

It consists of a single SQL statement altering the _Publication table. First, it
adds a new column Publication_registrant to store the association. After-
wards, it constrains this column with a foreign key to id in _User.

In contrast to single-valued references, multi-valued references are stored
in separate connection tables. When we create a new multi-valued association
in a data model, the original database schema is missing a table for this asso-
ciation. We need to create this table in order to migrate the original database.

Example. Acoda generates the following migration for the creation of the
editors association:

4 create PublishedVolume.editors → List<Person>;

CREATE TABLE ‘PublishedVolume_editors_Person‘ (
‘_PublishedVolume_id‘ VARCHAR(32) default NULL,
‘_editors_id‘ VARCHAR(32) default NULL,
‘PublishedVolumeeditorsindex‘ integer,
PRIMARY KEY (‘_PublishedVolume_id‘,

‘PublishedVolumeeditorsindex‘),
INDEX ‘forward_lookup‘

(_PublishedVolume_id(14)),
CONSTRAINT ‘f_PublishedVolume_editors_b‘

FOREIGN KEY ‘f_PublishedVolume_editors_b‘
(_PublishedVolume_id)
REFERENCES _Publication (id),

CONSTRAINT ‘f_PublishedVolume_editors_f‘
FOREIGN KEY ‘f_PublishedVolume_editors_f‘
(_editors_id)
REFERENCES _Person (id)

);

It comprises a single SQL statement creating a table connecting records
in _PublishedVolume to records in _Person. The table has three columns
to store ids of published volumes, ids of persons, and list indices since order
does matter. For a published volume and an index, the associated editor needs
to be unique. Thus, the published volume and the index form the primary
key of the table. Validity of the two columns which store ids is ensured
by foreign keys. These point to the id columns in the connected tables. In
order to support efficient use of the connection table, database indices are
generated for the primary key, allowing efficient single editor lookup, and for
the published volumes column, allowing efficient collection of the complete
list of editors for a published volume.

90

Section 4.5 Conservative Data Migration

4.4.2 Entity Creation

Similar to property creation, Acoda provides different coupled operators for
the creation of a new entity: one for entities that do not extend another entity
and one for entities that do.

When we create a new entity which does not extend another entity, the
original database is missing a hierarchy table for this entity and connection
tables for its multi-valued associations. We need to create these tables in order
to migrate the original database. Since we explained the creation of connection
tables already in the previous section, we only focus on the hierarchy table.
Following Hibernate, this table needs to be named like the entity and needs to
provide two columns id and DISCRIMINATOR as well as additional columns for
value properties and single-valued associations. Columns for single-valued
associations need to be constrained by foreign keys.

When we create a new entity which extends another entity, the original
database is missing columns for its value properties and single-valued asso-
ciations and connection tables for its multi-valued associations. The columns
are missing in the hierarchy table of the extended entity. Thus, the migration
is the same as for creating the properties of the new entity. Creating its value
properties and single-valued associations will add the missing columns while
creating its multi-valued associations will add the missing connection tables.

Figure 4.3 presents creation of an entity A:B with single- and multi-
valued features sf 1 .. sf n and mf 1 .. mf m graphically. The figure above
the dashed line shows the database before migration, the figure below the
dashed line after migration. Each array denotes a table, each cell within an
array a column. An open cell denotes columns which were already present
before modification and remain unaltered. A solid double arrow denotes
a uniqueness key, a dashed double arrow denotes a database index, and a
single arrow denotes a foreign key. A* denotes the root entity in the hierarchy
of entity A, t(a) denotes the target type of an association a. The id columns
are always unique. We therefore omit the double solid uniqueness arrow on
id columns.

4.5 C O N S E RVAT I V E D ATA M I G R AT I O N

Conservative migrations are needed when the domain of an application shifts
or expands. They change the schema and rearrange data but do not lose in-
formation. Conservative migrations are most common in practice, yet tedious
and error-prone to write manually.

91

Generating Database Migrations for Evolving Web Applications Chapter 4

discriminatorid

A_sf n...A_sf 1discriminatorid

mf 1_id[index]A_id

mf m_id[index]A_id

id

id

t(mf 1)*

create entity A : B {
 sf 1 .. sf n
 mf 1 .. mf m }

t(mf m)*

A*

A*

A_mf 1

A_mf m

[]

[]

Figure 4.3 Database modification for entity creation

4.5.1 Entity Renaming

In schema generation, entity names influence table and column names in hi-
erarchy and connection tables as well as associated foreign keys. When an
entity is renamed, these names need to be updated and foreign keys need
to be recreated. More specifically, renaming entity A requires the following
schema modifications:

1. Drop foreign keys for single- and multi-valued associations in A

2. Drop foreign keys for single- and multi-valued associations of type A

3. Rename the hierarchy table for A if A=A*

4. Rename columns for value properties and single-valued associations in
A

5. Rename connection tables for multi-valued associations in A

6. Rename columns for multi-valued associations in A

7. Rename columns for multi-valued associations of type A

8. Create foreign keys for single- and multi-valued associations in A

9. Create foreign keys for single- and multi-valued associations of type A

However, entity names are also used as discriminator, distinguishing between
different entities in a hierarchy. An entity rename therefore needs to migrate
the data inside the hierarchy table for A , by replacing the old entity name in
the DISCRIMINATOR column by the new entity name.

92

Section 4.5 Conservative Data Migration

Example. Acoda generates the following migration for renaming Author

to Person:

3 rename entity Author to Person;

ALTER TABLE Publication_authors_Author
DROP FOREIGN KEY ‘f_Publication_authors_f‘;

ALTER TABLE _Author
RENAME _Person;

ALTER TABLE Publication_authors_Author
RENAME Publication_authors_Person,
ADD CONSTRAINT ‘f_Publication_authors_f‘

FOREIGN KEY ‘f_Publication_authors_f‘ (_authors_id)
REFERENCES _Person (id),

UPDATE _Person
SET DISCRIMINATOR = "Person"
WHERE DISCRIMINATOR = "Author";

First, the foreign key for the Publication.authors association is dropped,
after which the hierarchy table _Author can be renamed. Next, the connection
table for the association is renamed and the dropped foreign key is recreated.
Finally, the object discriminators are updated.

4.5.2 Super Addition

When the original application models two inheritance-unrelated entities, sep-
arate tables are used to store the inheritance trees of both. When the ap-
plication evolves by adding a super entity joining the two inheritance trees,
the target application only uses a single table to store both entities. To sup-
port the new application, the original tables and associated data needs to be
merged. The schema modifications are presented graphically in Figure 4.4.
The migration of adding super entity A to entity B comprises the following
steps:

1. Expand the table for A* by all single-valued properties in the inheritance
tree of B (inh(B))

2. Create foreign keys for outward single-valued associations in
inh(B)

3. Copy single-valued data from the old table for B to the table for A*

4. Drop foreign keys for outward (multi-valued and single-valued) associ-
ations in inh(B)

5. Create foreign keys for outward multi-valued associations in
inh(B)

6. Drop foreign keys for inward associations to inh(B)

7. Create foreign keys for inward associations to inh(B)

93

Generating Database Migrations for Evolving Web Applications Chapter 4

a1 a2

discriminatorid add super A to BA*

bm+2b2 ...b1 b3

col m...col 1discriminatoridB

b1

discriminator

bm+2

...

a1

...b3

col m

a2

col 1id

b2

A*

Figure 4.4 Database modification for super type addition

8. Drop the old table for B

Step 1 creates the new space to store data for B and its sub entities inside
the table, which was originally only used for A* and its sub entities. Step 2

creates foreign keys pointing away from the table of A* . Step 3 prevents any
loss of data. Steps 5 and 7 create foreign keys pointing to the table of A* ,
which work on the copied data. Steps 4 and 6 drop all foreign keys, that point
to the table for B , to prevent breaking the database integrity. Finally, step 8

deletes the old data. The order of steps is crucial, it targets to maximize the
number of constraints at any point in migration: Foreign keys for outward
single-valued associations are added before copying data, since they point
away from the table for A* and thereby also hold on an incomplete (or empty)
set of B records. Foreign keys for outward multi-valued associations and
inward associations are created after copying, since they point to the table for
A* and therefore require a complete data set. The foreign keys are dropped
before the data is dropped to prevent them from breaking and the foreign
keys are dropped before they are recreated to prevent name clashes. Note
that except for their foreign keys, any connection table associated to inh(B)

remains unaltered.

Example. In the running example, Person becomes super entity of User .
Following the scheme outlined above: User has two single-valued properties
email and password, which are added to the Person table in step 1. Both
these properties are attributes, hence step 2 can be omitted. Next, the user
data is copied from the User table to the Person table in step 3. Step
4 can again be omitted. User has one inward association registrant from
Publication, whose new foreign key is added in step 5 and whose old foreign

94

Section 4.5 Conservative Data Migration

key is dropped in step 7. Step 6 can again be omitted and step 8 drops the
old user data. The steps are formalized in the following migration:

5 add super Person to User;

ALTER TABLE _Person
ADD COLUMN ‘User_email‘ VARCHAR(255) DEFAULT ’’;
ADD COLUMN ‘User_password‘ VARCHAR(255) DEFAULT ’’;

INSERT INTO _Person
(id,DISCRIMINATOR, version_opt_lock,

User_email, User_password)
SELECT id,DISCRIMINATOR,

version_opt_lock,_email,_password
FROM _User;

ALTER TABLE _Publication
DROP FOREIGN KEY ‘f_Publication_registrant‘;

ALTER TABLE _Publication
ADD CONSTRAINT ‘f_Publication_registrant‘
FOREIGN KEY ‘f_Publication_registrant‘
(Publication_registrant)
REFERENCES _Person (id);

DROP TABLE _User;

4.5.3 Entity Extraction

To enrich a data model, an entity may need to be extracted from another
entity. During entity extraction, a new entity is created using some or all
of the properties of an existing source entity. A single-valued association is
created to link objects of the two entities. An example entity extraction can be
found in the running example, where Alias is extracted from Person , using
a new association alias . We distinguish the following steps in a migration
for extracting entity B from A as a :

1. Adapt the schema to store B

2. Add a column for a to the table for A*

3. Generate new identifiers in the column for a

4. Copy a as id and other single-valued columns in B from the table for
A*

5. Create a foreign key for a

6. Drop the old columns in the table for A*

7. Move the data for multi-valued properties in B and update their ids
using the mapping provided by a

Step 1 comprises a migration for creating an entity, as discussed in Section
4.4.2. Step 2 adds a column, but leaves out its foreign key. Step 3 generates
new ids, which can be sequentially numbered, or as in our case UUIDs. Step

95

Generating Database Migrations for Evolving Web Applications Chapter 4

am+2

A_sf m

...

...

a1 a3

discriminator A_sf 1id

a2

extract entity
B{ sf 1 .. sf m
 mf 1 .. mf n
}
from A as a

A*

ids

A_a

a1

discriminatorid

a2

A*

am+2

B_sf m

...

...

ids a3

discriminator B_sf 1id

"B"

B*

ids generated

[mf q 2]mf q 1 mf q 3

mf q_id[index]A_id id t(mf q)*A_mf q

for all q in 1 .. n

[mf q 2]A(mf q 1).A_a mf q 3

mf q_id[index]B_id id t(mf q)*A_mf q

for all q in 1 .. n

Figure 4.5 Database modification for entity extraction

4 then performs the extraction for all single-valued data, by copying their
columns including the newly generated ids and a discriminator (’B’) to the
new table. As the identifier duplication now validates the foreign key, it can
be created in step 5. Step 6 then drops the old single-valued data from the
table for A* . Finally, step 7 moves the multi-valued data to new connection
tables, which were created in step 1. This data references A objects, whereas
they should now be referencing B objects, therefore there links need to be
updated using the mapping specified in the table for A* (id, A_a) . After
moving the multi-valued data, the old connection tables are dropped. Note
that step 4 moves each property across association a to B . We could therefore
have reused the migration generation for moving properties, yet this would
yield an inefficient migration. Copying all data in one pass over the table
for A* is more efficient then separate passes for each of the single-valued
properties in B .

Figure 4.5 shows the database before and after migration. The data set
identifiers are generated (step 3 above) and the data set for B_id is obtained

96

Section 4.5 Conservative Data Migration

by applying the mapping from A objects to B objects (step 7).

Example. In the running example, we extract entity Alias and its name

property from Person , while creating an association alias. To adapt the
database, we generate the migration shown below. Step 7 above is not repre-
sented, since Alias has no multi-valued properties.

7 extract entity Alias{name::String} from Person as alias;

CREATE TABLE IF NOT EXISTS ‘_Alias‘ (
‘DISCRIMINATOR‘ VARCHAR(255) default ’’,
‘id‘ VARCHAR(32) default NULL,
‘Alias_name‘ VARCHAR(255) default ’’,
PRIMARY KEY (‘id‘)

);
ALTER TABLE _Person

ADD COLUMN ‘Person_alias‘ VARCHAR(32)
default NULL;

UPDATE _Person
SET Person_alias = UUID();

INSERT INTO _Alias
SELECT "Alias", Person_alias, Person_name
FROM _Person;

ALTER TABLE _Person
ADD CONSTRAINT ‘f_Person_alias‘
FOREIGN KEY ‘f_Person_alias‘ (Person_alias)
REFERENCES _Alias (id);

ALTER TABLE _Person
DROP COLUMN Person_name;

4.5.4 Maximum Cardinality Generalization

During the lifetime of an application, attributes often get generalized to ex-
pand the application’s functionality. One type of property generalization is in-
creasing its maximum cardinality. Any multi-valued cardinality uses the same
database structure, its exact number is irrelevant. However, a single-valued
association is represented as a column, whereas a multi-valued association as
a connection table. In the running example, a person’s alias is stored within
the Person table before step 7 and stored in a connection table afterwards.
To support such generalization, we need to generate a migration, which first
creates the connection table, then moves the data from the main table to the
connection table and subsequently drops the old column.

Example. For generalizing the maximum alias cardinality in the run-
ning example, we generate the migration below. The first statement creates a
connection table as discussed in Section 4.4.1. The second statement inserts
the old data into the new connection table. The last two statements drop the
old column by first dropping the foreign key and then dropping the column
itself.

9 generalize Person.alias to Set;

97

Generating Database Migrations for Evolving Web Applications Chapter 4

CREATE TABLE IF NOT EXISTS ‘Person_alias_Alias‘ (
‘_Person_id‘ VARCHAR(32)default NULL,
‘_alias_id‘ VARCHAR(32)default NULL,
INDEX ‘forward_lookup‘ (_Person_id(14)),
CONSTRAINT ‘f_Person_alias_b‘

FOREIGN KEY ‘f_Person_alias_b‘ (_Person_id)
REFERENCES _Person (id),

CONSTRAINT ‘f_Person_alias_f‘
FOREIGN KEY ‘f_Person_alias_f‘ (_alias_id)
REFERENCES _Alias (id)

);
INSERT INTO Person_alias_Alias

SELECT id, Person_alias
FROM _Person
WHERE Person_alias IS NOT NULL;

ALTER TABLE _Person
DROP FOREIGN KEY f_Person_alias;

ALTER TABLE _Person
DROP Person_alias;

4.5.5 Property Pull-Up

For pulling up a property, Acoda provides different migrations for value prop-
erties, single-valued associations, and multi-valued associations. Value prop-
erties as well as single-valued associations are stored inside the inheritance
hierarchy table. A property is pulled up from each of the sibling entities in-
side the hierarchy. The pulled up property is stored in one database column.
During migration, the values for the different sibling columns need to be com-
bined. This is achieved by creating the new column A_f, copying the data sets
of each of the sibling properties separately and dropping the sibling proper-
ties afterwards. Figure 4.6 presents single-valued pull up. The pulled up data
(a12 to an2) is merged to form a new column A_f. When associations are
pulled up, the old foreign keys are dropped (arrows in figure) and a single
foreign key is created along with the new column A_f.

Example. In the running example, email is pulled up from User to
Person . Email is a single-valued property and User has no sibling entities.
Thus, for the example, we need to merge a single column with no foreign key,
which amounts to creating a new column, copying the data and dropping the
old column:

6 pull up Person.email;

ALTER TABLE _Person
ADD COLUMN ‘Person_email‘
VARCHAR(255) DEFAULT ’’;

UPDATE _Person
SET Person_email = User_email
WHERE DISCRIMINATOR=’User’;

ALTER TABLE _Person
DROP COLUMN ‘User_email‘;

98

Section 4.6 Lossy Migration

...

A1_sf

an2

...

a11

discriminator

a31

...

"A1"

An_sf

a12

"A3"

id

...

pull up A.sf

A1 : A {..sf..}
 .
 .
 .
An : A {..sf..}

A*

"A3"a31 an2

...... ...

a12

A_f

a11

discriminatorid

"A1"

A*

id t(sf)*

id t(sf)*

Figure 4.6 Database modification for single-valued property pull up

When pulling up a multi-valued association, the set of sibling associations
is stored in a collection of connection tables. These need to be merged into
a new table which has column names and foreign keys adapted to the new
containing type. In contrast to single-valued associations, merging of multi-
valued associations comprises a union of the sibling data sets and can thus be
done in one SQL statement.

4.6 L O S S Y M I G R AT I O N

Although data loss is generally not desirable, when correcting design flaws
it can often not be avoided. Additionally, in many cases a migration may in
theory potentially cause data loss, yet in practice for many databases this will
not actually be the case.

4.6.1 Property Collection

It is common for properties to be repositioned during the life-span of an appli-
cation. They can be repositioned across an inheritance relation (e.g. pull up

), but can also be repositioned across an association. In WebDSL, associations
are directed. When repositioning a property in the direction of the association,

99

Generating Database Migrations for Evolving Web Applications Chapter 4

we speak of moving a property, when repositioning opposite to the association
direction, we speak of collecting a property. When a property is repositioned
across an association, we call the association a bridge.

There are two main reasons for collecting properties: First, the applica-
tion may use numerous dereferences to access a property, in which case the
dereference can be made permanent by collecting the property. Second, the
property might no longer logically belong to the referred object but to the
referring object. This is the case in our running example: We want to distin-
guish for each bibliography if it is public or not. In the original data model,
the distinction is made only on a per user basis. Thus, the corresponding
property public needs to be collected from User to Bibliography, using
owner as a bridge.

Property collection may cause loss of data, since the bridge may not be
surjective. There may be users who have set their public field but do not have
a bibliography. To adapt a database to a collected single-valued property f

in A from B across single-valued association bridge 3, we first create the new
column to store f. Next, we join the tables for A* and B* (we compute
their cross product) and filter the result on records where the bridge holds
(A.bridge = B.id) . Then we copy the old column for f to the new column
for f in the cross product result. Finally we drop the old column for f . If f

is an association, its new foreign key needs to be created along with creating
its new column and its old foreign key needs to be dropped before dropping
the old column. Note that the database index on the (primary) id column of
the table for B ensures that the table join can be computed efficiently.

Figure 4.7 shows the process graphically, in which the middle stage rep-
resents the intermediate signature during update. During migration, data is
typically duplicated: A user can have multiple bibliographies, each of which
gets the same public value.

Example. To collect public from User to Bibliography in our running
example, we generate the migration below. The first and last statement create
and delete columns to store the public property. The second statement copies
(and duplicates) the information by updating the Bibliography and User table
joined together using owner as criterium.

2 collect Bibliography.public over owner;

ALTER TABLE _Bibliography
ADD COLUMN ‘Bibliography_public‘ BIT(1)
DEFAULT FALSE;

UPDATE _Bibliography target, _User source
SET target.Bibliography_public = source.User_public
WHERE target.Bibliography_owner = source.id;

ALTER TABLE _User
DROP User_public;

3Note that A and B could be the same type

100

Section 4.6 Lossy Migration

a1 a3a2

A_bridgediscr.id

collect A.f over bridge

... bridge -> B ...

A*

b2b1 b3

B_fdiscr.idB*

A_f

a3.b3a1 a3a2

A_bridgediscr.idA*

b2b1

discr.idB*

A*
x
B*

discr. A_bridge A_fid B_fdiscr.id

Figure 4.7 Database modification for property collection

There are different migrations for collecting multi-valued properties and
for collecting properties across a multi-valued bridge. In both cases, the mi-
gration is extended by including connection tables. When collecting a prop-
erty across a multi-valued bridge, we need to extend the join above by the
connection table representing the bridge. When collecting a multi-valued
property, the property is represented as a connection table and we can thereby
make a new connection table by rewriting the connection table’s reference to
B into a reference to A , using the bridge. To apply the rewriting efficiently, a
database index on the bridge needs to be generated first.

4.6.2 Property Identification

When a property is kept unique by the application, yet is not modeled as such,
it can be made unique to ensure correctness of the application logic. Also,
when data is stored redundantly, it can be compacted by enforcing uniqueness
of redundant properties. The latter is the case in the running example, where
multiple aliases with the same name exist after entity extraction. By making
an alias’ name unique, only one object would be needed per name.

Although the schema generated for the new application would match the
original schema, the application logic assumes property uniqueness, whereas
this is not guaranteed by the database. The original database may contain
duplicate values. Migration needs to resolve these duplicates as to ensure
uniqueness. There are two approaches to enforcing uniqueness: Either the
identifying values are adapted to be unique, yet it is hard to provide a decent
strategy to do so and in practice this is rarely desirable. Or the objects which

101

Generating Database Migrations for Evolving Web Applications Chapter 4

a3

A_f

a1

discr.id

a2

make A.f id

A*

r q

Ref q_ref qR q*

for all references
Ref q.ref q -> A

m1

targetsource

m2

A_
merge

a3

A_f

a1

discr.id

a2

A*
r q

Ref q_ref qR q*

for all references
Ref 1.ref1 -> A

A_f

distinct m2

discr.idA*

A_merge(r q).target

Ref q_ref qR q*

for all references
Ref 1.ref1 -> A

Figure 4.8 Database modification for attribute identification

contain duplicate values are merged. We use the latter. It may merge objects,
which are not exactly the same, in which case information is lost.

Merging objects along an identifying property comprises two tasks: the
objects need to be merged and all associations to these objects need to be
updated to point to the merged objects. Both tasks make extensive use of a
mapping from original objects to merged objects. As this mapping is compu-
tationally complex to derive, we compute it once and reuse the result. The
schematical changes for making property A.f an identifier are shown in Fig-
ure 4.8. The top-most part shows the table for A and associations to this
table, which may both be from single-valued associations (columns) as well
as multi-valued associations (connection tables). The middle part shows the
computed mapping from A object ids (source) to merged A object ids (target).
Only the target column has a foreign key to A* . At the start of migration
the source column also references A ids, yet after merge, source may point to
no longer existing, merged objects. The bottom part shows the schema after
migration.

For making Alias.name an identifier (step 8 in the running example), Acoda
generates the following migration:

102

Section 4.7 Implementation

8 make Alias.name id;

CREATE TABLE Alias_merge
(INDEX forward_lookup (source),

INDEX reverse_lookup (target))
CONSTRAINT ‘f_Alias_merge‘

FOREIGN KEY ‘f_Alias_merge‘
(target)
REFERENCES _Alias (id)

SELECT original.id AS source, target
FROM

_Alias AS original,
(SELECT min(id) AS target, Alias_name

FROM _Alias
GROUP BY Alias_name) AS merged

WHERE original.Alias_name = merged.Alias_name;
UPDATE _Person AS ref, Alias_merge AS map

SET ref.Person_alias = map.target
WHERE ref.Person_alias = map.source;

DELETE FROM _Alias
WHERE NOT EXISTS
(SELECT *

FROM Alias_merge AS map
WHERE map.target = id);

ALTER TABLE _Alias
ADD CONSTRAINT ‘Alias_name_unique‘
UNIQUE (_name);

DROP TABLE MergeMap_Alias;

The first statement computes and stores the mapping form original aliases to
merged aliases. It uses two indices for efficient lookup: a forward index to
rewrite the associations and a backward index to update the alias table. The
second statement updates the alias association from Person , which at this
point in migration is still single-valued. The update joins the Person table
and the map to update all associations efficiently. The third statement drops
the old and redundant aliases, which can now safely be removed, since they
are no longer in use. The fourth statement enforces uniqueness and the final
statement removes the merge map.

4.7 I M P L E M E N TAT I O N

The presented evolution modeling language is implemented as a part of Acoda4.
To seamlessly integrate into regular development, Acoda offers an Eclipse
plugin developed using Spoofax/IMP [Kats et al., 2009]. It operates in coop-
eration with the (already available) WebDSL plugin, which provides WebDSL
application editing and compilation services. Acoda offers additional func-
tionality around evolving WebDSL data models, such as comparison of orig-
inal and evolved data model to yield an evolution model (Chapter 5); editor
support for editing evolution models (such as syntax highlighting, instant er-
ror marking and content completion); generation of SQL migration code; and

4http://swerl.tudelft.nl/bin/view/Acoda

103

Generating Database Migrations for Evolving Web Applications Chapter 4

Figure 4.9 Screenshot of the Acoda Eclipse plugin. The left-most column shows
the regular Eclipse project tree. The top-left editor displays a WebDSL data model.
The top-right editor shows the evolution specification. The bottom editor shows the
generated SQL migration.

104

Section 4.8 Discussion

application of migrations to a database. The plugin can be used in the context
of agile development, in which it supports a short development - migration -
deployment - testing loop. For migration of production databases, Acoda also
offers a stand alone version, which can be run on-site or remotely.

Figure 4.9 shows a screenshot of the plugin. The left-most column shows
the regular Eclipse project tree. The top-left editor displays a WebDSL data
model (the running example). This editor is provided by the WebDSL plu-
gin. The top-right editor shows the evolution specification used throughout
the chapter, with a small typo to show evolution validity checking and corre-
sponding error marking. This editor is provided by the Acoda plugin. The
bottom editor shows the SQL migration generated by the plugin. Although
this migration can be viewed and adapted by the developer, general practice
is to apply the evolution specification directly, without examining SQL code.
However, this still generates the SQL migration internally, which is then ap-
plied to the database.

4.8 D I S C U S S I O N

4.8.1 Related Work

Migration generation is common in software development. Evolving data
models require data migration, evolving DTDs require XML migration, and
evolving schema require database migration. Furthermore, migration is not
restricted to data modeling. It also occurs where meta-models evolve, where
domain-specific languages evolve [Pizka and Jürgens, 2007b], and where gram-
mars evolve. The coupled transformation problem is ubiquitous [Lämmel,
2004]. In this section, we relate our work to existing work on data model
evolution and to work on coupled evolution in general.

Ruby on Rails offers support for migration of databases along an evolving
web application5. The web applications use an ORM to persist data in a rela-
tional database. They offer support for versioning different databases running
different versions of the same application. In contrast to our work, the Ruby
on Rails migration support requires the developer to define database migra-
tions himself in terms of the relational database. Ruby on Rails offers a set of
SQL-like methods to alter a database, such as create_table, add_column
and remove_index. They do not offer an evolution language at the applica-
tion abstraction level.

In the area of data model evolution, most work focuses on evolving schema
and migrating databases [Berdaguer et al., 2007, Gupta et al., 1993, Hainaut
et al., 1994]. Schema describe structure of data storage, primarily focusing
on storage techniques to improve query performance. Evolving schema re-
quires the developer to be concerned with database implementation details.

5http://guides.rubyonrails.org/migrations.html

105

Generating Database Migrations for Evolving Web Applications Chapter 4

In our work, we bridge the ORM to allow the developer to define evolution
in the application domain and abstract away from database details. From
the application-level evolution specification, we generate schema evolution
definitions (in SQL). We rely on the previous work on schema evolution to ef-
ficiently map the generated schema evolution onto a database migration. On
the one hand, this allows the developer to reason in terms of application logic
instead of database techniques. On the other hand, it allows us to introduce
more advanced concepts into evolution specifications, such as inheritance,
cardinalities, and associations.

Visser et al. formalize the more general coupled transformations [Cunha
et al., 2006, Visser, 2008b, Alves et al., 2008a]: Not only conforming artifacts
are considered (such as a database or XML document), also dependent arti-
fact transformations are formalized (such as query and constraint migration).
The formalization makes use of data refinement theory and uses Haskell for
presentation. Visser et al. do not offer concrete migrations in addition to the
presented formalization. Although they consider flattening hierarchies and
present a formalization of such, they do not consider inheritance, or a com-
plete ORM. In their concluding remarks, they point out that inheritance would
be useful to include, to extend the scope to object-oriented data models.

Lämmel and Lohmann discuss migration of XML data along evolving DTDs
[Lämmel and Lohmann, 2001]. They formalize the migration concepts and
distinguish two groups of evolution: refactorings and structure-extending and
-reducing evolutions. They discuss higher-level evolutions, such as folding
and generalization. Lämmel and Lohmann do not offer a language for de-
scribing evolution.

Similar to the application models considered in our work, meta-models are
defined in terms of high-level concepts, such as inheritance and cardinalities.
Meta-model evolution languages cover a high level of abstraction and are sim-
ilar to evolution steps on object-oriented data models [Cicchetti et al., 2008,
Wachsmuth, 2007b, Herrmannsdoerfer et al., 2009, Hößler et al., 2005]. We
therefore reused the evolution steps defined on meta-models, which are out-
lined in Chapter 3. In contrast to our work, in meta-modeling, there is a close
relationship between the data set structure and the data definition: models
closely follow the structure defined in their meta-model. The relational struc-
ture of a RDBMS, does not closely follow the object-oriented structure of an
application-level model. Thus, where model migration does not need to cover
the gap between defined structure and implemented structure, our work cov-
ers the mapping between object domain and relational domain: the ORM.

4.8.2 Changing Persistence Implementation

WebDSL abstracts over implementation details for persistence. The presented
migration generation is aligned to Hibernate. But the WebDSL compiler might
change some of the parameters for Hibernate’s ORM or might even address

106

Section 4.9 Discussion

another persistence framework. Such changes would be transparent to evo-
lution models, since Acoda abstracts over implementation details for migra-
tion and preserves WebDSL’s data modeling abstractions. The Acoda com-
piler needs to reflect these changes and has to address the same ORM as
the WebDSL compiler. These changes primarily amount to naming differ-
ences (of columns, tables, and keys) and a different type of inheritance rep-
resentation (e.g. using separate tables for each entity, instead of hierarchy ta-
bles). To cope with naming differences, the naming in Acoda is pluggable and
can be replaced by another naming scheme. To cope with a different inheri-
tance representation, migration generations dealing with inheritance (e.g. the
presented sub entity creation, property pull-up, and super addition) need to
be adapted. Considering inheritance flattening is the more complex variant,
adaptation will generally simplify migration generation.

4.8.3 Performance & Uptime

Databases may serve live web applications. Database migration may cause
application downtime. Good performance of migration is important to limit
downtime.

Acoda constructs migrations from database operations. Efficiency of their
implementation depends on the used RDBMS. Nevertheless, we optimize the
usage of database operations at two levels: First, we combine evolution op-
erators at the data model level to form more complex operators with a more
efficient migration at the database level. For example, a class creation and a
feature addition can be combined into a single class creation. Second, we com-
bine SQL operations in the generated migrations at the database level. Acoda
compiles a sequence of evolution operators into a sequence of SQL statement
sequences. These sequences may overlap. For example, two changes on a ta-
ble (e.g. a rename and a column addition) may be generated for different evo-
lution operators, yet can be combined into a single ALTER TABLE statement,
thus significantly improving performance. The two kinds of optimizations
target to generate the most efficient migration script.

Furthermore, the generated migrations attempt to shorten the time in which
the database is inaccessible as much as possible. For example, the super addi-
tion postpones data deletion to the last step, even though it could have been
applied earlier. This allows the database to stay online in read-only mode
while the more computation intensive steps are executed (such as copying
data). Additionally, migrations generally only target a part of the database,
remaining application data stays accessible (both readable and writable). In
practice however, most migrations are short and can be executed while the ap-
plication is updated. They cause little or no additional downtime on regular-
sized (WebDSL) databases.

107

Generating Database Migrations for Evolving Web Applications Chapter 4

4.9 C O N C L U S I O N

The previous chapter (Chapter 3) focused on constructing an extensive catalog
of operators for metamodel evolution. This chapter implemented this catalog
for the evolution of web applications specified in WebDSL and the coupled
migration of their databases. To specify evolution of WebDSL applications, it
proposes an evolution DSL which shows close integration with the WebDSL
language. The DSL receives an IDE to check evolution validity, ensuring the
evolution can be applied, and evolution correctness, ensuring that applying
the evolution yields the intended evolved WebDSL application. The chap-
ter further describes the implementation of coupled operators, mapping from
the evolution DSL to SQL migration scripts. It distinguishes schema mod-
ifications, which only adapt the database schema; conservative migrations,
which rearrange data without data loss; and lossy migrations, which support
intended loss of data.

The implementation of the coupled operators and the IDE are part of
Acoda. Acoda is a tool set for evolving WebDSL applications. It has been
used in the evolution of both case studies YellowGrass and Researchr, dis-
cussed in Appendices A and B respectively. The latter of these offered the
basis for the running example of this chapter.

A C K N O W L E D G M E N T S

This research was supported by NWO/JACQUARD project 638.001.610,
MoDSE: Model-Driven Software Evolution.

108

5
Reconstructing Complex Metamodel
Evolution

A B S T R A C T

Metamodel evolution requires model migration. To correctly migrate models,
evolution needs to be made explicit. Manually describing evolution is error-
prone and redundant. Metamodel matching offers a solution by automatically
detecting evolution, but is only capable of detecting primitive evolution steps.
In practice, primitive evolution steps are jointly applied to form a complex
evolution step, which has the same effect on a metamodel as the sum of its
parts, yet generally has a different effect in migration. Detection of complex
evolution is therefore needed. In this chapter we present an approach to re-
construct complex evolution between two metamodel versions, using a match-
ing result as input. It supports operator dependencies and mixed, overlapping
and incorrectly ordered complex operator components. It also supports inter-
ference between operators, where the effect of one operator is partially or
completely hidden from the target metamodel by other operators.

5.1 I N T R O D U C T I O N

Changing requirements, an increased knowledge of the domain and techno-
logical progress require metamodels to evolve [Favre, 2005]. Preventing meta-
model evolution by downwards-compatible changes is often insufficient as it
reduces metamodel quality [Casais, 1995]. Metamodel evolution may break
conformance of existing models and thus requires model migration [Sprin-
kle, 2003]. To correctly migrate models, the evolution – implicitly applied by
developers – needs to become explicit. Metamodel evolution can be speci-
fied manually by developers, yet this is error-prone, redundant and hard in
larger projects. Instead, evolution needs to be detected automatically from the
original and evolved metamodel versions.

The most-used solution for detecting evolution is matching [Sun and Rose,
2003]. Metamodel matching attempts to link elements from the original meta-
model to elements from the target metamodel based on similarity. The result
is a set of atomic differences highlighting what was created, what was deleted
and what was changed.

109

Reconstructing Complex Metamodel Evolution Chapter 5

Problem. In practice, groups of atomic differences may be applied to-
gether to form complex evolution steps such as pulling features up an inher-
itance chain or extracting super classes (see Chapter 3). In model migration,
a complex operator is different from its atomic changes. For example, pulling
up a feature preserves information, whereas deleting and recreating it loses
information. To correctly describe evolution, we therefore need to detect com-
plex evolution steps.

There are three major problems in reconstructing complex evolution steps:

Dependency. While metamodel changes are unordered, evolution steps are gen-
erally applied sequentially and may depend on one another [Cicchetti
et al., 2009]. Dependencies need to be respected by a mapping from
metamodel changes to evolution steps.

Detection. To detect a complex evolution step, we must find several simple
steps which make up this complex step. But these steps are likely to be
separated, incorrectly ordered and mixed with parts of other complex
evolution steps.

Interference. An evolution step can hide, change or partially undo the effect of
another step. Multiple steps can completely mask a step. As such, some
or all simple steps forming a more complex step may be missing, which
impedes its detection.

Example. Figure 5.1 shows two metamodel versions for a tag-based issue
tracker. In the original metamodel on the left-hand side, each issue has a
reporter, a title and some descriptive text. Projects are formed by a group of
users and have a name and a set of issues. Users can comment on issues and
tag issues. Additions and removals of tags are recorded, such that they can
be reverted.

While evolving the issue tracker, tagging became the primary approach
for organization. As such, it became apparent, that not only issues, but also
projects should be taggable. Additionally, the metamodel structure had to be
improved to allow users to more easily subscribe to events, as to send them
email updates. The resulting metamodel is shown in Figure 5.1 (right). An
Event entity was introduced, which comprises comments as well as tag events
(tag additions and removals). Furthermore, projects obtained room for storing
tags and events on these tags.

Matching the original and evolved metamodel yields the difference model
presented in Figure 5.2. Two classes and seven features were added to the
evolved metamodel (left column), eight features were subtracted (middle col-
umn), and three classes have an additional super type in the evolved meta-
model (right column). We will use this difference model as a starting point
to detect the complex evolution steps involved in the evolution of the original
metamodel.

110

Section 5.1 Introduction

class Issue {
title :: String
description :: Text
reporter → User
project → Project

opposite issues
tags ♦ Tag (0..*)

}

class Project {
name :: String
issues → Issue (1..*)

opposite project
members → User (1..*)

}

class Tag {
name :: String

}

class TagAddition {
issue → Issue
tag → Tag
timestamp :: DateTime

}

class TagRemoval {
issue → Issue
tag → Tag

}

class Comment {
issue → Issue
timestamp :: DateTime
content :: Text
author → User

}

class User {
. . .

}

class Issue {
title :: String
description :: Text
reporter → User
project → Project

opposite issues
log ♦ Event (0..*)

opposite issue
tags ♦ Tag (0..*)

}

class Project {
name :: String
issues → Issue (1..*)

opposite project
members → User (1..*)
log ♦ TagEvent (0..*)
tags ♦ Tag (0..*)

}

class Tag {
name :: String

}

class TagAddition : TagEvent
{ }

class TagRemoval : TagEvent
{ }

class Event {
issue → Issue

opposite log
time :: DateTime
actor → User

}

class TagEvent : Event {
tag → Tag

}

class Comment : Event {
content :: Text

}

class User {
. . .

}

Figure 5.1 Original and evolved metamodel for the running example

⊥→ 〈Issue.log〉 〈TagAddition.tag〉 →⊥
〈TagAddition〉 +superTypes−−−−−−→

〈TagEvent〉
〈TagAddition〉⊥→ 〈Project.log〉 〈TagAddition.timestamp〉 →⊥

⊥→ 〈Project.tags〉 〈TagAddition.issue〉 →⊥
⊥→ 〈Event〉 〈TagRemoval.issue〉 →⊥

〈TagRemoval〉 +superTypes−−−−−−→
〈TagEvent〉

〈TagRemoval〉⊥→ 〈Event.issue〉 〈TagRemoval.tag〉 →⊥
⊥→ 〈Event.time〉 〈Comment.author〉 →⊥
⊥→ 〈Event.actor〉 〈Comment.issue〉 →⊥

〈Comment〉 +superTypes−−−−−−→
〈Event〉

〈Comment〉⊥→ 〈TagEvent〉 〈Comment.timestamp〉 →⊥
⊥→ 〈TagEvent.tag〉

Figure 5.2 Difference model for the running example

111

Reconstructing Complex Metamodel Evolution Chapter 5

create feature TagRemoval.timestamp :: DateTime
extract super class TagEvent {issue, timestamp, tag}

from TagAddition, TagRemoval

rename Comment.author to actor
create feature TagEvent.actor → User
extract super class Event {issue, timestamp, actor}

from Comment, TagEvent
rename Event.timestamp to time

create feature Issue.log <> Event (0..*) opposite issue
create feature Project.log <> TagEvent (0..*)
create feature Project.tags <> Tag (0..*)

Figure 5.3 Evolution trace for the running example

The evolution of the metamodel can also be captured in an evolution trace
as shown in Figure 5.3. At the metamodel level, the trace specifies the creation
of five new features, the renaming of two other features, and the extraction of
two new classes. At the model level, it specifies a corresponding migration.
From the properties of the involved operators, we can conclude that the evo-
lution is constructive and that we can safely migrate existing models without
losing information.

In detecting the example evolution trace from the difference model, we
face all three major problems in trace reconstruction several times. For ex-
ample: The second step depends on the first step as it can only be applied if
TagRemoval has a timestamp; Furthermore, the second step comprises several
of the presented differences; And finally, the first step interferes with the sec-
ond, since its effect is completely hidden from the difference model. The step
needs to be reconstructed during detection.

Contribution & Outline. In this chapter, we provide an approach to
reconstruct complex evolution traces from difference models automatically. It
is based on the formalization of the core concepts involved, namely metamod-
els, difference models, and evolution traces (Section 5.2). First, we provide a
mapping from changes in a difference model to primitive operators in an evo-
lution trace. We solve the dependency problem by defining preconditions
for all primitive operators. Based on these preconditions, we define a de-
pendency relation between operators which allows us to order operators on
dependency and to construct valid primitive evolution traces from a differ-
ence model (Section 5.3). Second, we show how to reorder primitive traces
without breaking their validity and provide patterns for mapping sequences
of primitive operators to complex operators. We solve the detection problem
by reordering primitive traces to different normal forms in which the patterns
can be detected easily (Section 5.4). Finally, we extend our method to detect
also partial patterns in order to solve the interference problem (Section 5.5).

112

Section 5.2 Modeling Metamodel Evolution

class MetaModel {
classes ♦ Class (0..*)

}

abstract class NamedElement {
name :: String (1..1)

}

abstract class Type
: NamedElement {}

class Class : Type {
isAbstract

:: Boolean (1..1)
superTypes → Class (0..*)
features ♦

Feature (0..*)
}

class DataType : Type {}

abstract class Feature
: NamedElement {
lowerBound

:: Integer (1..1)
upperBound

:: Integer (1..1)
type → Type (1..1)

}

class Attribute : Feature {
isId

:: Boolean (1..1)
}

class Reference : Feature {
isComposite :: Boolean (1..1)
opposite → Reference

}

Figure 5.4 Metamodeling formalism providing core metamodeling concepts

5.2 M O D E L I N G M E TA M O D E L E V O L U T I O N

5.2.1 Metamodeling Formalism

Metamodels can be expressed in various metamodeling formalisms. In this
chapter, we focus only on the core metamodeling constructs that are interest-
ing for coupled evolution of metamodels and models. We leave out packages,
enumerations, annotations, derived features, and operations.

Figure 5.4 gives a textual definition of the metamodeling formalism used
in this chapter. A metamodel defines a number of classes which consist of
a number of features. Classes can have super types to inherit features and
might be abstract. A feature has a multiplicity (lower and upper bound) and
is either an attribute or a reference. An attribute is a feature with a primitive
type, whereas a reference is a feature with a class type. We only support
predefined primitive types like Boolean, Integer and String. An attribute can
serve as an identifier for objects of a class. A reference may be composite and
two references can be combined to form a bidirectional association by making
them opposite of each other. In the textual notation, features are represented
by their name followed by a separator, their type, and an optional multiplicity.
The separator indicates the kind of a feature. We use :: for attributes, → for
ordinary references, and ♦ for composite references.

If we want to reason about properties of metamodels and their evolution,
a textual representation is often not sufficient. Thus, we provide in Figure 5.5
a more formal representation of metamodels in terms of sets, functions, and
predicates. In the upper left, we define instance sets for the metaclasses from
Figure 5.4. In the upper right, we formalise most metafeatures from Figure 5.4

113

Reconstructing Complex Metamodel Evolution Chapter 5

in terms of functions and predicates. Since super types and features of a class
c form subsets of instance sets, we formalise them accordingly. In terms of
these subsets, we define other interesting subsets, e.g., children, ancestors and
descendants of c in the middle part. Typically, we refer to a class c by its name
cn and to a feature f of class c by cn.fn where cn and fn are the names of c
and f , respectively. To access classes and features referred by name, we define
lookup functions in the last box. The formalization so far also captures invalid
metamodels, such as metamodels with duplicate class names, or cycles in an
inheritance hierarchy. Therefore, we define metamodel validity by a number
of invariants in Figure 5.6.

5.2.2 Difference Models

Difference-based approaches to coupled evolution use a declarative evolution
specification, generally referred to as the difference model [Cicchetti et al.,
2008, Garcés et al., 2009]. This difference model can be mapped automati-
cally onto a model migration. With an automated detection of the difference
model, the process can be completely automated. Matching algorithms pro-
vide such a detection [Lopes et al., 2006, Falleri et al., 2008, Del Fabro and
Valduriez, 2007, Kolovos et al., 2009, Xing and Stroulia, 2005, Brun and Pieran-
tonio, 2008].

We do not rely on a particular matching algorithm and abstract over con-
crete representations of difference models. We model the difference between
an original metamodel mo and an evolved version me as a set ∆(mo, me). The
elements of this set are three different kinds of changes [Cicchetti et al., 2008]:
Additive changes ⊥→ e, where the evolved metamodel contains an element e
which was not present in the original metamodel. Subtractive changes e →⊥,
where the evolved metamodel misses an element e which was present in the
original metamodel. Updative changes, where the evolved metamodel contains
an element e′ which corresponds to an element e in the original metamodel
and the value of a metafeature of e′ is different from the value in e. We dis-
tinguish three kinds of updates: Additions e

+mf−−→
v

e′, where the multi-valued

metafeature mf of e′ has an additional value v which was not present in e.

Removals e
−mf−−→

v
e′, where the multi-valued metafeature mf of e′ is missing a

value v which was present in e. Substitutions e
mf−→ e′, where the single-valued

metafeature mf of e′ has a new value which is different from the value in e. A
complete list of possible metamodel changes with respect to our metamodel-
ing formalism is given in the left columns of Figures 5.7 and 5.8.

For validity of difference models, we have three requirements: First, the
original and evolved metamodel need to be valid. Second, two changes
should not link the same source element with different target elements or
the same target element with different source elements. Element merges and

114

Section 5.2 Modeling Metamodel Evolution

Instance sets

N := T ∪ F
(named elements)

T := Td ∪ Tc (types)

Td (data types)

Tc (classes)

F := Fa ∪ Fr (features)

Fa (attributes)

Fr (references)

Functions and predicates

name : N → String (names)

lower : F → Integer (lower bounds)

upper : F → Integer (upper bounds)

type : F → T (types)

opposite : Fr → Fr (opposite references)

abstract : Tc (abstract classes)

id : Fa (identifying attributes)

composite : Fr (composite references)

Instance subsets

Cp(c) (parents)

Cc(c) :=
{

c′ ∈ Tc
∣∣ c ∈ Cp(c′)

}
(children)

Ca(c) := Cp(c) ∪
⋃

c′∈Cp(c)

Ca(c′) (ancestors)

Cd(c) := Cc(c) ∪
⋃

c′∈Cc(c)

Cd(c
′) (descendants)

Ch(c) := Ca(c) ∪ Cd(c) ∪ {c} (type hierarchy)

F(c) (defined features)

Fi(c) := F(c) ∪
⋃

c′∈Ca(c)

F(c′) (defined and inherited features)

Fa(c) := Fa ∩ F(c) (attributes)

Fr(c) := Fr ∩ F(c) (references)

Lookup functions

〈cn〉 :=

{
c if c ∈ Tc ∧ name(c) = cn
⊥ else

〈cn.fn〉 :=

{
f if f ∈ F(〈cn〉) ∧ name(f) = fn
⊥ else

Figure 5.5 Formal representation of metamodels in terms of sets, functions, and
predicates

splits are represented as separate additions and removals and will be recon-
structed during detection. Third, we expect changing features not to move
between classes, i.e., the class containing a changed feature should be the
same or a changed version of the class containing the original feature. We
define these requirements formally in Figure 5.6. Note that s(δ) yields the
source element of a change (left-hand side of an arrow) while t(δ) gives the
target element (right-hand side).

115

Reconstructing Complex Metamodel Evolution Chapter 5

Metamodel validity ` m

∀c, c′ ∈ Tc : name(c) = name(c′)⇒ c = c′ (unique class names)

∀c ∈ Tc : ∀ f , f ′ ∈ Fi(c) : name(f) = name(f ′)⇒ f = f ′ (unique feature names)

∀c ∈ Tc : c < Ca(c) (non-cyclic inheritance)

∀ f ∈ F : lower(f) ≤b upper(f) ∧ upper(f) >b 0 (correct bounds)

∀ f ∈ Fa : type(f) ∈ Td (well-typed attributes)

∀ f ∈ Fr : type(f) ∈ Tc (well-typed references)

∀ f , f ′ ∈ Fr : opposite(f) = f ′ ⇔ opposite(f ′) = f (inverse reflectivity)

Difference model validity ` ∆(mo, me)

` mo∧ ` me (source and target validity)

∀δ, δ′ ∈ ∆(mo, me) : t(δ) = t(δ′) ,⊥⇒ s(δ) = s(δ′) (unique sources)

∀δ, δ′ ∈ ∆(mo, me) : s(δ) = s(δ′) ,⊥⇒ t(δ) = t(δ′) (unique targets)

∀δ, δ′ ∈ ∆(mo, me) : s(δ) ∈ F(s(δ′)) ∧ t(δ) ,⊥⇒ t(δ) ∈ F(t(δ′))
(non-moving features)

Evolution trace validity mo, me ` O1 . . . On

` mo (source validity)

∀i ∈ 1, . . . , n : ` O1 ◦ · · · ◦Oi(mo) (valid applications)

O1 ◦ · · · ◦On(mo) = me (target validity)

Figure 5.6 Validity of metamodels, difference models, and evolution traces

5.2.3 Evolution Traces

Operator-based approaches to coupled evolution provide a rich set of coupled
operators which work at the metamodel level as well as at the model level
(Chapter 3). At the metamodel level, a coupled operator defines a metamodel
transformation capturing a common evolution step. At the model level, it
defines a model transformation capturing the corresponding migration. Fol-
lowing the terminology from Chapter 3, we differentiate between primitive
and complex operators. Primitive operators perform an atomic metamodel evo-
lution step that can not be further subdivided. A list of primitive operators
which is complete with respect to our metamodeling formalism is given in the
left columns of Figures 5.10 to 5.13. Complex operators can be decomposed into
a sequence of primitive operators which has the same effect at the metamodel
level but typically not at the model level. For example, a feature pull-up can
be decomposed into feature deletions in the subclasses followed by a feature
creation in the parent class. At the model level, the feature deletions cause
the deletion of values in instances of the subclasses while the feature creation
requires the introduction of default values in instances of the parent class.

116

Section 5.3 Reconstructing Primitive Evolution

Thus, values for the feature in instances of the subclasses are replaced by de-
fault values. This is not an appropriate migration for a feature pull-up which
instead requires the preservation of values in instances of the subclasses. We
will define only a few complex operators. For an extensive catalog of opera-
tors, see Chapter 3.

Each operator has a number of formal parameters like class and feature
names. Instantiating these parameters with actual arguments results in an
operator instance O. This notation hides the actual arguments but is sufficient.
We can now model the evolution of a metamodel as a sequence of such opera-
tor instances O1 . . . On. We call this sequence an evolution trace. We distinguish
primitive traces of only primitive operator instances from complex traces. There
are three requirements for the validity of an evolution trace with respect to the
original and the evolved metamodel. First, we require the original metamodel
to be valid. Second, each operator instance should be applicable to the result
of its predecessors and should yield a valid metamodel. Third, applying the
complete trace should result in the evolved metamodel. Again, we capture
these requirements formally in Figure 5.6.

5.3 R E C O N S T R U C T I N G P R I M I T I V E E V O L U T I O N

This section shows how to reconstruct a correctly ordered, valid evolution
trace from a difference model. First, we provide a mapping from metamodel
changes to sequences of primitive operator instances. Second, we define a de-
pendency relation between operator instances based on preconditions of these
instances. This allows us to order primitive evolution traces on dependency
resulting in valid primitive evolution traces.

5.3.1 Mapping

The mapping of changes onto sequences of operator instances is presented
in Figures 5.7 and 5.8. The left column shows the metamodel differences.
The right column shows the corresponding operator instances. The middle
column shows conditions to select the right mapping and to instantiate pa-
rameters correctly. Note that we omit conditions of the form xn = name(x).
We assume such conditions implicitly whenever there is a pair of variables x
and xn. This way, cn refers to the name of a class c, fn to the name of a feature
f , and tn to the name of a type t. Figure 5.9 (left) shows the result of the
mapping applied to the example difference model in Figure 5.2.

117

Reconstructing Complex Metamodel Evolution Chapter 5

Metamodel
Diff

Conditions Primitive Operator Instances

⊥→ c
c ∈ Tc create class cn
abstract(c) [make cn abstract]

Cp(c) = {sc1, . . . , sck}
[add super scn1 to cn

...
add super scnk to cn]

c→⊥ c ∈ Tc drop class cn

e name−−→ e′
e ∈ Tc rename en to en′

e ∈ F(c) rename cn. en to en′

c isAbstract−−−−−→ c′
¬abstract(c) make cn abstract

abstract(c) drop cn abstract

c
+superTypes−−−−−−→

sc
c′ add super scn to cn

c
−superTypes−−−−−−→

sc
c′ drop super scn from cn

⊥→ f

f ∈ Fa(c) ∧ t = type(f) create feature cn. fn :: tn
l = lower(f) ∧ l >b 0 [specialize lower cn. fn to l]
u = upper(f) ∧ u >b 1 [generalize upper cn. fn to ub]

id(f) [make cn. fn identifier]

f ∈ Fr(c) ∧ t = type(f) create feature cn. fn → tn
l = lower(f) ∧ l >b 0 [specialize lower cn. fn to l]
u = upper(f) ∧ u >b 1 [generalize upper cn. fn to ub]

composite(f) [make cn. fn composite]

f ′ = opposite(f) [make cn. fn inverse fn′]

f →⊥ f ∈ F(c) drop feature cn. fn

Figure 5.7 Metamodel differences and corresponding sequences of primitive op-
erator instances (1)

5.3.2 Dependencies between Operator Instances

Despite the atomicity of primitive operators, not all primitive evolution traces
that are valid can be completely executed. Reconsider the left trace in Fig-
ure 5.9. Step 5 creates a reference to TagEvent at a point where no class
TagEvent exists. Similarly, step 8 references a non-existent class Tag and
step 24 attempts to create an inheritance chain with duplicate feature names.
Operator instances cannot be applied to all metamodels: Features can only
be created in classes that exist, classes can only be created if no equivalently
named class is present and a class can only be dropped if it is not in use any-
where else. These restrictions either come directly from the meta-metamodel
or from the invariants for valid metamodels. We can translate these restric-
tions into preconditions. An operator precondition Opre ensures that an oper-

118

Section 5.3 Reconstructing Primitive Evolution

Metamodel
Diff

Conditions Primitive Operator Instances

f lowerBound−−−−−−→ f ′
l = lower(f ′) ∧ l <b
lower(f)

generalize lower cn. fn to l

l = lower(f ′) ∧ l >b
lower(f)

specialize lower cn. fn to l

f
upperBound−−−−−−→ f ′

u = upper(f ′) ∧ u >b
upper(f)

generalize upper cn. fn to ub

u = upper(f ′) ∧ u <b
upper(f)

specialize upper cn. fn to ub

f
type−−→ f ′

f ∈ F(c) drop feature cn. fn
f ′ ∈ Fa(c′) ∧ t = type(f ′) create feature cn′.fn′ :: tn
l = lower(f ′) ∧ l >b 0 [specialize lower cn′.fn′ to l]
u = upper(f ′) ∧ u >b 1 [generalize upper cn′.fn′ to ub]

id(f ′) [make cn′.fn′ identifier]

f ∈ F(c) drop feature cn. fn
f ′ ∈ Fr(c′) ∧ t = type(f ′) create feature cn′.fn′ → tn
l = lower(f ′) ∧ l >b 0 [specialize lower cn′.fn′ to l]
u = upper(f ′) ∧ u >b 1 [generalize upper cn′.fn′ to ub]

composite(f ′) [make cn′.fn′ composite]
f ′′ = opposite(f ′) [make cn′.fn′ inverse fn′′]

f isId−−→ f ′
¬id(f) make cn. fn identifier

id(f) drop cn. fn identifier

f
isComposite−−−−−−→ f ′

¬composite(f) make cn. fn composite

composite(f) drop cn. fn composite

f
opposite−−−−→ f ′

f ′ ∈ Fr(c) ∧ f ′′ =
opposite(f ′) , ⊥ make cn. fn inverse fn′′

f ′ ∈ Fr(c) ∧
opposite(f ′) = ⊥ drop cn. fn inverse

Figure 5.8 Metamodel differences and corresponding sequences of primitive op-
erator instances (2)

119

Reconstructing Complex Metamodel Evolution Chapter 5

1 create feature Issue.log
<> Event

2 generalize upper Issue.log to -1
3 make Issue.log composite
4 make Issue.log inverse

Event.issue
5 create feature Project.log

<> TagEvent
6 generalize upper Project.log

to -1
7 make Project.log composite
8 create feature Project.tags

<> Tag
9 generalize upper Project.tags

to -1
10 make Project.tags composite
11 add super TagEvent

to TagAddition
12 drop feature TagAddition.issue
13 drop feature TagAddition.tag
14 drop feature

TagAddition.timestamp
15 add super TagEvent to TagRemoval
16 drop feature TagRemoval.issue
17 drop feature TagRemoval.tag
18 create class Event
19 create feature Event.issue

→ Issue
20 create feature Event.time

:: DateTime
21 create feature Event.actor

→ User
22 create class TagEvent : Event
23 create feature TagEvent.tag

→ Tag
24 add super Event to Comment
25 drop feature Comment.issue
26 drop feature Comment.timestamp
27 drop feature Comment.author

create feature Project.tags
<> Tag

generalize upper Project.tags
to -1

make Project.tags composite
drop feature TagAddition.issue
drop feature TagAddition.tag
drop feature

TagAddition.timestamp
drop feature TagRemoval.issue
drop feature TagRemoval.tag
create class Event
create feature Issue.log

<> Event
generalize upper Issue.log to -1
make Issue.log composite
create feature Event.issue
→ Issue

make Issue.log inverse
Event.issue

create feature Event.time
:: DateTime

create feature Event.actor
→ User

create class TagEvent : Event
create feature Project.log

<> TagEvent
generalize upper Project.log

to -1
make Project.log composite
add super TagEvent

to TagAddition
add super TagEvent to TagRemoval
create feature TagEvent.tag
→ Tag

drop feature Comment.issue
drop feature Comment.timestamp
drop feature Comment.author
add super Event to Comment

Figure 5.9 Unordered and dependency-ordered primitives mapped from the differ-
ence model

ator instance O can be applied and that the application on a valid metamodel
yields again a valid metamodel. Figures 5.10 to 5.13 give a complete overview
of the preconditions for primitive operators.

One condition for the validity of a trace of operators is the validity of each
intermediate metamodel. Since succeeding operator preconditions ensure this
validity, we can redefine trace validity in terms of preconditions:

Evolution trace validity mo, me ` O1 . . . On

O1,pre ∧ ∀i∈2..n : Oi,pre((O1 ◦ · · · ◦Oi − 1)(m)) (valid applications)

Applying operator instances enables or disables other operator instances.
For example, the creation of a class c can enable the creation of a feature c. f .
The class creation operator validates parts of the precondition of the feature
creation operator. To model the effect of an operator instance on conditions,

120

Section 5.3 Reconstructing Primitive Evolution

Primitive Operator Preconditions Postconditions

create class cn 〈cn〉 = ⊥

〈cn〉 , ⊥
F(〈cn〉) = ∅
¬targeted(〈cn〉)
¬abstract(〈cn〉)

drop class cn
〈cn〉 , ⊥
F(〈cn〉) = ∅
¬targeted(〈cn〉)

〈cn〉 , ⊥

create feature cn. fn :: tn

〈cn〉 , ⊥
∀c′ ∈ Ch(〈cn〉) :
∀ f ′ ∈ F(c′) :

name(f ′) , fn

〈cn.fn〉 , ⊥
〈cn.fn〉 ∈ Fa

create feature cn. fn → tn

〈cn〉, 〈tn〉 , ⊥
∀c′ ∈ Ch(〈cn〉) :
∀ f ′ ∈ F(c′) :

name(f ′) , fn

〈cn.fn〉 , ⊥
〈cn.fn〉 ∈ Fr
type(〈cn.fn〉) = 〈tn〉
@ f ′ :

opposite(〈cn.fn〉) = f ′

¬composite(〈cn.fn〉)
¬id(〈cn.fn〉)

drop feature cn. fn 〈cn.fn〉 , ⊥ 〈cn.fn〉 = ⊥

Figure 5.10 Pre- and postconditions for structural primitive operators

Primitive Operator Preconditions Postconditions

rename class cn to cn′
〈cn〉 , ⊥
〈cn′〉 = ⊥

〈cn〉 = ⊥
〈cn′〉 , ⊥

rename feature cn. fn to fn′

〈cn.fn〉 , ⊥
∀c′ ∈ Ch(〈cn〉) :
∀ f ′ ∈ F(c′) :

name(f ′) , fn′

〈cn.fn〉 = ⊥
〈cn.fn′〉 , ⊥

make cn abstract
〈cn〉 , ⊥
¬abstract(〈cn〉) abstract(〈cn〉)

drop cn abstract
〈cn〉 , ⊥
abstract(〈cn〉) ¬abstract(〈cn〉)

add super cnsup to cnsub

〈cnsup〉, 〈cnsub〉 , ⊥
〈cnsup〉 < Ch(〈cnsub〉)
∀c ∈ Ch(〈cnsub〉) :
∀ f ∈ F(c) :
〈cnsup.name(f)〉
= ⊥

〈cnsup〉 ∈
Cp(〈cnsub〉)

drop super cnsup from cnsub
〈cnsub〉, 〈cnsup〉 , ⊥
〈cnsup〉 ∈ Cp(〈cnsub〉)

〈cnsup〉 <
Cp(〈cnsub〉)

Figure 5.11 Pre- and postconditions for non-structural primitive operators

121

Reconstructing Complex Metamodel Evolution Chapter 5

Primitive Operator Preconditions Postconditions

generalize type cn. fn to cn′
〈cn.fn〉 , ⊥
〈cn′〉 , ⊥
〈cn′〉 ∈ Ca(〈cn〉)

type(〈cn.fn〉)
= 〈cn′〉

specialize type cn. fn to cn′
〈cn.fn〉 , ⊥
〈cn′〉 , ⊥
〈cn′〉 ∈ Cd(〈cn〉)

type(〈cn.fn〉)
= 〈cn′〉

generalize upper cn. fn to u
〈cn.fn〉 , ⊥
u >B upper(〈cn.fn〉) upper(〈cn.fn〉) = u

generalize lower cn. fn to l
〈cn.fn〉 , ⊥
l < lower(〈cn.fn〉) lower(〈cn.fn〉) = l

specialize upper cn. fn to u

〈cn.fn〉 , ⊥
u <B upper(〈cn.fn〉)
u ≥B lower(〈cn.fn〉)

upper(〈cn.fn〉) = u

specialize lower cn. fn to l

〈cn.fn〉 , ⊥
l > lower(〈cn.fn〉)
l ≤ upper(〈cn.fn〉)

lower(〈cn.fn〉) = l

Figure 5.12 Pre- and postconditions for generalization and specialization operators

Primitive Operator Preconditions Postconditions

make cn. fn inverse cn′.fn′

〈cn.fn〉, 〈cn′.fn′〉 , ⊥
@ f :

opposite(〈cn.fn〉) = f∨
opposite(〈cn′.fn′〉) = f

opposite(〈cn.fn〉)
= 〈cn′.fn′〉

drop cn. fn inverse
〈cn.fn〉 , ⊥
∃ f ′ :

opposite(〈cn.fn〉) = f ′

@ f ′ :
opposite(〈cn.fn〉) = f ′

make cn. fn identifier
〈cn.fn〉 , ⊥
¬id(〈cn.fn〉) id(〈cn.fn〉)

drop cn. fn identifier
〈cn.fn〉 , ⊥
id(〈cn.fn〉) ¬id(〈cn.fn〉)

make cn. fn composite
〈cn.fn〉 , ⊥
¬composite(〈cn.fn〉) composite(〈cn.fn〉)

drop cn. fn composite
〈cn.fn〉 , ⊥
composite(〈cn.fn〉) ¬composite(〈cn.fn〉)

Figure 5.13 Pre- and postconditions for feature annotation modifying operators

122

Section 5.4 Reconstructing Complex Evolution

we use a backward transformation description as introduced by Kniesel and
Koch [2004]. A backward description Obd is a function that, given a con-
dition C to be checked after applying an operator instance O, computes a
semantically equivalent condition that can be checked before applying O:
Obd(C)(m) ⇔ C(O(m)). We define backward description functions for the
primitive operators based on the postconditions specified in Figures 5.10 to
5.13: A backward description rewrites any clause in a condition C with true,
when it is implied by the operator postcondition. Using these backward de-
scription functions, we can define enabling and disabling operator instances
as dependencies: Operator instance O2 depends on operator instance O1, if
the backward description of operator O1 changes the precondition of O2. Typ-
ically, operator instances are dependent if they affect or target the same meta-
model element. Examples are creation and deletion of the same class, creation
of a class and addition of a feature to this class, and creation of a class and of
a reference to this class.

5.3.3 Dependency Ordering

To ensure trace validity, we need to ensure that the preconditions of all opera-
tor instances are enabled and thus all dependencies are satisfied. The depen-
dency relation between operator instances is a partial order on these instances.
To establish validity, we apply the partial dependency order to the trace and
make the ordering complete by arbitrarily ordering independent operator in-
stances. Figure 5.9 (right) shows the dependency-ordered trace of primitive
operators for the running example.

5.4 R E C O N S T R U C T I N G C O M P L E X E V O L U T I O N

This section shows how to reconstruct valid complex evolution traces from
valid primitive traces. First, we provide patterns for mapping sequences of
primitive operator instances to complex operator instances. Second, we dis-
cuss how to reorder evolution traces without breaking their validity. This
allows us to reorder traces into different normal forms in which the patterns
can be detected easily and be replaced by complex operator instances.

5.4.1 Patterns

A complex operator instance comprises a sequence of (less-complex) operator
instances. We can use patterns on these sequences to detect complex operator
instances. Figure 5.14 lists the decompositions and conditions for two com-
plex operators working across inheritance. When read from left to right, it
shows how to decompose a complex operator instance, when read from right

123

Reconstructing Complex Metamodel Evolution Chapter 5

Complex Operator Conditions Equivalent Trace

pull up feature
cn. fn

Cc(〈cn〉) = {c1, .., ck}
〈cn1.fn〉 ≡F .. ≡F 〈cnk.fn〉

drop feature cn1 . fn
. . .

drop feature cnk . fn

t = type(〈cn1.fn〉) ∧ t ∈ Td create feature cn. fn :: tn
l = lower(〈cn1.fn〉) ∧ l >b 0 [spec. lower cn. fn to l]
u = upper(〈cn1.fn〉)∧ u >b 1 [gen. upper cn. fn to ub]

id(〈cn1.fn〉) [make cn. fn identifier]

Cc(〈cn〉) = {c1, .., ck}
〈cn1.fn〉 ≡F .. ≡F 〈cnk.fn〉

drop feature cn1 . fn
. . .

drop feature cnk . fn

t = type(〈cn1.fn〉) ∧ t ∈ Tc create feature cn. fn → tn
l = lower(〈cn1.fn〉) ∧ l >b 0 [spec. lower cn. fn to l]
u = upper(〈cn1.fn〉)∧ u >b 1 [gen. upper cn. fn to ub]

composite(〈cn1.fn〉) [make cn. fn composite]

f ′ = opposite(〈cn1.fn〉) [make cn. fn inverse fn′]

extract
super class cn

{ fn1 ,. . ., fnj }

from cn1 ,. . ., cnk

true

create class cn
add super cn to cn1

. . .
add super cn to cnk
pull up feature cn. fn1

. . .
pull up feature cn. fnj

fold super class
cn from cn′

Fi(〈cn〉) = { f1, .., fk}
∀i = 1..k : 〈cn′.fni〉 ≡F fi

drop feature cn′. fn1
. . .

drop feature cn′. fnk

add super cn to cn′

Figure 5.14 (De-)Composition patterns for complex operators

to left, it defines its detection pattern. Given a source metamodel m, we can
recursively decompose an operator instance O into a sequence of primitive
operator instances bOcm = P1 . . . Pn. As a precondition, a complex opera-
tor instance needs to fulfill the backward descriptions of the preconditions of
these primitives. But typically this is not enough and an operator instance re-
quires an additional precondition.We highlight these additional preconditions
with a box in Figure 5.14.

5.4.2 Reordering traces

Figure 5.15 shows an excerpt of Figure 5.9 (right). It displays the extraction of
super class Event from class Comment . Operator ordering is still determined by
the dependency ordering from the previous section. To simplify the example,
we changed the operator on Comment.author to work on Comment.actor . We
will look at author and the complete trace in the next section. Consider
applying the patterns from Figure 5.14. There is no consecutive sequence of
operator instances satisfying any of the patterns. We could detect pulling up

124

Section 5.4 Reconstructing Complex Evolution

1 create class Event
2 create feature Event.timestamp

:: DateTime
3 create feature Event.actor

→ User
4 drop feature Comment.timestamp
5 drop feature Comment.actor
6 add super Event to Comment

1 create class Event
6 add super Event to Comment
5 drop feature Comment.actor
3 create feature Event.actor

→ User
4 drop feature Comment.timestamp
2 create feature Event.timestamp

:: DateTime

Figure 5.15 Excerpt of dependency-ordered operators in Figure 5.9

feature timestamp in instances 2 and 4, yet where do we put the detected
complex operator: at position 2 or at position 4?

Detection patterns typically cannot be applied directly. Instead, traces need
to be reordered to find consecutive instances of a pattern. Dependency order-
ing is partial and therefore leaves room for swapping independent operators.
In the example, we can swap 2 and 3 as they work on different features; 2

and 4 as they work on different types; 2 and 5 which also work on differ-
ent types; 4 and 5 which work on different features; 3 and 5, which work on
different types; and finally, we can repeatedly swap 6 to follow operator 1,
as all features that are created are dropped from the inheritance chain first.
The reordered trace is shown at the right of Figure 5.15. We can now apply
the patterns for pulling up timestamp and actor. Subsequently, we see
the pattern for class extraction emerge, which yields a super class extraction
of Event {timestamp, actor} from Comment and TagEvent .

5.4.3 Normal forms

In the example, we carefully swapped operators. Not only did we avoid swap-
ping dependent operators (as to preserve trace validity), we also chose swaps,
which gave us a detectable pattern. In particular, we focused on obtaining a
consecutive feature creation and drop, of features that only differ in position
in the inheritance chain. A set of swap rules can bring an evolution trace
into a format most suitable for detecting a pattern. In general, these rules
obey the dependency relation. However, some dependent instances can still
be swapped by adjusting their parameters. For example, rename class A to B

and create feature B.f. . . can be swapped to: create feature A.f. . . and
rename class A to B .

Repeated application of a set of swap rules will result in a normal form
defined by this set. Each normal form targets to bring potential components
of a pattern together and to satisfy the operator precondition. For example, to
detect a feature pull up, we rely on feature similarity: Class creations and su-
per additions get precedence over other operators. Feature creations, changes
and drops are sorted on feature name, type and modifiers. Class drops and
destructive updates on the inheritance chain go last. Different patterns need

125

Reconstructing Complex Metamodel Evolution Chapter 5

different trace characteristics and thus different normal forms. But operators
with similar kinds of patterns can share normal forms.

5.5 R E C O N S T R U C T I N G M A S K E D O P E R AT O R I N -
S TA N C E S

In this section, we extend the detection to deal not only with complete but
also partial patterns. First, we revisit the problem of operator interference
and study its effects on detection. Second, we show how to complete partial
patterns by the additions of operator instances in a validity preserving fash-
ion. This allows us to detect operator instances which patterns are partially
or even completely hidden by other instances.

5.5.1 Masked Operators

We reconsider the running example from Figure 5.3. During evolution, several
features of the classes TagAddition and TagRemoval were extracted into a new
super class TagEvent. In order to extract the feature timestamp it needs
to be present in both TagAddition and TagRemoval . Yet, it is not. As a
human, we deduce that timestamp must have been added in the process of
extracting TagEvent. There is, however, no explicit record of such feature
creation. Detection will therefore fail. Later in the evolution, when extracting
the class Event, we seek to pull up a feature actor . The class Comment , which
we are extracting from, only offers a feature author. Again as a human, we
assume that author must have been renamed to actor (like we did in the
previous section), yet this operation is not present in the original evolution
trace. Similarly, we have to create the feature actor in TagEvent before
extracting Event and rename the feature timestamp to time after extracting
Event to yield the target metamodel. Each of these operations has no record
in the difference set obtained from the matching algorithm.

When evolutions become more complex, individual evolution steps no
longer need to have an explicit effect on the target metamodel and are there-
fore not explicit in the matching result. An operator instance can hide or
even undo parts of the effect of another instance. This is a strong variant
of dependency, which we call masking. A primitive operator P1 masks an-
other primitive operator P2 when composition of the two can be captured in a
third primitive operator P3. More generally, we define masking for arbitrary
instances as the presence of a mask in decompositions:

P1 masksm P2 ⇔ ∃P3 : (P1 ◦ P2)(m) = P3(m)

O1 masksm O2 ⇔ ∃P1 ∈ bO1cm : ∃P2 ∈ bO2cm : P1 masks P2

126

Section 5.5 Reconstructing Masked Operator Instances

Most operators can be masked by renaming. All operators are masked by
their inverses, in which case O3 is the identity operator. Extraction of class
TagEvent in the running example masks extraction of class Event . Note that
a trace obtained from a valid difference model will only contain masks that
involve complex operators.

5.5.2 Masked Detection Rules

When a primitive masks another primitive, the effect is completely hidden
from the target metamodel. There is no information (implicit or explicit) that
could lead back to the masked operator. However, when a complex operator
is masked, generally only part of the effect of the decomposition is hidden.
Using the remaining information, the complex operator can be reconstructed.
We detect masked complex operators by automatically filling the gaps caused
by masks.

Detection of masked operator instances follows a trace rewriting approach
similar to the original detection of complex operator instances: We try to
rewrite a sequence of operator instances into another sequence which has the
same effect on the metamodel. Instead of checking the operator precondition
in a pattern, like we did in the previous section, we now ensure the precon-
dition by deducing a suitable sequence to rewrite to. We now discuss how
to derive a detection rule for a masked complex operator instance, e.g., for
pulling up an attribute cnsup.fn . Its decomposition is the following:

drop feature cnsub1. fn
. . .
drop feature cnsubi. fn
create feature cnsup. fn

[specialize lower cnsup. fn to l]
[generalize upper cnsup. fn to u]
[make cn. fn identifier]

From the decomposition we choose a trigger, which tells us that there may
have been a feature pull up. We choose one of the feature drops (number x).
We use the trigger as a pattern on the left-hand side of a rewrite rule and
assume on the right-hand side that there must have been a feature pull up:

drop feature cnsubx. fn
. . .
pull up feature cnsup. fn
. . .

When the dots are left blank, application of the left-hand side to a meta-
model does not have an equivalent effect as application of the right-hand side.
Instead, we fill the dots, to establish equivalence. The left set of dots ensures
that the pull up feature operator can be applied, i.e., its precondition is satis-
fied. The right set of dots ensures that application of the trace is equivalent to
application of the left-hand side of the rewrite rule. Both sets of dots are filled

127

Reconstructing Complex Metamodel Evolution Chapter 5

in using inverses of the operators found in the pattern. The left set of dots
is replaced by inverses of each of the primitive operators whose precondition
is not already satisfied. For pull up feature, we create features in all sibling
classes if they do not exist yet and remove the target feature if it already ex-
ists. The right set of dots is replaced by inverses that neutralize the effect
of the complex operator and bring the metamodel back to its original state.
For pull up feature, we need to create all sibling features, which were present
beforehand, as these were deleted during pull up and we need to drop the
target feature if it was not present beforehand. The rewrite rule for detecting
a masked feature pull up is (leaving out the operations on feature modifiers,
for simplicity):

drop feature cnsubk. fn create feature cnsib n1. fn
. . .
create feature cnsib nj. fn
[drop feature cnsup. fn]
pull up feature cnsup. fn
create feature cnsib e1. fn
. . .
create feature cnsib ek. fn
[drop feature cnsup. fn]

In which cnsup is chosen arbitrarily from Cp(cnsubk), cnsibn is the set of all
sibling classes which do not have a feature named fn and thus need to obtain
the feature to pull it up. cnsibe is the set of all sibling classes which do have
a feature named fn and thus need to be reequipped with fn to neutralize the
effect of pulling it up. The feature drops are conditional. The first drop should
be present if 〈cnsup.fn〉 , ⊥ and the latter should be present if 〈cnsup.fn〉 = ⊥.
In addition to the pattern on the left-hand side of a rewrite rule for a masked
complex operator O, a rewrite rule is also conditioned by the Ocpre. It is
checked in addition to the trigger.

For feature pull up, the operator precondition Ocpre ensures presence of an
inheritance chain between cnsub and cnsup. The metamodel invariants ensure
feature names uniqueness across inheritance. The precondition of the trigger
ensures fn exists in cnsub. Therefore, fn cannot exist in cnsup. The rewrite rule
for feature pull up can thus be simplified by removing the top drop feature
and always using the bottom drop feature.

Using the presented approach, we can derive masked detection rules for
any complex operator. By definition, such rules expand the trace. To find
a suitable evolution, we need to compact the trace again. Firstly, we can
rewrite any pair of inverse operators to the identity function, as their effect
on the metamodel is cancelled out and they are unlikely to have been part of
the original evolution. Secondly, we combine a creation and deletion of two
features, which only differ by name into a feature rename. This allows us to
detect complex operators, which are masked by a rename, such as a pull up
of feature f, followed by a rename of f to f’. Combining rules for inverses

128

Section 5.5 Reconstructing Masked Operator Instances

1 drop feature → pull up feature TagEvent.issue
TagAddition.issue drop feature TagEvent.issue

create feature TagRemoval.issue

2 create feature → identity
TagRemoval.issue

drop feature TagRemoval.issue

3 create feature → pull up feature TagEvent.tag
TagEvent.tag → Tag create feature TagRemoval.timestamp

drop feature TagAddition.tag pull up feature TagEvent.timestamp
drop feature drop feature TagEvent.timestamp

TagAddition.timestamp
drop feature TagRemoval.tag

4 pull up feature → drop class TagEvent
TagEvent.issue drop super TagEvent from TagAddition

drop super TagEvent from TagRemoval
extract super TagEvent

{issue, tag, timestamp}
from {TagAddition, TagRemoval}

push down feature TagEvent.tag
push down feature TagEvent.timestamp

Figure 5.16 Masked detection applied to running example

requires a normal form grouping on operator category and the renaming rule
requires a normal form on feature similarity.

5.5.3 Applying Masked Detection Rules

We apply masked detection rules to the running example. Figure 5.16 shows
the intermediate steps. Step 1 applies feature pull up detection to the feature
TagAddition.issue . After normalizing the trace, we apply an inverse pattern
to creation and drop of TagRemoval.issue and reduce the trace (step 2).
TagEvent.issue is not reduced yet. It will be used later as a component of
extracting class Event . Next, we repeat steps 1 and 2 by pulling up tag

and timestamp (step 3). Subsequently, the pull up of TagEvent.issue triggers
detection of super class extraction of TagEvent in step 4. The drop class,
both super drops and both feature push downs are subsequently neutralized
by a class creation, super additions and pull ups respectively. We then repeat
detection of super class extraction for Event , using the rename pattern to
neutralize create and drops of timestamp - time and author - actor . Finally,
we get the result shown in Figure 5.3.

The regular rewrite rules, which we defined in the previous section all re-
duced the number of operators in the trace. Furthermore, we did not consider
overlapping (interfering) complex operators. These two assumptions enabled
fast detection. The rules for detecting masked operators, on the other hand,
can increase the size of the trace. For example, the feature pull up pattern in-
creases the trace by the number of occurrences of this feature in sibling classes

129

Reconstructing Complex Metamodel Evolution Chapter 5

plus one (for dropping the pulled up feature). Furthermore, for each trace,
several rules may be applicable at different positions in the trace. To find a
solution, we therefore use a backtracking approach. Each backtracking step
tries to apply each of the rules to a trace, yielding zero or more new traces, to
which rule application is applied recursively.

5.6 R E L AT E D W O R K

Research on difference detection is found in differencing textual documents,
matching structured artefacts and detection of complex evolution. Text dif-
ferencing is ignorant of structure or semantics. We discuss related work on
matching and complex detection.

5.6.1 Matching

A matching algorithm detects evolution between two artefacts, by linking el-
ements of one artefact to elements of the other. Links are either established
based on similarity, or using an origin tracking technique such as persistent
identifiers. Links are concerned with one element in each artefact. Conse-
quently, matching approaches detect atomic changes. They do not offer sup-
port for detecting complex changes. Nevertheless, we discuss them as poten-
tial input to our approach. Matching has received attention in the domains of
UML, source code reorganization, database schemas and metamodels.

In the domain of UML, Ohst et al. [2003] first proposed a solution to com-
pare two UML documents. They compare XML files and use persistent ids for
matching. The matching algorithm can detect intra-element changes (such as
renames) and structural changes, such as element creates, deletes and moves.
Later work by Xing and Stroulia [2005] presents UMLDiff, a matching tool
set using similarity metrics instead of persistent ids to establish links. Simi-
lar to the work of Ohst et al., UMLDiff detects element additions, deletions,
renames and moves. Lin et al. [2007] propose a generalization of the work of
Xing and Stroulia, which is not restricted to UML models, but uses domain
specific models as input instead.

In the domain of source code reorganization, Demeyer et al. [2000] pro-
poses to find refactorings using change metrics. Later work by Tu and God-
frey [2002] uses statistical data and metrics to match evolved software architec-
tures, a process referred to as origin analysis. The approach has a strong focus
on understanding and visualizing software evolution. The work on evolving
architectures is extended by Godfrey and Zou [2005], by adding detection of
merged and split source code entities.

In schema matching, a body of work exists, which generally offers a basis
for the other works presented in this section. Rahm et al. and later Shvaiko et

130

Section 5.6 Related Work

al. present surveys on schema matching [Rahm and Bernstein, 2001, Shvaiko
and Euzenat, 2005]. Sun and Rose [2003] present a study of schema matching
techniques.

Lopes et al. [2006] consider schema matching applied in the context of
model-driven engineering, but propose a new matching algorithm for mod-
els. Instead, Falleri et al. [2008] take the existing similarity flooding algorithm
from the field of schema matching and apply it to metamodels. Work by
Del Fabro and Valduriez [2007] and by Kolovos et al. [2009] propose new
matching algorithms to the modeling domain. Finally, EMFCompare offers
metamodel independent model comparison in the Eclipse Modeling Frame-
work (EMF). EMFCompare is presented by Brun and Pierantonio [2008]. They
distinguish calculation, representation and visualization as relevant aspects in
comparing models. The approach uses heuristic-based matching and differ-
encing. Both matching and differencing are pluggable and can thereby be
adjusted to a specific domain.

In general, matching approaches are concerned with at most one element
in each artefact. Consequently, regular matching approaches detect atomic
changes. Some approaches are augmented to detect slightly more complex
changes, detecting, inter-element moves, element merges or element splits.
In practice, evolution is not bound to merely atomic changes. To obtain the
actual evolution trace and not to overwhelm the developer with changes that
did not actually take place [Brun and Pierantonio, 2008], complex changes
need to be taken into account.

5.6.2 Complex Detection

Detection of complex operators has received significantly less attention in re-
search than matching. Cicchetti et al. [2008] discuss an approach for model
migration along complex metamodel evolution. They obtain the complex evo-
lution from an arbitrary matching algorithm, but do not offer such an algo-
rithm on their own. Instead, they emphasize the need for a matching algo-
rithm able to detect complex evolution. Our approach fulfills this need. Later
work of Cicchetti addresses the problem of dependencies between evolution
steps [Cicchetti et al., 2009]. Since their work focuses only on dependency
ordering but not on complex operator detection, they specify operator depen-
dency only statically in terms of the metamodeling formalism. This is too
restrictive for the detection of complex operators since it limits possible re-
orderings dramatically. By defining dependency only in the context of an ac-
tual metamodel, our approach enables reordering into various normal forms
which allow for the detection of complex operators.

Garcés et al. [2009] present an approach to automatically derive a model mi-
gration from metamodel differences. The difference computation uses heuris-
tics to detect also complex changes. Each heuristic refines the matching
model, and is implemented by a model transformation in ATL. The trans-

131

Reconstructing Complex Metamodel Evolution Chapter 5

formation rules for detecting complex changes are similar to the patterns pre-
sented in Section 5.4. There are different kinds of heuristics. Creation heuris-
tics create an initial matching model from two metamodel versions. Similarity
heuristics decorate the equivalences of a matching model with annotations
about the similarity. Filtering heuristics remove unwanted equivalences from
the matching. Differentiation heuristics identify differences between meta-
model elements in the match. Rewriting heuristics structure equivalences and
differences, and detect complex changes. The approach does not cover opera-
tor dependencies, was not able to detect complex changes in a Java case study,
and does not address operator masking.

5.7 I M P L E M E N TAT I O N

We implemented our approach prototypically in the tool set Acoda1, a data
model evolution tool for WebDSL [Visser, 2008a], which is a DSL for web
applications. Acoda offers an Eclipse plugin to seamlessly integrate into reg-
ular development. The plugin offers editor support for evolution traces (such
as syntax highlighting, instant error marking and content completion); gen-
eration of SQL migration code; application of migrations to a database; and
the evolution detection presented in this chapter. The implementation uses
an existing data model matching algorithm. We relied on rewrite rules in
Stratego [Visser, 2004] to specify each step of the reconstruction algorithm,
i.e., mapping data model changes to primitive operators, dependency order-
ing, normal form rewriting, complex operator detection and masked operator
detection. Acoda’s Eclipse plugin presents different evolution traces to the
user who can select and potentially modify the best match.

5.8 D I S C U S S I O N

5.8.1 Metamodeling Formalism

In this chapter, we focus only on core metamodeling constructs that are most
interesting for coupled evolution of metamodels and models. Concrete meta-
modeling formalisms like Ecore [Steinberg et al., 2009] or MOF [Object Man-
agement Group, 2006] provide additional metamodeling constructs like pack-
ages, interfaces, operations, derived features, volatile features, or annotations.
Since our approach allows for extension, we can add support for these con-
structs. Therefore, we need to provide additional primitive operators, define
their preconditions, extend existing preconditions with respect to new invari-

1http://swerl.tudelft.nl/bin/view/Acoda

132

Section 5.8 Discussion

ants, derive additional complex operators, and define detection patterns for
them.

5.8.2 Trace Selection

Involving the user in the selection process prevents complete automation, but
with a rich set of supported coupled operators, detection is likely to yield
several suitable traces. Only the user can decide which migration is correct.
We can assist this decision by presenting migrations of example models. Con-
versely, the user can assist the detection by giving examples for original and
migrated models. The detection can then drop all traces which cannot re-
produce the examples. Additionally, the user may choose to only consider
information-preserving traces, thereby narrowing down the set of suitable
traces.

5.8.3 Completeness

The set of primitive operators guarantees completeness at the metamodel level
as it allows us to evolve any source metamodel to any target metamodel.
Completeness at the model level is not feasible since it would imply that we
can detect any model transformation between the instances of two arbitrary
metamodels. Yet, we can add more complex coupled operators to our detec-
tion. This increases the search space for both the user and for the detection.
As for the user, we have a tradeoff between completeness and usability. There
will be many similar operators with minor differences in their migration. Un-
derstanding and distinguishing operators becomes harder. In a number of
real-life case studies, we identified the most common operators (Chapter 3).
We propose to support only the detection of these operators and to leave rare
cases to the user. As for the detection, supporting more complex operators
increases the search space and we have a tradeoff between completeness and
performance.

5.8.4 Performance

Besides the number of supported complex operators, detection performance
is influenced by evolution size and mask depth, not by metamodel size, which
only affects the matching process. The GMF case study [Herrmannsdoerfer
et al., 2010a] showed us that a larger distance between original and evolved
metamodel gives less precise results from a matching algorithm making it
more unlikely to still detect a good evolution trace. On the other hand, we
found that the evolution between two commits to the repository could mostly
be captured by 20 evolution steps.

133

Reconstructing Complex Metamodel Evolution Chapter 5

Pruning the Search Space. Masked detection rules can increase the
length of the trace. It is the potential of reducing this length again, which
confirms that application of the detection rule was indeed a correct choice. As
we know that in reality, traces are of limited length, unbound expansion has
no purpose. We therefore limit the search space on trace length.

A trace length bound needs to be chosen carefully. If too high, it makes
the search space too large, if too low, it may exclude the sought trace. In
practice, the length bound mostly determines the number of nested masks we
can detect. Considering deeply nested masks are unlikely to occur in practice,
a lower bound (close to the original trace length) is more likely to be suitable
than a higher one. Using the masked detection rules, there are many ways of
rewriting one trace into another. It is therefore likely that we will come across
equivalent traces during search. Excluding these from a recursive descent,
prunes the search space significantly.

Triggering Carefully. The search space is defined by the original
trace and by the rewrite rules we can apply. There is variability in the pre-
sented approach of deriving masked detection rules. A variability, which
primarily determines the search algorithm efficiency.

Firstly, the choice of trigger determines how often a rewrite rule can be
applied. We chose feature drop for pull up. As feature drops are common,
the pull up detection decreases performance. On the other hand, the trig-
gers chosen for fold and extract super class are uncommon, thus having little
impact. Most complex operators contain uncommon components, therefore,
most detection rules can have uncommon triggers. Additionally, we assumed
that except for the trigger, the complete operator is masked. This is flexible,
but unlikely in practice. Choosing multiple triggers improves performance
significantly.

Case Study. A preliminary case study of Acoda on part of the evolution
of Researchr (see Appendix B), a publication management system, showed
the applicability of the presented detection. Traces in Researchr between sub-
sequent repository commits are short, hence we applied the detection to steps
of ten subsequent commits, which yields traces up to 52 steps in length.

A detection run generally takes several seconds and is significantly short-
ened when reducing the number of commits considered in a single detection
run.

5.9 C O N C L U S I O N

In coupled metamodel evolution, a metamodel evolution is mapped onto a
suitable model migration to preserve the conformance relation between model
and metamodel. Tools to perform this mapping exist (e.g., [Wachsmuth,
2007b, Hößler et al., 2005, Rose et al., 2010]) yet they require an explicit evo-

134

Section 5.9 Conclusion

lution specification. Since evolution is generally applied implicitly by editing
a metamodel, explicit evolution needs to be reconstructed. A typical first step
in finding evolution is metamodel matching (or differencing), in which a set
of differences is derived by comparing the two metamodel versions. Although
these differences describe what changed in the metamodel, they neither offer
knowledge on how the metamodel changed, nor on what the developer in-
tended in his change, both of which are (partially) captured in an evolution
sequence. To construct a suitable migration, we need to know the metamodel
evolution.

This chapter presents a technique to reconstruct metamodel evolution, given
two metamodel versions, using the result of a metamodel matching algorithm
as input. The chapter provides solutions to three major problems faced in re-
construction. Firstly, it offers an approach to resolve evolution dependencies.
While metamodel differences can be applied in any order, metamodel evo-
lution steps (and their corresponding model migrations) show dependencies,
which need to be resolved upon reconstruction. Secondly, while metamodel
differences show atomic changes, evolution steps are generally complex and
comprise multiple atomic differences. Thirdly, different evolution steps can
hide, change or partially undo the effect of other evolution operators. Their
presence in the to be reconstructed evolution is thereby obfuscated, or hidden
completely in the metamodel changes.

This chapter provided an approach to reconstruct complex metamodel evo-
lution steps, from a set of metamodel differences. It first showed how to map
metamodel changes onto primitive evolution operators, then it solved the evo-
lution operator dependency problem by ordering operators based on their
pre- and postconditions, yielding a valid evolution trace. Next, it discussed
how to reconstruct complex evolution steps by using the variability in the
operator dependency ordering and various normal forms. Finally, it showed
how to extend this approach to detect evolution patterns, which are, by inter-
ference, partially or completely hidden from the metamodel differences.

Additionally, the chapter formalized the concepts of metamodel evolution
and defined pre- and postconditions for the various operators found in Chap-
ter 3. The reconstruction approach is implemented in Acoda and applied to
the Researchr case study (see Appendix B), in which it was used to reconstruct
the complete Researchr evolution trace.

A C K N O W L E D G M E N T S

This research was supported by NWO/JACQUARD project 638.001.610,
MoDSE: Model-Driven Software Evolution.

135

6
Heterogeneous Coupled Evolution
of Software Languages

A B S T R A C T

As most software artifacts, meta-models can evolve. Their evolution requires
conforming models to co-evolve along with them. Coupled evolution sup-
ports this. Its applicability is not limited to the modeling domain. Other
domains are for example evolving grammars or database schemas. Existing
approaches to coupled evolution focus on a single, homogeneous domain.
They solve the co-evolution problems locally and repeatedly. In this chapter
we present a systematic, heterogeneous approach to coupled evolution. It
provides an automatically derived domain specific transformation language;
a means of executing transformations at the top level; a derivation of the cou-
pled bottom level transformation; and it allows for generic abstractions from
elementary transformations. The feasibility of the architecture is evaluated by
applying it to data model evolution.

6.1 I N T R O D U C T I O N

Data models are an integral part of software development. They define the
structure of data that is processed by an application and the schema of a
database. Running applications produce and store data that conforms to the
data model.

Due to changing requirements or maintenance, data models need to evolve.
This process is known as format evolution [Lämmel and Lohmann, 2001]. As
a consequence of evolution, stored data no longer conforms to the evolved
data model and can thereby become useless to the evolved application. To
continue using existing data, the data needs to be transformed to reflect the
evolution, which is an instance of coupled evolution.

Problem. Coupled evolution does not only apply to data transformation,
but is a reoccurring problem in computer science [Lämmel, 2004]. Models
need to be transformed to reflect evolution in their meta-models [Gruschko
et al., 2007, Favre, 2003, Wachsmuth, 2007b]. Programs need to be transformed
when the programming languages (or domain specific language) they have
been written in evolves [Pizka and Jürgens, 2007b]. And a data model itself
needs to be transformed to reflect evolution in the data modeling language

137

Heterogeneous Coupled Evolution of Software Languages Chapter 6

(e.g. UML). We unify these scenarios by considering evolving software lan-
guages and transformation of sentences in these languages.

Current approaches to support coupled evolution of software languages are
homogeneous. They solve the problem in a specific domain. They repeatedly
implement the coupled evolution structure and solve problems common to
coupled evolution locally. Instead, we would like a systematic approach to re-
alize heterogeneous coupled evolution for any scenario of software language
evolution.

Contribution. In this chapter, we present two generalizations over cou-
pled software language evolution scenarios and introduce the concept of het-
erogeneous coupled evolution. To enable the generalization, we present an ar-
chitecture to support heterogeneous coupled evolution of software languages.
We have implemented a tool to support the architecture. It generates a do-
main specific transformation language (DSTL) for an arbitrary software lan-
guage domain. It generates an interpreter of transformations defined in the
DSTL. And it supports generic abstraction from the basic transformations that
are defined in the DSTL. We illustrate the architecture and tool by elaborating
their application to coupled data model evolution.

Outline. The chapter is structured as follows: In Section 6.2 we briefly
introduce data model evolution and its context. In Section 6.3 we elaborate on
coupled data evolution by defining data model transformations and deriving
data transformations to reflect these. In Section 6.4 we generalize over the
different scenarios of coupled software language evolution. In Section 6.5, we
discuss the architecture to support heterogeneous coupled evolutions. Section
6.6 discusses related work. Section 6.7 concludes.

6.2 D ATA M O D E L E V O L U T I O N

Data models describe the structure of data that is processed and stored by an
application. As example application we consider a Wiki. It consists of web
pages, users to edit these and webs, which are collections of pages that cover
a similar topic. The corresponding data model is shown in Figure 6.1 (left).

Changing requirements and maintenance cause data models to evolve along
with the application they are set in, a process known as format evolution
[Lämmel and Lohmann, 2001]. Consider for example the shift from a user-
based to a group-based access control security mechanism and the addition
of page topics. The new data model to support these is shown in Figure 6.1
(right).

Since the Wiki is a running application during evolution, it has stored
pages, users and webs. Such data conforms to some version of the data
model. To prevent the loss of data when the data model changes, the data
needs to be transformed to reflect these changes. Figure 6.2 (left) shows the

138

Section 6.3 Coupled Data Evolution

entity User {
name :: String

}

entity Web {
admin :: Set of User
topic :: String

}

entity Page {
content :: String
date :: Date
author :: User
web :: Web

}

entity User {
name :: String

}

entity Web {
admin :: Set of Group
topic :: String

}

entity Page {
content :: String
date :: Date
author :: User
web :: Web
topic :: String

}

entity Group {
name :: String
members :: Set of User

}

Figure 6.1 Data model original (left) and evolved (right) versions

process graphically. At the top level, we see two versions of the data model.
At the bottom level we see the stored data and the transformation needed to
reflect the data model change. The vertical lines indicate conformance. The
dashed arrow indicates the changes applied to the data model and is usually
performed manually by editing the data model. The transform arrow on the
other hand requires tools for database transformations, as it is usually too
much of an effort to reenter all data manually.

6.3 C O U P L E D D ATA E V O L U T I O N

When a data model evolves, stored data may no longer conform. In practice
the data is usually no longer usable. To continue to use the data, we need to
reflect the data model changes in a transformation of the stored data. Sup-
porting a single data model change, requires a significant effort. Supporting
data model changes in an evolution process, requires repeated data transfor-
mations. If these transformations are defined manually, this becomes costly
and holds back the development process.

Coupled data evolution automates the data transformation process. It is
based upon the assumption that the data model transformation and the data
transformation are related. The concept of coupled data evolution is shown
in Figure 6.2 (right). A coupled evolution application consists of two compo-
nents, which are represented by the top two arrows: (1) A definition of the
data model transformation (the evolve arrow) and (2) a mapping from data
model transformation to data transformation (the vertical arrow). The first

139

Heterogeneous Coupled Evolution of Software Languages Chapter 6

Figure 6.2 Data model changes (left) and coupled data evolution (right)

needs to be specified for each change of the data model, whereas the second
is typically defined once for the modeling formalism.

The questions that remain are: How to define the data model transforma-
tion and how to derive a data transformation. In Chapter 2 we discussed
various approaches to formalize both. In this section, we take a closer look
at the two, using the Wiki data model as a running example. We introduce a
language for defining data model transformations and show a mapping that
targets a broad set of databases.

6.3.1 Defining Data Model Transformations

We distinguish two methods to formalize transformations for coupled evolu-
tion [Gruschko et al., 2007]: Specify the difference between the two versions
of the data model or specify a trace of elementary transformations defining
how the new version is obtained from the old version. Both have advantages
and disadvantages. We choose the second because it allows us to define the
mapping, as we will see in the next section.

Our data models are relatively basic. They consist of entities with a name
and properties. Each property has a name and a type. Entities, properties,
types and names are the constructs of our data model. A fairly limited set of
constructs. Consequently, the number of elementary transformations we can
perform on our model (on our constructs) is fairly small. We identify:

• adding or removing entities

• changing the name of an entity

• adding or removing properties

• changing the name of a property

• substituting the type of a property

• substituting the type of a set

For example, we define the addition of a new entity "Group" as follows:

140

Section 6.3 Coupled Data Evolution

add Group {
name :: String
description :: String
members :: Set of User }

Although the addition is in itself a valid transformation, in general the
elementary actions above do not have sufficient meaning on their own. One
cannot change the name of an entity without knowing which entity is being
referred and a substitution of a type should not only specify the new type,
but also the old type that is being replaced. The transformations above are
local and need a location to make them executable to a specific model.

The representation of a data model is tree-structured. The root node is the
model itself. Its direct children are entities, which have in turn properties as
their children and so on. We define a unique location in a data model by
specifying a path from the root node. For example: “Entity Group - Property
members - Type” indicates the type of the members collection in the Group
entity that we have just added. In a similar way, we define locations for our
transformations using the APath [Janssen, 2005] notation, which is based on
the XPath language [Clark et al., 1999]. APath expressions consist of a /-
separated list of construct names. The above would be written as:

Entity [Id="Group"] / Property [Id="members"] / Type

The [...]-part indicates a predicate on the node that is being evaluated.
If we would have written Entity/Property/Type, we would have got all
types, of all properties, of all entities. The predicates restrict this by only
allowing those with the right id’s.

We define a transformation to be a combination of an APath and a local
transformation. The two are separated by a ::-sign. As examples, we specify
the removal of the ‘description’ property and the substitution of the type in a
set:

Entity[Id="Group"] / Property[Id="description"]
:: remove

Entity[Id="Web"] / Property[Id="admin"] / Type / Set / Type
:: substitute with Group

We also need more complex transformations, such as copying properties
over an association, or merging entities. Although these can be modeled as
separate transformations or transformation patterns [Hößler et al., 2005], we
recognize them to be similar to the already defined transformations, with the
addition of being able to use other data model elements as input. So copying
the topic from a Web to all of its pages is similar to adding a topic property
to every page, with its web topic as a source:

141

Heterogeneous Coupled Evolution of Software Languages Chapter 6

Entity[Id="Page"] / Property
:: add Web/Property[Id="topic"]

Elementary transformations are combined by sequential composition in-
dicated by a semi-colon. Figure 6.1 (right) shows the result of applying the
above transformations to the Wiki data model in Figure 6.1 (left).

6.3.2 Deriving Data Migrations

We have defined the data models and the data model transformation. The last
step is therefore to specify a ‘data model transformation’ to ‘data transforma-
tion’ mapping, as indicated by the dashed arrow in Figure 6.2 (right). The
implementation of the mapping depends on numerous factors, such as how
the data is stored, what platform is available to execute the data transforma-
tion on and the quantity of the data. The implementation is therefore driven
by the context. We have implemented the mapping using Stratego/XT [Vis-
ser, 2004] and a data model to Java classes mapping from the WebDSL project
[Visser, 2008a]. It maps the data model transformations as shown above to a
data migration program in Java. The migration program loads objects from a
database, transforms them to conform to the new data model and stores the
new objects. It follows a so-called Extract-Transform-Load (ETL) process.

The migration mainly uses two libraries, namely an object to relational
mapping and an object transformation library. The first library provides func-
tionality for loading and storing Java Objects in a relational database. The
migration program is based upon the Java Persistence API (JPA) [Biswas and
Ort, 2006], which provides an interface to accessing these types of libraries.
Consequently, any JPA compliant library is suitable. An example of such
a library is Hibernate [Hibernate, 2008]. The combination of JPA and for
example Hibernate supports a large number of database systems. The sec-
ond library provides functionality for transforming Java objects and managing
these transformations. It supports transformations such as adding attributes,
changing attribute types and changing attribute names, but due to Java re-
strictions, the set of transformations does not directly cover the elementary
transformation set we have seen above. We have written the transformation
library specifically for the mapping, but it could also be used in different
settings.

In the remainder of this section, we introduce the mapping using the ex-
amples we have presented above. Although the mapping directly refers to
the transformation library, we use a domain specific language (DSL) for the
library to abstract away from the underlying Java and JPA details. Neverthe-
less, the DSL can directly be mapped onto executable Java code.

Basic concepts. The group addition, introduces most of the basic con-
cepts. It is mapped to the following:

142

Section 6.3 Coupled Data Evolution

transform () to (Group) {
EmptyObject();
AddAttributeByValue("name", "Group Name");
AddAttributeByValue("description", ". . .");
AddAttributeByValue("members", null)

}

The transform directive defines a transformation as follows:

transform INPUT-TYPES to OUTPUT-TYPE {
TRANSFORMATION-DEFINITION

}

In the Group addition, INPUT-TYPES is empty and OUTPUT-TYPE is a
Group. The transformation itself starts with an empty object (an object with
no attributes) and subsequently adds the various attributes of Group. The
AddAttributeByValue directive has the new attribute’s name as first pa-
rameter and the attribute’s value as second.

Similarly, the description removal is mapped to:

transform (Group) to (Group) {
DropAttribute("description")

}

Annotations. In the data transformations above, we carelessly intro-
duced values for each of the attributes ("Group Name", "..." and null).
These are required in a data transformation, but unknown in the data model
or data model transformation. Such information can be considered to be a
separate input of the mapping, yet at the same time, storing it separately
from the data model transformation would be impractical.

As a solution, we allow data model transformations to be annotated. When
transforming data models, these annotations can be ignored, but when look-
ing at data transformations, annotations provide the information we were
missing. Instead of writing:

Entity[Id="User"]
:: add age :: int

to add an attribute age, we therefore write:

Entity[Id="User"]
:: add age :: int defaultValue(25)

Using a similar approach we specify the value of a newly added group.

Data-level computations. Copying the topic property from a web
to a page is done by an attribute addition. The attribute addition by constant
value we have seen above is not sufficient. We need an attribute addition by

143

Heterogeneous Coupled Evolution of Software Languages Chapter 6

computed value here. The computation itself is a parameter to the attribute
addition:

transform (Page) to (Page) {
AddAttribute("topic", getWeb().getTopic())

}

In Java, the computation is represented by an anonymous class.

The substitution from the previous section indicates a type substitution. At
the data level this is reflected by a conversion to a value of the new (substi-
tuted) type. There are various type substitutions that have a standard value
conversion. Examples are int to string, string to int, but also set of int to set
of string. We have explicitly included the conversions for these substitutions
in our mapping.

The substitution from the previous section is a set of User to a set of Group
substitution. Such a substitution does not have a standard value conversion.
To still be able to execute the data transformation, the user is required to
explicitly specify the desired conversion by means of an annotation1. An
example conversion would be to convert our set of user to a set of singleton
groups in which each group holds exactly one user. This is mapped to:

transform (Web) to (Web) {
AttributeSetConversion(

"admin",
new Group(getUser().getName(), { getUser() })

)
}

Note that the name AttributeSetConversion indicates that the con-
version (the second parameter) is applied to each of the elements in the ad-
min set, not to the set as a whole, which would be the functionality of the
AttributeConversion transformation.

Types. Each of the above transformations refers to types. They have a set
of source types and a target type. Since the code above is directly mapped to
Java, these should represent actual Java types. The final step of the mapping
is therefore to construct a Java type base to support the transformations. To
establish the type base, we use a Java type generator from the WebDSL project,
that takes a data model as input and produces the corresponding Java classes
as output. Without investigating the transformations, we generate all types
for the data model before transformation as well as all types in the data model
after transformation. The resulting types are stored in different Java packages
to prevent name clashes.

1Not by means of a parameter, as this computation only influences the data, not the data
model.

144

Section 6.4 Heterogeneous Coupled Transformation

Figure 6.3 Schema evolution (left) & DTD evolution (right)

In addition to the source and target types, we also sometimes need types
half-way through the transformation (e.g. when using the attribute addition
by computation). These are generated when performing the mapping.

6.4 H E T E R O G E N E O U S C O U P L E D T R A N S F O R M A-
T I O N

When data models evolve, conforming data needs to be transformed to reflect
these changes. Although a frequently reoccurring approach is to define data
transformations manually, it requires a significant effort and can hold back
a development or maintenance process. We have shown that it can be per-
formed automatically. In this section we step away from the detailed look on
data model transformations and take a broader look at the problem from a
higher level of abstraction.

6.4.1 Horizontal Generalization

Recall Figure 6.2. It shows the outline of the coupled data evolution problem.
We have looked at Object Oriented data models describing data in a data base.
If we would have described our data by means of a database schema (e.g. SQL
schema), we would have an evolving database schema and data that has to be
transformed to reflect these changes [Cunha et al., 2006, Berdaguer et al., 2007,
Gupta et al., 1993], as shown in Figure 6.3 (left). The problem of coupled data
evolution therefore reoccurs when using a different formalism for describing
our data.

Similarly, we could use XML to store our data and DTD’s to describe
it. Again our DTDs evolve to satisfy changing requirements and our XML
data needs to be transformed to reflect these changes [Lämmel and Lohmann,
2001], as shown in Figure 6.3 (right).

We also see the same problem reoccurring in different domains. When
programming languages evolve, the programs written in it have to be mi-
grated to the new version of the languages. The programs have to conform to

145

Heterogeneous Coupled Evolution of Software Languages Chapter 6

Figure 6.4 Grammar evolution

Entity* → DataM { cons("Model") }
Id "{" Prop* "}" → Entity { cons("Entity") }
Id "::" Type → Prop { cons("Prop") }
"int" → Type { cons("Int") }
"bool" → Type { cons("Bool") }
Id → Type { }
"set of" Type → Type { cons("Set") }
Name → Id { cons("Id") }

Figure 6.5 Data model grammar

the grammar of the programming languages [Pizka and Jürgens, 2007b] (Fig-
ure 6.4). Similarly, when meta-models evolve, conforming models need to be
transformed to reflect the evolution [Gruschko et al., 2007, Xiong et al., 2007,
Favre, 2003, Wachsmuth, 2007b, Hößler et al., 2005, Hearnden et al., 2006].

Coupled evolution is a reoccurring phenomenon. Naming conventions
for the coupled evolution problem vary in the different areas between co-
evolution, two-level data transformations, coupled transformation and simply
synchronization or adaptation. But they effectively address the same problem
of coupled evolution. Lämmel discusses this for a subset of the above in
[Lämmel, 2004], naming it the ubiquity of coupled transformation problems.
Identifying the coupled evolution problem in different domains is a form of
horizontal generalization.

6.4.2 Vertical Generalization

We introduced the data model language on the fly in the previous sections.
We thereby implicitly defined its syntax. The syntax is formalized by the
grammar found in Figure 6.5. It is written in SDF [Visser, 1997] format. For
simplicity, it only shows the context-free production rules. The lexical syntax
definitions and the start symbol (DataM) definition have been left out. On
the left-hand-side of each production rule the construction of the specific sort
is defined, on the right-hand-side the produced sort. Each of the rules are
annotated, which is indicated by the {...} text at the end of each rule. We
ignore these annotations for now.

As data conforms to a data model, data models conform to the data model

146

Section 6.4 Heterogeneous Coupled Transformation

Figure 6.6 Vertical generalization

grammar. The grammar describes the structure of the data model and the
data model describes the structure of the data. The data model grammar
itself is rather limited. In future, it may for example be useful to add support
for more attribute types, inheritance, or support for uniqueness of property
values. So, in practice, the grammar is far from fixed and is itself subject to
expansion and modification. No different from the data model scenario, if the
grammar changes, data models that originally conformed to it are invalidated
and need to be migrated along with the grammar. In other words, we have
a second scenario of coupled evolution in the single context of data models.
Figure 6.6 shows the extension with the additional evolution scenario.

We cover another conformance level by saying that also the SDF syntax
may be subject to change, at which point, the grammar defined above has
to be migrated along with the changing SDF definition. From which we see
that the same coupled software transformation problem reoccurs over differ-
ent conformance levels, which is a vertical generalization of the problem. In
terms of model-driven architectures [Soley et al., 2000] the vertical generaliza-
tion can be phrased as coupled evolution on the levels M1-M0 (data model -
data), M2-M1 (data model grammar - data model), M3-M2 (SDF - data model
grammar), or even higher if M3 is not defined in itself.

To abstract away from a specific conformance level and from specific areas
of application, we will from now on use a generalized representation of the
problem as shown in Figure 6.7 (left). In this generalized view, we see the
common aspects of coupled software language evolution:

• An evolving software language (M i)

• Software that is subject to transformation to reflect the evolving lan-
guage (M i-1)

• A means to define software languages (M i+1)

147

Heterogeneous Coupled Evolution of Software Languages Chapter 6

Figure 6.7 Generic representation of software language evolution (left) & generic
architecture for supporting software language evolution (right)

For the case of data model evolution, we have automated the transformation
process. To do the same in the generic case, we need a way to formalize
the evolution for an arbitrary software language. Furthermore, we need a
mapping from the language evolution to a concrete transformation.

6.5 G E N E R I C A R C H I T E C T U R E

In this section we propose and outline a generic architecture for coupled soft-
ware evolution. Its goal is to reduce the manual effort involved in traditional
coupled evolution. Furthermore, it structures the evolution process, increases
the transformation abstraction levels and allows for common problems to be
solved once instead of repeatedly.

Traditional approaches to coupled evolution are usually based on architec-
tures similar to the one in Figure 6.2. The generic solution is based on the
generalized and extended architecture displayed in Figure 6.7 (right). The
main component in the architecture is the definition of the transformation
language used to formalize the evolution (named DSTL). In earlier work, the
transformation language is usually fixed and considered to be an assumption
of the approach. We assume it to be variable and consider it an artifact in
coupled evolution.

Although the transformation language stands out most in the figure, the
key concept of the architecture lies in the added arrows. The dashed arrow
denotes a transformation defined by the user. The solid arrows denote auto-
matic transformation, these do not require human interaction.

Input to the architecture is a coupled evolution scenario as explained in the
previous section and a mapping from a top-level transformation to a bottom-
level transformation. The first should come for free (either implicit or explicit),

148

Section 6.5 Generic Architecture

since it is merely defining what is to be evolved. Without it, the coupled evo-
lution problem does not exist. The second is also part of most domain-specific
approaches and may to that respect be reused in these specific domains.

The mapping, or dashed line in the figure, is defining a semantic link be-
tween the two levels, which is by definition sufficient to allow for coupled
evolution. Since it is indirectly based upon M i+1, it is generic over any soft-
ware (or model) being evolved within the same domain. We therefore have
fixed mappings for the domain of data model evolution, or the domain of
SDF evolution. In practice, the evolution scenario is therefore the main input,
varying most frequently.

Based upon the two inputs, the architecture provides a structured approach
to software language evolution, consisting of:

• Automatic derivation of a transformation language for each domain

• Automatic derivation of an interpreter for transformations in the trans-
formation language

• Automatic software migration along a specified transformation

In practice, the transformation language is needed to define the mapping.
Yet, since the transformation language derivation is automatic, the ordering
will not be a problem in practice. The following subsections focus on the
aspects of the architecture individually.

6.5.1 Deriving Domain Specific Transformation Languages

The first and most central component of the architecture is a transformation
language specific to the M i+1 definition. We will refer to it as the Domain
Specific Transformation Language (DSTL). The transformation language can-
not be generic, as we cannot construct a complete mapping from a generic
language. Generic languages contain by definition concepts that are not part
of the domain2.

Many of the traditional transformation languages for coupled evolution
define a large set of elementary transformations and an extensive mapping.
In contrast to this, we focus on a transformation language that is as small as
possible, but still covers all transformations. This makes defining the mapping
as easy as possible. Usability of the language is achieved through abstractions.
We have implemented the DSTL derivation in Stratego/XT and assume M i+1

to have been defined in SDF. The DSTL syntax is again defined in SDF.
Input to the derivation is M i+1, the software language grammar (in SDF).

The derivation produces elementary transformations from the production

2Having a partial mapping is similar to using an implicit domain specific language. The
language is defined by the domain of the mapping

149

Heterogeneous Coupled Evolution of Software Languages Chapter 6

rules in the grammar. It starts at the productions of the start symbol and tra-
verses the grammar recursively. We distinguish different types of production
rules, for which different types of elementary transformations are generated.

Lists. The top-most production rule in the data model grammar (Fig-
ure 6.5) defines a data model to be a list of entities:

Entity* → DataM

In the transformation language, the list is reflected by two list operations,
namely addition and removal of entities. The syntax for these transformations
is defined by the context-free productions:

"add" Entity → Transformation
"remove" → Transformation

In the same way, the addition and removal of properties are generated
when considering the Entity production recursively. Furthermore, we gener-
ate transformations for optional symbols in a similar way (these are set and
unset transformations).

Lexical syntax. When a symbol is defined to be lexical, it has no more
productions and can thus not be decomposed further. The recursion therefore
stops and a transformation is generated to substitute its value. An example of
a lexical symbol is Name, for which the following transformation is generated:

"substitute with" Name → Transformation

Multiple productions. The symbols that are considered above are
either lexical, or produced by a single production. The Type symbol in-
side a property can be produced in multiple ways (namely, "int", "bool",
"set of Type", or Id). Consequently, we must allow it to be substituted
by one of these:

"substitute with" Type → Transformation

We import the original data model grammar into the DSTL definition to
reuse the Type symbol that was defined in the original grammar.

Type checking. A software language defines groups of software ele-
ments. For data models we have entities, properties, ids, but also ids inside
sets, or ids inside a property. The local transformations defined above are
only applicable to some of the element groups, which make up the domain
of a local transformation. For example, the addition of entities can only be
applied to data models and the substitution of types only to properties or
sets.

150

Section 6.5 Generic Architecture

We use APath expressions to indicate where a local transformation is to be
applied. Each APath expression results in certain groups of software elements.
To make sure a local transformation is applied within its domain, we need to
verify that the APath expression to which it is connected can only result in
elements that are in the domain of the local transformation, which is a form
of type checking.

We have implemented type checking for any DSTL. It primarily consists
of three components: A generation of domains for each of the local trans-
formations. A (generic) type derivation for APath expressions and (generic)
functionality that checks whether the result of the APath will indeed fall in-
side the domain of the local transformation. The type checking is complicated
by the use of recursive productions: the set of int should fall in the same
group as the set inside set of set of int.

Larger grammars. The presented data model grammar is small. We
have used a much larger data model grammar, which was developed as part
of the WebDSL project. Although the principles above can be applied to all
the rules in a larger grammar, in practice, one does not want to be able to
transform every group of software elements. In the small grammar, we could
for example leave out the type substitution within sets if we would not be able
to map it to a data transformation.

By means of annotations on the production rules of a grammar, the user
can indicate which rules (and thereby what symbols) should be transformed
and which should not be transformed. There are two possible annotations:
A ‘transform’ annotation, which tells the tool to generate transformations for
a production rule and a ‘constant’ annotation, which tells the tool to take
the production rule into account by recursively generating transformations
for each of the symbols on the left-hand-side (in SDF), but not generating
transformations for the production rule itself. No annotation on a rule means
that it is ignored during DSTL derivation.

6.5.2 Automated Transformation

The DSTL syntax we have defined allows us to write transformations. The
next step is to execute these transformations. For this purpose, we have de-
fined an interpreter generator. Similar to the syntax generator, it takes the
software language definition as input, but instead produces an interpreter for
the associated DSTL as output. The interpreter mainly consists of:

• A mapping of the elementary DSTL transformations onto generic trans-
formations

• A generic transformations library (build on top of Stratego/XT)

• Implementation of generic DSTL constructs such as composition and
abstraction

151

Heterogeneous Coupled Evolution of Software Languages Chapter 6

• An APath evaluation library

The first is specific for the DSTL and therefore generated. It mainly consists
of production rules that denote the specific to generic mapping. These look
like:

transform(|mmodel, path):
AddProperty(newValue) → <addAtLocator(|path, newValue)> mmodel

The last three items are generic over all DSTLs, so defined once. Their
definition is in most ways straightforward and is therefore not discussed here.

6.6 R E L AT E D W O R K

Coupled evolution plays a significant role in computer science and has been
treated in various areas. Earlier research has primarily focused on construct-
ing coupled evolution support for specific domains. We discuss related work
in the most important domains of coupled evolution: model evolution, do-
main specific language evolution and schema evolution.

Coupled evolution for the meta modeling domain is introduced by Gr-
uschko et al. [2007]. As is the case for most publications on coupled evolution
for models, Gruschko models evolution using small elementary transforma-
tion steps. A classification of these steps is proposed: non-breaking changes,
breaking and resolvable changes and breaking and unresolvable changes. A
classification, which is frequently reused in later work and is also applicable to
our work, yet not directly relevant to the proposed architecture. In his paper,
Gruschko also identifies different steps in coupled evolution, although these
steps are generic, they mainly consider what we have called ‘the mapping’
and are in that sense only applicable to a subset of what has been discussed
here. The only step, which does not fall inside the scope of this mapping is a
change detection, to determine the evolution steps that have occurred between
two given models. Chapter 5 discusses evolution detection in detail.

Wachsmuth [2007b] introduces a set of transformations specific to MOF [Ob-
ject Management Group, 2006] compliant meta models. The set is very similar
to the set of elementary transformations for data models as we have intro-
duced in Section 6.3.1 and which is derived automatically in our approach.
Different to the transformations we have derived is their distinction between
two type changes, namely generalization and restriction, yet they do not pro-
vide a specification on how these should be mapped to concrete types. Fur-
thermore, they have transformations to support changes to inheritance and
inlining of classes. Both concepts were not included in our input data model
grammar and are therefore not reflected in the output. Wachsmuth proposes
a mapping to model migrations implemented in QVT [Object Management
Group, 2007].

152

Section 6.7 Conclusion

Similar to Wachsmuth, Herrmannsdoerfer considers coupled evolution on
metamodels based on small evolution steps [Herrmannsdörfer, 2007]. He fo-
cuses on the Eclipse Modeling Framework (EMF) [Eclipse Foundation, 2008],
in which ECore, the meta-meta model implements a subset of MOF. In his
approach, named COPE, Herrmannsdoerfer distinguishes two types of evo-
lution steps: open and closed coupled evolution. The first is what we have
named the elementary transformations and the second are transformations
based upon these. In contrast to other works, this view does provide a way of
abstracting from meta-model specific transformations. However, the deriva-
tion of the elementary transformations as well as the definition of these trans-
formations are left to the user. This does not only require additional effort,
it also prevents structured abstractions as are possible in our approach. Her-
rmannsdoerfer provides a prototypical editor based on Eclipse.

In the area of domain specific languages, Pizka et al. discuss the evolu-
tion of DSLs. They claim three obstacles in DSL development: (1) Stepwise
bottom-up generalization is required, which is a special case of the evolution
we have been looking at. (2) DSLs should be layered, which is specific to DSLs
and not directly related to coupled evolution. (3) Automated co-evolution is
required for DSLs, which is what we generically solve in our work. As we
have seen in [Wachsmuth, 2007b], Pizka’s work is focused on a single domain,
namely DSLs, it is limited to the discussion of a transformation definition and
mapping specific to this domain.

With respect to the data variants of coupled evolution (schema evolution)
and the related two-level data transformations, numerous approaches have
been found to solve these problems [Lämmel and Lohmann, 2001, Cunha
et al., 2006, Berdaguer et al., 2007, Gupta et al., 1993, Alves et al., 2008b].
These mainly focus on the schema to data mapping, frequently taking differ-
ent types of complicating concepts into account, such as data restrictions and
performance optimization. These are typically aspects that may also be solved
generically, such that they can be used in any domain. In current work, we
have not focused on this, but it may be interesting as future work.

6.7 C O N C L U S I O N

In this chapter, we presented two directions of generalizing coupled software
language evolution scenarios and introduced the concept of heterogeneous
coupled evolution. We presented an architecture to automate coupled evolu-
tion on an arbitrary software domain (e.g. programming languages, model-
ing or data modeling). The architecture requires as input: a coupled software
evolution scenario and a mapping from software language transformations to
software transformations. The outputs are: Automatic derivation of a domain
specific transformation language (DSTL) to formalize the software language
evolution; automatic derivation of an interpreter for transformations conform-

153

Heterogeneous Coupled Evolution of Software Languages Chapter 6

ing to the DSTL; and automatic software migration along the evolving soft-
ware language.

Using Stratego/XT, we have implemented a coupled evolution tool to sup-
port the architecture. It is based on software languages defined in SDF. We
have successfully applied the tool to the domain of data modeling in the web
modeling language WebDSL [Visser, 2008a], where we have used it to create
a tool for automatic database migration along an evolving data model, which
targets a broad set of databases.

A C K N O W L E D G M E N T S

This research was supported by NWO/JACQUARD project 638.001.610,
MoDSE: Model-Driven Software Evolution.

154

7
Conclusion

In this dissertation we studied concepts, techniques and tools to support cou-
pled evolution in the context of a conformance relation. We aimed to ease
the coupled evolution process, while reducing its impact on development and
broadening its view across the traditional boundaries of coupled evolution
domains such as dataware, modelware and grammarware.

We studied existing literature to find directions for further research. We an-
alyzed a set of evolution case studies, in order to identify common evolution
patterns, to assess their automation potential and to analyze their character-
istics. We implemented automatic coupled evolution in the context of a dou-
ble conformance mapping, aiming to simplify the coupled evolution process
for developers. We formalized coupled metamodel evolution, and derived
a technique for automatically detecting evolution patterns from a sequence
of evolved metamodel versions. Finally, we generalized the coupled evolu-
tion solution across domains, by automating the common efforts needed to
establish a new coupled evolution implementation.

The remainder of this chapter enumerates the core contributions of this
dissertation, it answers the research questions posed in the introduction and
it provides recommendations for further research in the coupled evolution
domain.

7.1 S U M M A RY O F C O N T R I B U T I O N S

• A systematic literature survey [Kitchenham and Charters, 2007] on cou-
pled evolution approaches in the context of conformance, across differ-
ent technological spaces (Chapter 2).

• A feature model for classifying coupled evolution approaches indepen-
dent of technological spaces. Its application to existing approaches and
the interpretation of the results (Chapter 2).

• An extensive catalog of coupled operators, which are either motivated
from the literature or from case studies that we performed. An organi-
zation of this catalog to ease selection of the right coupled operator and
to assess the impact of the coupled operator on the modeling language
and its models (Chapter 3).

155

Conclusion Chapter 7

• A domain-specific language for specifying data model evolution in the
context of WebDSL, including checks for evolution validity and correct-
ness (Chapter 4).

• Implementation of coupled operators for the evolution of WebDSL data
models and migration of WebDSL databases through SQL migration
scripts (Chapter 4).

• A formalization of the core concepts involved in coupled evolution of
metamodels and models, namely metamodels, difference models, and
evolution traces (Chapter 5).

• Automatic reconstruction of complex metamodel evolution traces from
difference models, dealing with operator dependencies and interference
(Chapter 5).

• Two generalizations over coupled software language evolution scenar-
ios, introducing the concept of heterogeneous coupled evolution (Chap-
ter 6).

• An architecture to support heterogeneous coupled evolution of software
languages, offering an automatic domain specific transformation lan-
guage generation (DSTL) and an automatic DSTL interpreter generation
(Chapter 6).

7.2 R E S E A R C H Q U E S T I O N S R E V I S I T E D

Research Question 1

How do we characterize and compare coupled evolution approaches across tech-
nological spaces?

Different approaches to coupled evolution, show different characteristics,
yet many of these are comparable. Characteristics can be formalized into fea-
tures, offering a discrete distinction and a basis for comparison. In Chapter 2,
we have derived a set of features to characterize coupled evolution approaches
and organized the set in a feature model. Subsequently, we have applied the
feature model to existing coupled evolution approaches.

By interpreting the results of applying the feature model, we derived reusable
solutions and directions for further research. Amongst others we concluded:
Views are a key concept in the domain of dataware and commonly used to
unobtrusively support coupled evolution. Other domains make little use of
views. Porting views to other domains could offer novel approaches; Mi-
gration is a transformation, yet only few approaches use a transformation

156

Section 7.2 Research Questions Revisited

language for specifying migrations. Existence of suitable transformation lan-
guages would ease the implementation of coupled evolution; Versioning of
schemas, classes, or objects has common use in dataware, received some, but
little research in modelware, yet proves beneficial in both domains. A gener-
alization or reimplementation of versioning in other domains, would support
and simplify coupled evolution; Finally, in-place transformations may well
be used in modelware or grammarware, to support larger artefact size, or
artefacts that require continuous availability.

Research Question 2

How can coupled evolution concepts and solutions be generalized across tech-
nological spaces?

Coupled evolution is a reoccurring phenomenon in various domains. Nev-
ertheless, its underlying concepts remain similar. In Chapter 6 we showed
that coupled evolution can be generalized horizontally – across domains –
and vertically – across meta-levels. Furthermore, in Chapter 2, we showed
through the feature model, that characteristics are comparable along the hor-
izontal generalization.

By exploiting the horizontal and vertical generalizations, we derived a
framework that emphasizes the commonalities between domains and extends
them to automate the process of deriving a new coupled evolution approach.
It offers an automatic domain specific transformation language (DSTL) gen-
eration and an automatic DSTL interpreter generation. The generation results
partially implement arbitrary coupled evolution approaches. However, the
generalization is not complete: The mapping from evolution to migration is
domain-specific and hard to generalize. Chapter 4 highlights several of the
domain-specific problems faced in the object-oriented dataware domain.

Research Question 3

What metamodel evolution patterns can be distinguished, which allow automa-
tion in the context of migration?

Determining common evolution in each of the domains of coupled evolu-
tion in the context of conformance would require extensive investigation of
each of the domains. As our implementations primarily targets the domains
of dataware and modelware, we performed an analysis of evolution in these
two domains. We looked at evolution in various case studies, several of which
are industrial. Additionally, we analyzed which evolution is supported in the
existing evolution tools and publications.

Using the analysis results, we have derived a catalog of 61 operators, that
can accurately describe most of the evolution of the inspected cases. Evolution
which is not supported by the catalog but which did occur in the case stud-
ies, only occurred in a single case study and therefore offers little ground for

157

Conclusion Chapter 7

automation. We organized the catalog along the effect on the modeling lan-
guage or the migrated models, to ease evolution automation and to ease its
usage by developers. The catalog, its coupled operators and their properties
are discussed in Chapter 3.

Research Question 4

How can software language evolution be formalized, such that it both function-
ally and understandably represents the developer’s evolution intent?

For understandability, an evolution specification of a domain-specific model
should follow the domain-specific modeling concepts. This reduces the gap
between model and evolution specification. Formalizations come in different
forms for different types of models. We offer a formalization for evolution of
the object-oriented data models found in WebDSL models. Nevertheless, the
concepts of WebDSL data models are similar to object-oriented data models
and metamodels, hence the formalization can be generalized to the domains
of modelware and dataware.

Chapter 4 discusses the formalization of evolution of WebDSL data models.
It follows the catalog of common evolution operations outlined in Chapter 3,
to ensure a broad coverage. The formalization targets the same abstraction
level as WebDSL, by reusing the domain-specific concepts found in WebDSL.
Thus reducing the gap between the evolution formalization and the original
model as to increase the understandability of the evolution. At the same time,
the formalization abstracts away from the lower-level details of the underlying
implementation frameworks (Hibernate and Relational databases), to ensure
a focus on the evolution, rather than the implementation.

As the formalization follows the catalog of operators, from Chapter 3, we
know that it is not sufficiently complete to cover arbitrary evolution. A means
to deviate from the operators in the catalog is needed, either by customiza-
tion or by addition. Yet this remains a topic for further research. As for the
Acoda tooling, implementing unsupported migrations manually in SQL is the
recommended, yet insufficient solution.

Research Question 5

How do we support coupled evolution unobtrusively and prevent the undesired
loss of information during migration?

Coupled evolution has an impact on software development. On the one hand,
coupled evolution requires manual effort, as the developer’s evolution intent
cannot be completely obtained automatically. On the other hand, artefact
migration implies a risk of information loss. We aim to reduce the impact of
coupled evolution as much as possible, to streamline the evolution process.

We discussed two directions to reduce coupled evolution impact. In Chap-
ter 5, we discussed how to automatically reconstruct evolution from two ver-

158

Section 7.3 Evaluation

sions of a metamodel (or data model). The automated reconstruction sup-
ports complex evolution operators, operator dependencies as well as operator
interference – where the effect of one operator is partially or completely hid-
den from the final result. Reconstruction still requires developer feedback to
ensure the correct evolution has been detected, but reduces evolution effort
drastically compared to defining evolution manually. In Chapters 3 and 4,
we discussed how to reduce the risk of information loss in coupled evolution.
On the one hand, evolution operator characteristics assess their impact on the
modeling language and the set of models. Combination of such properties
can predict information loss before applying migration. On the other hand,
evolution validity is automatically validated, to ensure a functionally correct
evolution after it has been edited or completely specified by a developer.

7.3 E VA L U AT I O N

We used two types of research throughout the dissertation. We used analytical
research to increase our understanding of the status quo (Chapters 2 and 3).
We used research of a constructive nature, to improve the status quo (Chapters
4, 5 and 6). Analytical research requires case studies that are a representation
of the status quo. Constructive research, requires case studies to evaluate that
a change indeed improves the status quo.

The case studies used for analytical research are summarized in Figure 3.2.
Their histories were analyzed by mining their repositories and examining
their commit logs. They primarily provided input to the set of evolution
patterns derived in Chapter 3. Both industrial cases as well as open source
cases were used.

The constructive research we discussed throughout the dissertation pri-
marily targets to improve the process of coupled evolution. Evaluation of
such constructive research is complicated as the change does not merely af-
fect one measurable outcome, does not merely affect a whole set of outcomes,
but completely changes the case itself. The presence of support for evolution
does not just shorten the evolution, or shorten development time by automat-
ing migration, it completely changes the evolution that would have taken
place.

To still evaluate the constructive research, we used two types of case stud-
ies. Firstly, we used case studies, which we were (partially) executed without
support of new evolution tooling. These case studies are Bugzilla and Re-
searchr. Secondly, we used case studies, which (partially) benefit from the
newly developed technology. These case studies are Researchr and Yellow-
Grass. The latter category had to be developed from scratch, these cases are
therefore typically smaller, but examined in much greater detail. Neverthe-
less, both Researchr and YellowGrass are much-used systems, making them

159

Conclusion Chapter 7

realistic cases. The three main cases YellowGrass, Researchr and Bugzilla are
discussed in Appendices A, B and C respectively.

In Chapter 3, case studies were used for quantitative analysis and collec-
tion of evolution patterns. In Chapter 4, YellowGrass was used to qualitatively
validate the functioning of the migration component of Acoda. We verified
that on YellowGrass, Acoda migrations yield the correct results and do not
cause undesired loss of data. Although we optimize the generated migrations
for performance (see Section 4.8), we did not evaluate these improvements,
as an evaluation would rather evaluate the performance of the database man-
agement system than the specified migration itself. The time it takes to map
evolution onto migration is negligible. Furthermore, migration of very large
databases, or distributed migration remains a topic of further research. In
Chapter 5, we used the Researchr history to do a preliminary evaluation of
performance. In particular, we were interested in how big evolution traces
typically get, as they determine the reconstruction time. Further evaluation
on different case studies could provide input to further improvements of the
algorithm. The reconstruction algorithm can principally reconstruct any evo-
lution trace. A (heuristics-based) selection of the sought-after evolution trace
falls outside the scope of the work (although the current heuristic on trace
length seems to work exceptionally well). An evaluation of such selection
therefore also falls outside the scope of this work.

7.4 F U T U R E R E S E A R C H R E C O M M E N D AT I O N S

This dissertation addresses different concepts, techniques and implementa-
tions on coupled evolution. As shown in Chapter 2, coupled evolution is a
domain of ongoing research. New techniques are developed and new do-
mains are explored. The evolution problem is common, yet hardly supported
in practice. Much additional research is needed before coupled evolution can
commonly find its way into regular software development. This section ad-
dresses some directions of research that follow from the earlier chapters.

7.4.1 Metamodeling Formalism

A coupled evolution approach is bound by the metamodeling formalism it
supports. The discussed concepts and implementations primarily focus on the
core modeling concepts found in most metamodeling languages. We consid-
ered classes, inheritance, cardinalities and inverses. However, concrete meta-
modeling formalisms offer a broader range of constructs, requiring the need
to extend the presented ideas and implementations.

Most concrete metamodeling formalisms, such as Ecore [Steinberg et al.,
2009] or MOF [Object Management Group, 2006], offer additional constructs,

160

Section 7.4 Future Research Recommendations

such as interfaces, packages and annotations. Although support for these
requires additional implementation, they have limited impact on persisted
artefacts and thereby limited impact on migration or coupled evolution. They
do not affect the presented concepts for coupled evolution.

More influential additions to the metamodeling formalism, such as invari-
ants, have more significant impact on coupled evolution. All metamodel def-
initions offer restrictions on the data set. More definitions implies a more
restrictive set. Each of the restrictions have in common that they have a fairly
predictable impact on the extension. For example, cardinalities restrict the
data by quantity. In migration, we consider the full impact of these quan-
tity restrictions and adapt the data migration accordingly. Due to their wide
scope, the impact of invariants on a metamodel’s extension is harder to pre-
dict. Therefore, it is harder to adjust migration to meet invariants. Additional
research is needed to support invariants in coupled evolution.

Previous chapters mostly discussed metamodeling in the dataware and
modelware domains. Although these domains are different, their metamod-
eling formalisms and conformance relation are similar. Also the domain of
XMLware shows a similar metamodeling formalism and conformance rela-
tion. There are however clear differences with the domain of grammarware.
This, and other differing domains may need a different type of detection,
a different type of migration and a different catalog of coupled operators.
The presented work may not be directly applicable. As presented in Chap-
ter 2, some research into coupled evolution of grammars and programs exists
[Staudt et al., 1987, Garlan et al., 1994, Jürgens and Pizka, 2006, Pizka and Jür-
gens, 2007b,a, Lämmel, 2001, Lämmel and Zaytsev, 2009a,b]. Concepts may
be similar, but additional research is needed to see to what extent existing
technology can be applied to other less related modeling domains.

7.4.2 Coupling Customization

We support coupled evolution through a set of coupled operators. By a series
of case studies, we showed that the set is near complete in practice. Yet at the
same time, we also showed that there are evolution steps in real-life develop-
ment, in which the set does not suffice. Some evolution is not supported.

To enable unsupported evolution, developers can implement a suitable mi-
gration manually. However, similar evolution may occur repeatedly, evolution
may be similar to an existing coupled operator or evolution may comprise a
complete or partial combination of existing coupled operators. In each of
these cases, automation through coupled evolution is preferable, when new
coupled operators can be added, existing coupled operators can be adjusted,
or existing coupled operators can be combined. To fully support an evolution
process, coupled operators need to support customization.

Some approaches exist, which allow developers to define custom operators
and reuse them during evolution (e.g. [Herrmannsdoerfer et al., 2009]). Yet

161

Conclusion Chapter 7

these neither support reusing existing coupled operators in operator defini-
tions, nor do they support detection of custom coupled operators. Support
for coupled operator customization throughout the entire coupled evolution
workflow would allow automation of the complete evolution process.

7.4.3 Implementing Migrations

A large amount of the time spent on implementing a new coupled evolution
approach involves implementing the set of coupled operators. Coupled oper-
ator implementation mostly involves implementing migrations or migration
patterns. The choice of migration platform, or migration language, greatly
influences the ease of implementing coupled evolution.

Some domains, offer transformation languages that can directly be used for
the purpose of migration and can therefore directly be used to implement the
migration component of a coupled operator. For example, in the domain of
grammarware, program transformation techniques can be used to implement
program migrations. Similarly, in the modelware domain, model transforma-
tion techniques can be used to migrate models. However, model transforma-
tion techniques are generally not suitable for implementing migrations. They
are frequently homogeneous – lacking support for metamodel changes – or
may require excessive descriptions, when migration steps are small. In the
dataware domain, data transformation techniques are also mostly homoge-
neous. The heterogeneous approaches, like those offered by database systems,
are primitive and lack support for information preservation.

The lack of transformation frameworks suitable for migration hampers the
development of coupled evolution approaches. Research into this particular
type of transformation is needed to ease migration development. Addition-
ally, alternative approaches to migration may offer new advantages, like seen
in the dataware domain. For example, migration by constructing views may
offer a coupled evolution solution to running systems.

7.4.4 Coupled Evolution in the Wild

Most research on coupled evolution has a strong focus on concepts and pro-
totypical implementations (Chapter 2). At the same time, there appears to be
limited use of coupled evolution techniques in practice. Despite the common
need for migration upon evolution, manual implementation is generally cho-
sen in favor of automation. Different causes of limited use can be considered.
Existing tools may be too prototypical, or there may be a mismatch between
what is needed and what is offered through research.

In general, much research ignores practical restrictions, to ease coupled
evolution. For example, minimum artefact uptime may be required, thus
disabling offline migrations. Artefacts may be physically distributed, requir-
ing the need for distributed migration. Larger artefacts, or larger numbers

162

Section 7.4 Future Research Recommendations

of artefacts require better migration performance. But also, organizational
restrictions, such as the management of risks can complicate coupled evolu-
tion. Additional research needs to reveal the evolution limitations of real-life
software development and provide suitable solutions. Additional engineer-
ing effort is needed to turn existing approaches into tools suitable for use in
industry.

163

A
Appendix: Case Study YellowGrass

This appendix and the following discuss case studies that provided input to
the research underlying this dissertation. This appendix describes Yellow-
Grass, a tag-based and web-based issue tracker. The evolution of YellowGrass
was used for statistical analysis in chapter 3 and (slightly condensed) used as
running example in chapter 5.

A.1 C O N T E X T

Due to the complexity of software, any reasonably-sized piece of software
is bound to have bugs. Bugs reduce the quality of software and therefore,
most of them need to be addressed during a software’s life time. To improve
software quality, software projects need to keep record of found bugs, which
is known as bug tracking. To aid software project management, bug tracking
software offers functionality to collect, record, manage and process known
bugs.

Found bugs imply the need for software changes. Yet, in software project
management, one often needs to keep track of a broader collection of in-
centives for software change, such as requested new functionality, suggested
improvements, or potential scope changes. We refer to these as software is-
sues. Issue tracking software aids in managing the flow of issues, thus offering
a valuable tool to software project management.

A.2 I S S U E T R A C K I N G I N Y E L L O W G R A S S

Various bug trackers and issue trackers exist, such as Mantis1, Bugzilla2,
or JIRA3. However, these are either intended for large projects or for small
projects. Yet, typically, software projects grow from a small code base at
project start, to a larger code base after some months or years of develop-
ment. The number of issues and their management tend to complicate over
time. YellowGrass supports a growing software development project by mak-
ing issue management flexible and customizable through the use of tagging.

Tags are simple (unstructured) strings, which are used to label issues. Yel-
lowGrass supports any choice and usage of tags. Typically projects use simple

1http://www.mantisbt.org
2http://www.bugzilla.org
3http://www.atlassian.com/software/jira

165

Appendix: Case Study YellowGrass Appendix A

tags to divide issues into categories, divide issues across software compo-
nents, or to assign urgency levels to issues. YellowGrass offers generic tag
support for any tag, such as filtering issues on tags, applying issue ordering,
or enhancing issue search results. More complex tags are structured strings,
which receive special functionality support. For example, tagging an issue by
@john assigns this issue to john and makes it show up on his YellowGrass
home page. Tagging an issue by !john will make john follow the issue, as a
result of which he will be informed of changes to the issue or comments on
the issue by other users.

Additionally, tags can be tagged themselves by meta-tagging. Meta-tagging
assigns special meaning to tags, which allows YellowGrass to reveal extra
functionality as a project grows in size. For example, issues can be tagged by
a software version number (as tags are unstructured, any versioning scheme is
supported). A set of issues with a particular version tag can be combined into
a snapshot and a series of issue sets tagged by subsequent versions comprise
a software’s evolution description. Yet, with merely the generic tag manage-
ment, these snapshots and evolution descriptions would be cumbersome to
maintain. Therefore, YellowGrass allows the users to tag tags as “release”.
This enables additional functionality, such as a road map, scheduling releases
and postponing issues. Meta-tagging offers the possibility to extend the issue
tracking functionality as a project grows. Smaller projects are not bothered
by functionality they do not use, but as they grow, the functionality can be
enabled when needed.

YellowGrass issues are collected in projects, which each has its own tag set.
Projects have members, who each have a login and to whom issues can be
assigned. YellowGrass is a web application written in WebDSL. Figure A.1
shows a screenshot of the Acoda road map on YellowGrass. YellowGrass is
freely available and open source4.

A.3 Y E L L O W G R A S S . O R G

A public instance of YellowGrass is hosted on http://yellowgrass.org. Yel-
lowGrass.org has been live for 2 years. At current date, it supports 40 active
projects (some public, some private) recording several thousands of issues.
The YellowGrass.org database has been used extensively to test Acoda. The
database is not open, due to the sensitive user information and various private
projects, yet most information is accessible as public information through the
website.

4https://svn.strategoxt.org/repos/issolar

166

Section A.4 YellowGrass.org

Figure A.1 Screenshot of a YellowGrass road map. The left column shows a list
of versions, issues for each versions and controls to postpone issues. The right
column shows project controls, description and statistics.

167

Appendix: Case Study YellowGrass Appendix A

A.4 E V O L U T I O N

Development of YellowGrass started approximately two years ago. It followed
an agile development process, offering correctly functioning versions at nearly
all stages of development. Its evolution (to date) follows a total of 232 revi-
sions spread across 22 releases5. The evolution is recorded in subversion and
as the project is open source, the evolution is public.

Evolution of YellowGrass is primarily focused on extension of function-
ality, refactorings to support the agile development methodology and some
design changes to fix poor design decisions (such as the use of global tags
versus project-based tags). Due to the use of for example meta-tagging, the
data model of YellowGrass is complex with respect to the size of the applica-
tion. Consequently, the evolution trace follows rather complex steps, which
provide excellent input to the previous chapters. A detailed documentation
of the changes applied to YellowGrass can be found in the road map on Yel-
lowGrass.org and in the subversion logs.

YellowGrass.org has gone live after about one month of development, by
then offering a very small subset of the functionality it offers now. Never-
theless, it has been actively used since it went online. As various projects
relied on the issue data recorded, the YellowGrass.org database could not
loose information. Therefore, Acoda was used extensively since the start of
the project. By offering data model evolution support that is in traditional de-
velopment not available, Acoda has influenced the evolution process, making
it more complex, longer and more focused on agile development. There are
no steps to be found that prevent or work around evolution, as these were
simply not needed.

5http://yellowgrass.org/roadmap/YellowGrass

168

B
Appendix: Case Study Researchr

Researchr1 is a web-based publication management system, on which one can
find, collect, share and review scientific publications and their meta data. The
evolution of researchr was used for statistical analysis in Chapter 3 and as
feasibility study in Chapter 5. A simplified version of researchr’s data model
and database is used as running example in Chapter 4.

B.1 C O N T E X T

One of the outcomes of research are publications. Over the years, research –
in all its forms – has produced large quantities of publications. These large
quantities make finding, traversing, or keeping track of publications hard. For
the purpose of literature surveys, conference reviewing processes, or simply
the process of research, one needs to deal with the quantities, to use existing
work and to prevent duplication in future work.

It is not the publications themselves, which are hard to manage in these
processes, but their meta data (a publication title, author names, author af-
filiations, abstract, citations, digital object identifier etc.). Using the publica-
tion meta data, the publication itself is generally easily found. Some search
engines exist to simplify the process of finding publications. For example,
Google Scholar2 searches publications based on their content. It offers a list
of publication meta data as result. Nevertheless, once found, there is little
or no support for keeping track of publications, staying up to date with new
publications or managing publications, such as reviewing or classifying.

B.2 R E S E A R C H R . O R G

Researchr3 is a web application, offering support for the management of pub-
lication meta data. It allows users to register new publication meta data and
browse a large set of publications already present in the researchr database
(imported from DBLP4). Users can group publications into bibliographies, re-
view publications and classify them. Users can unite in groups, to share bibli-
ographies and reviews. Publications can be tagged and an extensive meta data

1http://researchr.org
2http://scholar.google.com
3http://researchr.org
4http://www.informatik.uni-trier.de/~ley/db

169

Appendix: Case Study Researchr Appendix B

search functionality (not content-based) is available. Additionally, researchr
offers a registration of past conferences and a conference calendar marking
future events and their deadlines.

Figure B.1 shows a screenshot of the researchr start page.

B.3 E V O L U T I O N

The evolution of researchr started in March 2008 and is still under active
development. Over the past four years, there have been 665 source code revi-
sions and about 60 releases5. The website has gone live shortly after the start
of the project. Its registered data has been kept since.

Two evolutions are input to the work in the previous chapters. Firstly, the
evolution of researchr itself was used in chapters 3 and 5. Secondly, separate
from the regular researchr evolution, Acoda was used to evolve the DBLP data
model into the current researchr data model and to migrate the DBLP data to
researchr data. The migration is later repeated to import new DBLP publica-
tions into the researchr database. The example in Chapter 4 is based upon the
evolution trace from the original DBLP data model, first to an early researchr
data model and next to the current researchr data model. The evolution trace
spans a total of ten data model revisions. As it is relatively short in length, it
is not considered a significant case study and therefore only served as input
to the running example of Chapter 4.

Acoda was not used in the regular evolution of researchr. It may therefore
not have had the freedom of evolution available in the evolution of Yellow-
Grass. However, Acoda was used in the evolution from DBLP meta data to
researchr meta data, which therefore could evolve more freely and presents
more complex evolution steps (hence its suitability as example).

5http://yellowgrass.org/roadmap/researchr

170

Section B.3 Evolution

Figure B.1 Screenshot of the Researchr start page. The left column shows a set of
recently added publications, the right column shows some statistics and shortcuts
to active of new items.

171

C
Appendix: Case Study Bugzilla

This appendix presents Bugzilla1. Bugzilla is a widely-used defect (or bug)
tracking system. The evolution of Bugzilla was used for statistical analysis
in chapter 3. The context of Bugzilla is similar to the context of YellowGrass,
which is discussed in Section A.1. This appendix discusses Bugzilla’s func-
tionality and its evolution.

C.1 B U G T R A C K I N G I N B U G Z I L L A

Although Bugzilla and YellowGrass address the same domain, Bugzilla has
a larger scope and is feature-wise richer. Bugzilla has little support for tag-
ging, but offers (on top of the functionality offered by YellowGrass): tracking
of code changes; handling of patches, such as patch submission and patch
review; automated duplicate bug detection; time tracking for larger projects;
project status analysis and reporting for project management; and quality as-
surance management.

At the time of writing, the Bugzilla implementation consist of 128,320 lines
of code. 83% of this code is written in Perl. The Bugzilla documentation and
page templates are written in XML, they comprise a total of 10% of the code.
The remainder of code is mostly stylesheets, written in CSS and client-side
code written in JavaScript.

Bugzilla is a web application, supporting different database engines (namely
MySQL, Oracle, PostgreSQL and SQLite). It is open source and distributed
under the Mozilla Public License2. The source code and its revisions are
stored using Bazaar (which replaces the original CVS system) and available
online3. Figure C.1 shows a screenshot of Bugzilla.

C.2 E V O L U T I O N

Development on (the current variant of) Bugzilla has started in 1998. Bugzilla
has been under active development since. There have been approximately
8000 revisions over the past 13 years. The discussion of Bugzilla in this disser-
tation (Chapter 3) focuses on Bugzilla’s data model, of which there have been
280 revisions over the years.

1http://bugzilla.org
2http://mozilla.org/MPL
3http://bzr.mozilla.org

173

Appendix: Case Study Bugzilla Appendix C

Figure C.1 Screenshot of a Bugzilla bug report. It shows the bug details, its rela-
tions to other bugs and attachments. Further down on the page (not visible in the
screenshot), comments on this bug are listed.

174

Section C.2 Evolution

bug_see_also => {
FIELDS => [

id => {TYPE => ’MEDIUMSERIAL’, NOTNULL => 1,
PRIMARYKEY => 1},

bug_id => {TYPE => ’INT3’, NOTNULL => 1,
REFERENCES => {TABLE => ’bugs’,

COLUMN => ’bug_id’,
DELETE => ’CASCADE’}},

value => {TYPE => ’varchar(255)’, NOTNULL => 1},
class => {TYPE => ’varchar(255)’, NOTNULL => 1,

DEFAULT => "’’"},
],
INDEXES => [

bug_see_also_bug_id_idx => {FIELDS => [qw(bug_id value)],
TYPE => ’UNIQUE’},

],
},

Figure C.2 Excerpt of Bugzilla’s data model.

The Bugzilla data model4 is encoded in 3000 lines of Perl code. Declara-
tions of tables, columns, foreign keys and indexes are encoded in Perl hashes.
Figure C.2 shows an excerpt of the schema. For statistical analyses, these
hashes were converted to a more concise format similar to the data models
used in WebDSL.

Data model evolution and the development of required associated database
migrations received little tool support in Bugzilla’s evolution. Upon evolution,
Bugzilla’s developers are expected to construct a migration script (also in Perl)
and add it to a large database modification script5, which is run during in-
stallation or upgrade of a Bugzilla instance. Figure Figure C.3 shows a small
excerpt of the migration code.

4The data model can be found in the repository at Bugzilla/DB/Schema.pm
5The accumulated database migration script can be found in the repository at Bugzilla/Instal-

l/DB.pm

175

Appendix: Case Study Bugzilla Appendix C

2002-12-20 Bug 180870 - remove manual shadowdb replication code
$dbh->bz_drop_table("shadowlog");
_rename_votes_count_and_force_group_refresh();

2004/02/15 - Summaries shouldn’t be null - see bug 220232
if (!exists $dbh->bz_column_info(’bugs’, ’short_desc’)->{NOTNULL}) {

$dbh->bz_alter_column(’bugs’, ’short_desc’,
{TYPE => ’MEDIUMTEXT’, NOTNULL => 1}, ’’);

}
$dbh->bz_add_column(’products’, ’classification_id’,

{TYPE => ’INT2’, NOTNULL => 1, DEFAULT => ’1’});
_fix_group_with_empty_name();
$dbh->bz_add_index(’bugs_activity’, ’bugs_activity_who_idx’,

[qw(who)]);
Add defaults for some fields that should have them but didn’t.
$dbh->bz_alter_column(’bugs’, ’status_whiteboard’,

{TYPE => ’MEDIUMTEXT’, NOTNULL => 1, DEFAULT => "’’"});
if ($dbh->bz_column_info(’bugs’, ’votes’)) {

$dbh->bz_alter_column(’bugs’, ’votes’,
{TYPE => ’INT3’, NOTNULL => 1, DEFAULT => ’0’});

}
$dbh->bz_alter_column(’bugs’, ’lastdiffed’, {TYPE => ’DATETIME’});

Figure C.3 Excerpt of Bugzilla’s database migration script

176

Bibliography

(2008). Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C. http:
//www.w3.org/TR/REC-xml/. (Cited on page 40.)

Al-Jadir, L. and Léonard, M. (1998). Multiobjects to ease schema evolution in
an OODBMS. In Conceptual Modeling - ER 98, 17th International Conference on
Conceptual Modeling, volume 1507 of LNCS, pages 316–333. Springer. (Cited
on page 32.)

Altmanninger, K., Seidl, M., and Wimmer, M. (2009). A survey on model ver-
sioning approaches. International Journal of Web Information Systems, 5(3):271–
304. (Cited on page 50.)

Alves, T., Silva, P., and Visser, J. (2008a). Constraint-aware schema transfor-
mation. In Ninth International Workshop on Rule-Based Programming. (Cited on
page 106.)

Alves, T., Silva, P., and Visser, J. (2008b). Constraint-aware schema trans-
formation. In Ninth International Workshop on Rule-Based Programming (Rule
2008). (Cited on page 153.)

Ambler, S. W. and Sadalage, P. J. (2006). Refactoring Databases: Evolutionary
Database Design. Addison-Wesley Professional. (Cited on page 31.)

Andany, J., Léonard, M., and Palisser, C. (1991). Management of schema
evolution in databases. In VLDB ’91: Proceedings of the 17th International Con-
ference on Very Large Data Bases, pages 161–170. Morgan Kaufmann Publishers
Inc. (Cited on pages 35 and 49.)

Balasubramanian, D., Levendovszky, T., Narayanan, A., and Karsai, G.
(2009). Continuous migration support for domain-specific languages. In
The 9th OOPSLA Workshop on Domain-Specific Modeling. (Cited on page 44.)

Banerjee, J., Chou, H.-T., Garza, J. F., Kim, W., Woelk, D., Ballou, N., and
Kim, H.-J. (1987a). Data model issues for object-oriented applications. ACM
Trans. Inf. Syst., 5(1):3–26. (Cited on page 32.)

Banerjee, J., Kim, W., Kim, H.-J., and Korth, H. F. (1987b). Semantics and
implementation of schema evolution in object-oriented databases. SIGMOD
Rec., 16(3):311–322. (Cited on pages 32, 61, 65, 67, 69, 71, 73, 75, 78, and 79.)

Becker, S., Goldschmidt, T., Gruschko, B., and Koziolek, H. (2007). A process
model and classification scheme for semi-automatic meta-model evolution.
In Proc. 1st Workshop MDD, SOA und IT-Management (MSI’07), pages 35–46.
GiTO-Verlag. (Cited on pages 45, 60, 63, 65, 67, 69, 71, 73, 75, and 78.)

177

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

Bibliography

Benatallah, B. (1999). A unified framework for supporting dynamic schema
evolution in object databases. In ER 99: 18th International Conference on Con-
ceptual Modeling, volume 1728 of LNCS, pages 16–30. Springer. (Cited on
pages 8, 16, 32, 36, and 49.)

Berdaguer, P., Cunha, A., Pacheco, H., and Visser, J. (2007). Coupled schema
transformation and data conversion for XML and SQL. In Practical Aspects
of Declarative Languages (PADL 2007), volume 4354 of LNCS, pages 290–304.
Springer. (Cited on pages 105, 145, and 153.)

Biswas, R. and Ort, E. (2006). The java persistence api
- a simpler programming model for entity persistence.
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html.
(Cited on page 142.)

Bordbar, B., Draheim, D., Horn, M., Schulz, I., and Weber, G. (2005). Inte-
grated model-based software development, data access, and data migration.
In Model Driven Engineering Languages and Systems, volume 3713 of LNCS,
pages 382–396. Springer Berlin / Heidelberg. (Cited on page 34.)

Bouneffa, M. and Boudjlida, N. (1995). Managing schema changes in object-
relationship databases. In OOER 95: 14th International Conference onObject-
Oriented and Entity-Relationship Modelling, volume 1021 of LNCS, pages 113–
122. Springer. (Cited on pages 35 and 49.)

Brèche, P. (1996). Advanced primitives for changing schemas of object
databases. In CAiSE 96: Proceedings of the 8th International Conference on Ad-
vances Information System Engineering, pages 476–495. Springer-Verlag. (Cited
on pages 34, 61, 65, 67, 69, 71, 73, 75, and 78.)

Brèche, P., Ferrandina, F., and Kuklok, M. (1995). Simulation of schema
change using views. In Database and Expert Systems Applications, volume 978,
pages 247–258. Springer Berlin / Heidelberg. (Cited on page 49.)

Brèche, P. and Wörner, M. (1995). How to remove a class in an object database
system. In ADB 95: Proceedings of the 2nd International Conference on Applica-
tions of Databases, pages 476–495. (Cited on page 34.)

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., and Khalil, M. (2007).
Lessons from applying the systematic literature review process within the
software engineering domain. J. Syst. Softw., 80:571–583. (Cited on page 22.)

Brun, C. and Pierantonio, A. (2008). Model differences in the Eclipse mod-
elling framework. UPGRADE, The European Journal for the Informatics Profes-
sional, IX, issue No. 2:29–34. (Cited on pages 114 and 131.)

Burger, E. and Gruschko, B. (2010). A Change Metamodel for the Evolution
of MOF-Based Metamodels. In Modellierung 2010, volume P-161 of GI-LNI.
(Cited on pages 60 and 63.)

178

Bibliography

Casais, E. (1995). Managing class evolution in object-oriented systems, chapter 8,
pages 201–244. Prentice Hall International (UK) Ltd. (Cited on pages 4, 8,
16, 32, 36, 57, and 109.)

Cicchetti, A., Ruscio, D. D., Eramo, R., and Pierantonio, A. (2008). Automat-
ing co-evolution in model-driven engineering. In Enterprise Distributed Object
Computing Conference (EDOC 2008). IEEE. (Cited on pages 6, 46, 57, 61, 65,
67, 69, 71, 73, 75, 78, 81, 106, 114, and 131.)

Cicchetti, A., Ruscio, D. D., and Pierantonio, A. (2009). Managing depen-
dent changes in coupled evolution. In ICMT2009 - International Conference on
Model Transformation, LNCS, pages 35–51. Springer. (Cited on pages 46, 110,
and 131.)

Clamen, S. M. (1994). Schema evolution and integration. Distributed and
Parallel Databases, 2(1):101–126. (Cited on pages 35 and 49.)

Clark, J., DeRose, S., et al. (1999). XML Path Language (XPath). W3C Rec-
ommendation 16. (Cited on page 141.)

Claypool, K. T., Jin, J., and Rundensteiner, E. A. (1998). SERF: schema evo-
lution through an extensible, re-usable and flexible framework. In CIKM 98:
Proceedings of the seventh international conference on Information and knowledge
management, pages 314–321. ACM. (Cited on page 34.)

Claypool, K. T., Rundensteiner, E. A., and Heineman, G. T. (2000). ROVER:
A framework for the evolution of relationships. In Conceptual Modeling - ER
2000, volume 1920 of LNCS, pages 893–917. Springer Berlin / Heidelberg.
(Cited on pages 34, 61, 65, 67, 69, 71, 73, 75, and 78.)

Codd, E. F. (1970). A relational model of data for large shared data banks.
Commun. ACM, 13(6):377–387. (Cited on page 29.)

Crestana-Jensen, V., Lee, A., and Rundensteiner, E. (2000). Consistent schema
version removal: an optimization technique for object-oriented views. Knowl-
edge and Data Engineering, IEEE Transactions on, 12(2):261 –280. (Cited on
pages 36 and 49.)

Cunha, A., Oliveira, J., and Visser, J. (2006). Type-safe two-level data transfor-
mation. In Formal Methods Europe (FME 2006), volume 4085 of LNCS, pages
284–299. Springer. (Cited on pages 106, 145, and 153.)

Curino, C., Moon, H. J., Tanca, L., and Zaniolo, C. (2008a). Schema evolu-
tion in wikipedia - toward a web information system benchmark. In ICEIS
2008 - Proceedings of the Tenth International Conference on Enterprise Information
Systems, volume DISI, pages 323–332. (Cited on page 31.)

179

Bibliography

Curino, C., Moon, H. J., and Zaniolo, C. (2008b). Graceful database schema
evolution: the PRISM workbench. Proceedings of the VLDB Endowment,
1(1):761–772. (Cited on page 31.)

Curino, C. A., Moon, H. J., Ham, M., and Zaniolo, C. (2009). The PRISM
workwench: Database schema evolution without tears. In ICDE ’09: Proceed-
ings of the 2009 IEEE International Conference on Data Engineering, pages 1523–
1526, Washington, DC, USA. IEEE Computer Society. (Cited on page 31.)

Del Fabro, M. D. and Valduriez, P. (2007). Semi-automatic model integration
using matching transformations and weaving models. In Proceedings of the
2007 ACM symposium on Applied computing, SAC ’07, pages 963–970. ACM.
(Cited on pages 114 and 131.)

Demeyer, S., Ducasse, S., and Nierstrasz, O. (2000). Finding refactorings via
change metrics. In Proceedings of the 15th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA ’00, pages
166–177. ACM. (Cited on page 130.)

Dig, D. and Johnson, R. (2006). How do APIs evolve? a story of refactoring.
J. Softw. Maint. Evol., 18(2):83–107. (Cited on pages 61, 65, 67, 69, 71, 73, 75,
and 78.)

Draheim, D., Horn, M., and Schulz, I. (2004). The schema evolution and
data migration framework of the environmental mass database IMIS. In
SSDBM 04: 16th International Conference on Scientific and Statistical Database
Management, pages 341–344. IEEE Computer Society. (Cited on page 34.)

Eclipse Foundation (2008). Eclipse Modeling Framework Project (EMF).
http://eclipse.org/emf. (Cited on page 153.)

Falleri, J.-R., Huchard, M., Lafourcade, M., and Nebut, C. (2008). Metamodel
matching for automatic model transformation generation. In Proceedings of
the 11th international conference on Model Driven Engineering Languages and Sys-
tems, MoDELS ’08, pages 326–340. Springer-Verlag. (Cited on pages 114

and 131.)

Favre, J.-M. (2003). Meta-model and model co-evolution within the 3d soft-
ware space. In Proceedings of the ELISA workshop Evolution of Large-scale Indus-
trial Software Evolution, pages 98–109. (Cited on pages 137 and 146.)

Favre, J.-M. (2005). Languages evolve too! changing the software time scale.
In IWPSE 05: Eighth International Workshop on Principles of Software Evolution,
pages 33–42. IEEE. (Cited on pages 16, 57, and 109.)

Ferrandina, F., Meyer, T., Zicari, R., Ferran, G., and Madec, J. (1995). Schema
and database evolution in the O2 object database system. In VLDB ’95: Pro-
ceedings of the 21th International Conference on Very Large Data Bases, pages
170–181. Morgan Kaufmann Publishers Inc. (Cited on page 34.)

180

Bibliography

Fowler, M. (1999). Refactoring: improving the design of existing code. Addison-
Wesley Longman Publishing Co., Inc. (Cited on pages 61, 65, 67, 69, 70, 71,
73, 75, and 78.)

G. de Geest and S. D. Vermolen and A. van Deursen and E. Visser (2008).
Generating version convertors for domain-specific languages. In WCRE ’08:
Proceedings of the 2008 15th Working Conference on Reverse Engineering, pages
197–201. IEEE Computer Society. (Cited on pages 14 and 46.)

Garcés, K., Jouault, F., Cointe, P., and Bézivin, J. (2009). Managing model
adaptation by precise detection of metamodel changes. In Model Driven Ar-
chitecture - Foundations and Applications, volume 5562 of LNCS, pages 34–49.
Springer Berlin / Heidelberg. (Cited on pages 6, 7, 46, 57, 81, 114, and 131.)

Garlan, D., Krueger, C. W., and Lerner, B. S. (1994). Transformgen: au-
tomating the maintenance of structure-oriented environments. ACM Trans.
Program. Lang. Syst., 16(3):727–774. (Cited on pages 39 and 161.)

Godfrey, M. and Zou, L. (2005). Using origin analysis to detect merging and
splitting of source code entities. IEEE Transactions on Software Engineering,
pages 166–181. (Cited on page 130.)

Gruschko, B., Kolovos, D. S., and Paige, R. F. (2007). Towards synchronizing
models with evolving metamodels. In CSMR 07: Workshop on Model-Driven
Software Evolution. (Cited on pages 7, 45, 137, 140, 146, and 152.)

Guerrini, G. and Mesiti, M. (2008). X-Evolution: A comprehensive approach
for XML schema evolution. In DEXA 08: 19th International Conference on
Database and Expert Systems Application, pages 251–255. IEEE. (Cited on
pages 7 and 42.)

Guerrini, G., Mesiti, M., and Sorrenti, M. A. (2007). XML schema evolu-
tion: Incremental validation and efficient document adaptation. In Database
and XMLTechnologies, volume 4704 of LNCS, pages 92–106. Springer Berlin /
Heidelberg. (Cited on page 42.)

Gupta, A., Mumick, I. S., and Subrahmanian, V. S. (1993). Maintaining
views incrementally. In International conference on management of data (SIG-
MOD 1993), pages 157–166, New York, NY, USA. ACM. (Cited on pages 105,
145, and 153.)

Hainaut, J.-L., Tonneau, C., Joris, M., and Chandelon, M. (1994). Schema
transformation techniques for database reverse engineering. In Proceedings
of the 12th Intl. Conf. on the Entity-Relationship Approach (ER 1993), pages 364–
375, London, UK. Springer-Verlag. (Cited on page 105.)

Halevy, A. Y. (2001). Answering queries using views: A survey. The VLDB
Journal, 10:270–294. (Cited on page 30.)

181

Bibliography

Hearnden, D., Lawley, M., and Raymond, K. (2006). Incremental model
transformation for the evolution of model-driven systems. In Models in Soft-
ware Engineering, volume 4199 of LNCS, pages 321–335. Springer. (Cited on
page 146.)

Herrmannsdoerfer, M., Benz, S., and Juergens, E. (2008). Automatability of
coupled evolution of metamodels and models in practice. In MODELS 08:
Model Driven Engineering Languages and Systems, volume 5301 of LNCS, pages
645–659. Springer Berlin / Heidelberg. (Cited on pages 43, 61, and 62.)

Herrmannsdoerfer, M., Benz, S., and Juergens, E. (2009). COPE - automating
coupled evolution of metamodels and models. In ECOOP 2009 - Object-
Oriented Programming. Springer. (Cited on pages 10, 46, 57, 58, 61, 62, 65, 67,
69, 71, 73, 75, 78, 80, 106, and 161.)

Herrmannsdoerfer, M., Ratiu, D., and Wachsmuth, G. (2010a). Language
evolution in practice: The history of GMF. In Software Language Engineering,
volume 5969 of LNCS, pages 3–22. Springer Berlin / Heidelberg. (Cited on
pages 46, 61, 62, 65, 67, 69, 71, 73, 75, 78, 80, and 133.)

Herrmannsdoerfer, M., Vermolen, S. D., and Wachsmuth, G. (2010b). An
extensive catalog of operators for the coupled evolution of metamodels and
models. In Software Language Engineering, Third International Conference (SLE
2010), LNCS. Springer. (Cited on pages 13 and 47.)

Herrmannsdoerfer, M., Vermolen, S. D., and Wachsmuth, G. (2011). Cou-
pled software language evolution – a survey across technical spaces –. ACM
Computing Surveys. Submitted for publication. (Cited on page 13.)

Herrmannsdörfer, M. (2007). Metamodels and models. Master’s thesis,
München University of technology, München, Germany. (Cited on page 153.)

Hibernate (2008). Relational persistence for Java and .NET.
http://www.hibernate.org. (Cited on pages 10 and 142.)

Hilderman, R. and Peckham, T. (2007). Statistical methodologies for mining
potentially interesting contrast sets. In Quality Measures in Data Mining, vol-
ume 43 of Studies in Computational Intelligence, pages 153–177. Springer Berlin
/ Heidelberg. (Cited on page 50.)

Hößler, J., Soden, M., and Eichler, H. (2005). Coevolution of models, meta-
models and transformations. In Bab, S., Gulden, J., Noll, T., and Wieczorek,
T., editors, Models and Human Reasoning, pages 129–154, Berlin. Wissenschaft
und Technik Verlag. (Cited on pages 46, 106, 134, 141, and 146.)

Janssen, N. (2005). Transformation tool composition. Master’s thesis, In-
stitute of Information and Computing Sciences Utrecht University, Utrecht,
The Netherlands. (Cited on page 141.)

182

Bibliography

Jürgens, E. and Pizka, M. (2006). The language evolver lever – tool demon-
stration –. Electronic Notes in Theoretical Computer Science, 164(2):55–60. LDTA
06: Proceedings of the Sixth Workshop on Language Descriptions, Tools, and
Applications. (Cited on pages 7, 39, and 161.)

Kats, L. C. L., Kalleberg, K. T., and Visser, E. (2009). Domain-specific lan-
guages for composable editor plugins. In Proceedings of the Ninth Workshop on
Language Descriptions, Tools, and Applications (LDTA 2009), Electronic Notes
in Theoretical Computer Science. Elsevier Science Publishers. (Cited on
page 103.)

Kim, W. (1990). Introduction to object-oriented databases. MIT Press. (Cited on
page 29.)

Kim, W. and Chou, H.-T. (1988). Versions of schema for object-oriented
databases. In VLDB ’88: Proceedings of the 14th International Conference on Very
Large Data Bases, pages 148–159. Morgan Kaufmann Publishers Inc. (Cited
on pages 35 and 49.)

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic
literature reviews in software engineering. Technical Report EBSE 2007-001,
Keele University and Durham University Joint Report. (Cited on pages 17,
20, 22, and 155.)

Kleppe, A. (2008). Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Addison-Wesley Professional. (Cited on
page 15.)

Kniesel, G. and Koch, H. (2004). Static composition of refactorings. Science of
Computer Programming, 52(1-3):9–51. (Cited on page 123.)

Kolovos, D., Di Ruscio, D., Pierantonio, A., and Paige, R. (2009). Different
models for model matching: An analysis of approaches to support model
differencing. In Comparison and Versioning of Software Models, 2009. CVSM
’09. ICSE Workshop on, pages 1–6. (Cited on pages 114 and 131.)

Kurtev, I., Bézivin, J., and Aksit, M. (2002). Technological spaces: An initial
appraisal. In CoopIS, DOA Federated Conferences. (Cited on pages 6 and 16.)

Lämmel, R. (2001). Grammar adaptation. In FME 2001: Formal Methods for In-
creasing Software Productivity, volume 2021 of LNCS, pages 550–570. Springer
Berlin / Heidelberg. (Cited on pages 39, 46, 63, 73, and 161.)

Lämmel, R. (2004). Coupled software transformations - extended abstract.
In First International Workshop on Software Evolution Transformations. (Cited on
pages 4, 16, 20, 105, 137, and 146.)

183

Bibliography

Lämmel, R. and Lohmann, W. (2001). Format evolution. In RETIS 01: Proc.
7th International Conference on Reverse Engineering for Information Systems, vol-
ume 155 of books@ocg.at, pages 113–134. OCG. (Cited on pages 42, 106, 137,
138, 145, and 153.)

Lämmel, R. and Zaytsev, V. (2009a). An introduction to grammar conver-
gence. In IFM 09: Proceedings of the 7th International Conference on Integrated
Formal Methods, pages 246–260. Springer-Verlag. (Cited on pages 39 and 161.)

Lämmel, R. and Zaytsev, V. (2009b). Recovering grammar relationships for
the Java language specification. In SCAM ’09: Proceedings of the 2009 Ninth
IEEE International Working Conference on Source Code Analysis and Manipula-
tion, pages 178–186. IEEE Computer Society. (Cited on pages 39, 81, and 161.)

Lautemann, S.-E. (1996). An introduction to schema versioning in OODBMS.
In DEXA 96: Proceedings of the 7th International Workshop on Database and Ex-
pert Systems Applications, pages 132–139. IEEE Computer Society. (Cited on
page 35.)

Lautemann, S.-E. (1997). A propagation mechanism for populated schema
versions. In ICDE 97: Proceedings of the Thirteenth International Conference on
Data Engineering, pages 67–78. IEEE Computer Society. (Cited on pages 35

and 49.)

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C.,
Nordstrom, G., Sprinkle, J., and Volgyesi, P. (2001). The Generic Modeling
Environment. In WISP: Workshop on Intelligent Signal Processing, volume 17.
(Cited on page 43.)

Lehman, M. M. and Belady, L. A. (1985). Program evolution: processes of soft-
ware change. Academic Press Professional, Inc., San Diego, CA, USA. (Cited
on page 4.)

Lerner, B. S. (1997). TESS: automated support for the evolution of persistent
types. In ASE 97: Proceedings of the 12th international conference on Automated
software engineering (formerly: KBSE), pages 172–181. IEEE Computer Society.
(Cited on page 34.)

Lerner, B. S. (2000). A model for compound type changes encountered
in schema evolution. ACM Trans. Database Syst., 25(1):83–127. (Cited on
pages 31 and 34.)

Lerner, B. S. and Habermann, A. N. (1990). Beyond schema evolution to
database reorganization. SIGPLAN Not., 25(10):67–76. (Cited on page 34.)

Li, X. (1999). A survey of schema evolution in object-oriented databases. In
TOOLS 31: Technology of Object-Oriented Languages and Systems, pages 362–
371. IEEE. (Cited on page 37.)

184

Bibliography

Lin, Y., Gray, J., and Jouault, F. (2007). DSMDiff: a differentiation tool for
domain-specific models. European Journal of Information Systems, 16(4):349–
361. (Cited on page 130.)

Liu, C.-T., Chrysanthis, P. K., and Chang, S.-K. (1993). Schema evolution
through changes to ER diagrams. J. Inf. Sci. Eng., 9(4):657–683. (Cited on
pages 36 and 49.)

Liu, C.-T., Chrysanthis, P. K., and Chang, S.-K. (1994). Database schema
evolution through the specification and maintenance of changes on entities
and relationships. In ER 94: Business Modelling and Re-Engineering, 13th Inter-
national Conference on the Entity-Relationship Approach, volume 881 of LNCS,
pages 132–151. Springer. (Cited on pages 36 and 49.)

Lopes, D., Hammoudi, S., and Abdelouahab, Z. (2006). Schema matching
in the context of model driven engineering: From theory to practice. In
Advances in Systems, Computing Sciences and Software Engineering, pages 219–
227. Springer. (Cited on pages 114 and 131.)

Mens, T. and Van Gorp, P. (2006). A taxonomy of model transformation.
Electron. Notes Theor. Comput. Sci., 152:125–142. (Cited on page 44.)

Meyer, B. (1996). Schema evolution: Concepts, terminology, and solutions.
Computer, 29(10):119–121. (Cited on page 37.)

Monk, S. and Sommerville, I. (1993). Schema evolution in OODBs using class
versioning. SIGMOD Rec., 22(3):16–22. (Cited on pages 35 and 37.)

Monk, S. R. and Sommerville, I. (1992). A model for versioning of classes
in object-oriented databases. In BNCOD 10: Proceedings of the 10th British
National Conference on Databases, volume 618 of LNCS, pages 42–58. Springer
Berlin / Heidelberg. (Cited on pages 35 and 49.)

Narayanan, A., Levendovszky, T., Balasubramanian, D., and Karsai, G.
(2009). Automatic domain model migration to manage metamodel evolu-
tion. In Model Driven Engineering Languages and Systems, volume 5795 of
LNCS, pages 706–711. Springer Berlin / Heidelberg. (Cited on pages 44

and 81.)

Nguyen, G. T. and Rieu, D. (1989). Schema evolution in object-oriented
database systems. Data Knowl. Eng., 4(1):43–67. (Cited on page 32.)

Object Management Group (2006). Meta Object Facility (MOF) core speci-
fication version 2.0. http://www.omg.org/spec/MOF/2.0/. (Cited on
pages 43, 58, 59, 80, 81, 132, 152, and 160.)

Object Management Group (2007). MOF QVT Final Adopted Specification.
(Cited on page 152.)

185

http://www.omg.org/spec/MOF/2.0/

Bibliography

Ohst, D., Welle, M., and Kelter, U. (2003). Differences between versions of
uml diagrams. In Proceedings of the 9th European software engineering conference,
ESEC/FSE-11, pages 227–236. ACM. (Cited on page 130.)

Overbey, J. L. and Johnson, R. E. (2009). Regrowing a language: refactoring
tools allow programming languages to evolve. In OOPSLA ’09: Proceeding
of the 24th ACM SIGPLAN conference on Object oriented programming systems
languages and applications, pages 493–502. ACM. (Cited on page 39.)

Paige, R. F., Brooke, P. J., and Ostroff, J. S. (2007). Metamodel-based model
conformance and multiview consistency checking. ACM Transactions on Soft-
ware Engineering Methodologies, 16. (Cited on page 2.)

Penney, D. J. and Stein, J. (1987). Class modification in the GemStone object-
oriented DBMS. In OOPSLA ’87: Conference proceedings on Object-oriented
programming systems, languages and applications, pages 111–117. ACM. (Cited
on page 32.)

Pizka, M. and Jürgens, E. (2007a). Automating language evolution. In TASE
07: Proceedings of the First Joint IEEE/IFIP Symposium on Theoretical Aspects
of Software Engineering, pages 305–315. IEEE Computer Society. (Cited on
pages 39 and 161.)

Pizka, M. and Jürgens, E. (2007b). Tool supported multi level language evo-
lution. In In Proceedings of SVM’07: Software and Services Variability Manage-
ment Workshop Concepts, Models and Tools. (Cited on pages 39, 105, 137, 146,
and 161.)

Pons, A. and Keller, R. (1997). Schema evolution in object databases by cat-
alogs. In IDEAS 97: Database Engineering and Applications Symposium, pages
368–376. (Cited on pages 37, 61, 65, 67, 69, 71, 73, 75, and 78.)

Ra, Y.-G. and Rundensteiner, E. A. (1995a). Towards supporting hard schema
changes in TSE. In CIKM ’95: Proceedings of the fourth international conference
on Information and knowledge management, pages 290–295. ACM. (Cited on
pages 36 and 49.)

Ra, Y.-G. and Rundensteiner, E. A. (1995b). A transparent object-oriented
schema change approach using view evolution. In ICDE ’95: Proceedings of
the Eleventh International Conference on Data Engineering, pages 165–172. IEEE
Computer Society. (Cited on pages 36 and 49.)

Ra, Y.-G. and Rundensteiner, E. A. (1997). A transparent schema-evolution
system based on object-oriented view technology. IEEE Trans. on Knowl. and
Data Eng., 9(4):600–624. (Cited on pages 36 and 49.)

Rahm, E. and Bernstein, P. (2001). A survey of approaches to automatic
schema matching. the VLDB Journal, 10(4):334–350. (Cited on page 131.)

186

Bibliography

Rashid, A. and Sawyer, P. (2000). Object database evolution using separation
of concerns. SIGMOD Rec., 29(4):26–33. (Cited on pages 10, 35, and 49.)

Rashid, A. and Sawyer, P. (2005). A database evolution taxonomy for object-
oriented databases: Research articles. J. Softw. Maint. Evol., 17(2):93–141.
(Cited on pages 8, 10, 16, 32, and 35.)

Roddick, J. F. (1992). Schema evolution in database systems: an annotated
bibliography. SIGMOD Rec., 21(4):35–40. (Cited on pages 7, 8, 16, and 29.)

Roddick, J. F. (1995). A survey of schema versioning issues for database sys-
tems. Information and Software Technology, 37(7):383 – 393. (Cited on pages 30,
32, and 37.)

Ronström, M. (2000). On-line schema update for a telecom database. In Data
Engineering, 2000. Proceedings. 16th International Conference on, pages 329–338.
IEEE. (Cited on page 30.)

Rose, L. M., Kolovos, D. S., Paige, R. F., and Polack, F. A. (2010). Model
migration with Epsilon Flock. In ICMT 10: Third International Conference on
Theory and Practice of Model Transformations, pages 184–198. Springer. (Cited
on pages 44 and 134.)

Rose, L. M., Paige, R. F., Kolovos, D. S., and Polack, F. A. (2009). An analysis
of approaches to model migration. In Proc. Models and Evolution (MoDSE-
MCCM) Workshop, 12th ACM/IEEE International Conference on Model Driven
Engineering, Languages and Systems, pages 6–15. (Cited on pages 8, 16, 39, 41,
44, 49, and 58.)

Shneiderman, B. and Thomas, G. (1982). An architecture for automatic rela-
tional database system conversion. ACM Trans. Database Syst., 7(2):235–257.
(Cited on page 30.)

Shvaiko, P. and Euzenat, J. (2005). A survey of schema-based matching ap-
proaches. In Journal on Data Semantics IV, volume 3730 of LNCS, pages 146–
171. Springer Berlin / Heidelberg. (Cited on page 131.)

Sjøberg, D. (1992). Measuring schema evolution. Technical report, Techni-
cal report No. FIDE/92/36. FIDE, Dept. Computing Science, University of
Glasgow, Glasgow, G12. (Cited on page 29.)

Sjøberg, D. (1993). Quantifying schema evolution. Information and Software
Technology, 35(1):35–44. (Cited on page 29.)

Skarra, A. H. and Zdonik, S. B. (1986). The management of changing types in
an object-oriented database. In OOPLSA ’86: Conference proceedings on Object-
oriented programming systems, languages and applications, pages 483–495. ACM.
(Cited on pages 35 and 49.)

187

Bibliography

Sockut, G. H. and Goldberg, R. P. (1979). Database reorganization—
principles and practice. ACM Comput. Surv., 11(4):371–395. (Cited on
page 31.)

Soley, R. et al. (2000). Model driven architecture. OMG white paper 308.
(Cited on page 147.)

Sprinkle, J. and Karsai, G. (2004). A domain-specific visual language for
domain model evolution. Journal of Visual Languages and Computing, 15(3-
4):291–307. (Cited on page 44.)

Sprinkle, J. M. (2003). Metamodel driven model migration. PhD thesis, Vander-
bilt University. (Cited on pages 4, 7, 31, 44, and 109.)

Staples, M. and Niazi, M. (2007). Experiences using systematic review guide-
lines. J. Syst. Softw., 80:1425–1437. (Cited on page 22.)

Staudt, B. J., Krueger, C. W., and Garlan, D. (1987). A structural approach to
the maintenance of structure-oriented environments. In SDE 2: Proceedings of
the second ACM SIGSOFT/SIGPLAN software engineering symposium on practical
software development environments, pages 160–170. ACM. (Cited on pages 7,
39, and 161.)

Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2009). EMF:
Eclipse Modeling Framework 2.0. Addison-Wesley. (Cited on pages 43, 59, 132,
and 160.)

Street, J. A. and Pettit, R. G. (2005). The impact of UML 2.0 on existing UML
1.4 models. In Model Driven Engineering Languages and Systems, volume 3713

of LNCS, pages 431–444. Springer Berlin / Heidelberg. (Cited on page 43.)

Su, H., Kramer, D., Chen, L., Claypool, K. T., and Rundensteiner, E. A. (2001).
XEM: Managing the evolution of XML documents. In Eleventh International
Workshop on Research Issues in Data Engineering on Document Management for
Data Intensive Business and Scientific Applications, pages 103–110. IEEE Com-
puter Society. (Cited on pages 7 and 42.)

Sun, X. L. and Rose, E. (2003). Automated schema matching techniques: An
exploratory study. Research Letters in the Information and Mathematical Science,
4:113–136. (Cited on pages 109 and 131.)

Tan, M. and Goh, A. (2005). Keeping pace with evolving XML-Based spec-
ifications. In EDBT 2004 Workshops: Current Trends in Database Technology,
volume 3268 of LNCS, pages 280–288. Springer Berlin / Heidelberg. (Cited
on page 41.)

Tresch, M. and Scholl, M. H. (1993). Schema transformation without database
reorganization. SIGMOD Rec., 22(1):21–27. (Cited on pages 36 and 49.)

188

Bibliography

Tu, Q. and Godfrey, M. (2002). An integrated approach for studying architec-
tural evolution. In Program Comprehension, 2002. Proceedings. 10th International
Workshop on, pages 127–136. (Cited on page 130.)

van Sterkenburg, P. (2003). A practical guide to lexicography. John Benjamins
Publishing Co. (Cited on page 19.)

Ventrone, V. and Heiler, S. (1991). Semantic heterogeneity as a result of
domain evolution. SIGMOD Rec., 20(4):16–20. (Cited on page 32.)

Vermolen, S. (2008). Software language evolution. In WCRE ’08: Proceedings
of the 2008 15th Working Conference on Reverse Engineering, pages 323–326,
Washington, DC, USA. IEEE Computer Society. (Cited on page 14.)

Vermolen, S. D. and Visser, E. (2008). Heterogeneous coupled evolution of
software languages. In Model Driven Engineering Languages and Systems (Mod-
els 2008), volume 5301 of LNCS, pages 630–644. Springer. (Cited on pages 14

and 37.)

Vermolen, S. D., Wachsmuth, G., and Visser, E. (2011). Generating database
migrations for evolving web applications. In Denney, E. and Schultz, U. P.,
editors, Generative Programming and Component Engineering, 7th International
Conference, GPCE 2011, Portland, OR, USA, October 22-23, 2011, Proceedings.
ACM. (Cited on page 13.)

Vermolen, S. D., Wachsmuth, G., and Visser, E. (2012). Reconstructing com-
plex metamodel evolution. In Software Language Engineering, Fourth Interna-
tional Conference, SLE 2011, Braga, Portugal, Revised Selected Papers, Lecture
Notes in Computer Science. Springer Berlin / Heidelberg. To Appear. (Cited
on page 14.)

Visser, E. (1997). Syntax Definition for Language Prototyping. PhD thesis, Uni-
versity of Amsterdam. (Cited on page 146.)

Visser, E. (2004). Program transformation with Stratego/XT: Rules, strate-
gies, tools, and systems in StrategoXT-0.9. In Lengauer, C. et al., editors,
Domain-Specific Program Generation, volume 3016 of LNCS, pages 216–238.
Spinger. (Cited on pages 132 and 142.)

Visser, E. (2008a). WebDSL: A case study in domain-specific language engi-
neering. In Lammel, R., Saraiva, J., and Visser, J., editors, Generative and Trans-
formational Techniques in Software Engineering (GTTSE 2007), LNCS. Springer.
(Cited on pages 3, 83, 85, 132, 142, and 154.)

Visser, J. (2008b). Coupled transformation of schemas, documents, queries,
and constraints. Electron. Notes Theor. Comput. Sci., 200(3):3–23. (Cited on
pages 4, 16, 20, and 106.)

189

Bibliography

Wachsmuth, G. (2007a). An adaptation browser for MOF. In WRT’01: First
Workshop on Refactoring Tools, pages 65–66. (Cited on page 80.)

Wachsmuth, G. (2007b). Metamodel adaptation and model co-adaptation.
In ECOOP 2007 - Object-Oriented Programming, volume 4609 of LNCS, pages
600–624. Springer Berlin / Heidelberg. (Cited on pages 6, 45, 46, 57, 58, 60,
63, 65, 67, 69, 71, 73, 75, 78, 106, 134, 137, 146, 152, and 153.)

Walmsley, P. (2001). Definitive XML Schema. Prentice Hall PTR. (Cited on
page 40.)

Xing, Z. and Stroulia, E. (2005). Umldiff: an algorithm for object-oriented
design differencing. In Proceedings of the 20th IEEE/ACM international Confer-
ence on Automated software engineering, ASE ’05, pages 54–65. ACM. (Cited on
pages 114 and 130.)

Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., and Mei, H. (2007). Towards
automatic model synchronization from model transformations. In Automated
Software Engineering (ASE 2007), pages 164–173, New York, NY, USA. ACM.
(Cited on page 146.)

Zicari, R. (1991). A framework for schema updates in an object-oriented
database system. In Proceedings of the Seventh International Conference on Data
Engineering, pages 2–13. IEEE. (Cited on page 34.)

190

Samenvatting

S O F T WA R E TA A L E V O L U T I E
– Sander D. Vermolen –

Een groot deel van de informatica richt zich op de ontwikkeling van ap-
plicaties. Dit kunnen reguliere applicaties zijn, die een gebruiker opstart, ge-
bruikt en weer afsluit, maar ook bijvoorbeeld web applicaties, de beheersing
van je printer, of de besturing van een vliegtuig. In hun kern zijn applica-
ties niets meer dan een lange reeks 0-en en 1-en, welke door een computer
worden omgezet naar concrete acties. Ontwikkeling van applicaties omvat
primair het ontwikkelen van zulke reeksen 0-en en 1-en, maar het handmatig
schrijven ervan is onpraktisch, te ingewikkeld en duurt te lang. In de begin-
jaren van de computers was dit handmatig schrijven nog nodig, maar over
de jaren heen zijn er programmeertalen ontwikkeld. Een programmeertaal le-
vert een toegankelijke manier om applicaties, ofwel programma’s te schrijven.
Programma’s lijken vaak op een sterk gestructureerde en beperkte vorm van
de Engelse taal. Een programma in een programmeertaal kan automatisch
vertaald worden naar een reeks 0-en en 1-en die dan weer door een computer
begrepen kunnen worden.

Gelijk aan het breed spectrum van natuurlijke talen, is er een, wellicht nog
breder, spectrum aan programmeertalen. Programmeertalen vertonen over
het algemeen grote verschillen. Als hetzelfde programma geschreven wordt
in twee verschillende programmeertalen, dan zal het er hoogst waarschijnlijk
anders uitzien. Net als dat een boek in de Nederlandse taal eenvoudig te
onderscheiden is van hetzelfde boek in de Franse taal. Ze gebruiken andere
woorden en een andere grammatica, of in bredere zin, een andere ’structuur’.
Waar we bij een natuurlijke tekst zouden zeggen dat deze “in het Nederlands
is geschreven”, zeggen we dat een programma conformeert aan zijn program-
meertaal.

Een veel gebruikte term voor computerprogramma’s is software. Het ge-
bruik van deze term is niet geheel juist. Alhoewel een computer programma
een variant software is, beslaat de term software een breder domein. Software
is de tegenhanger van hardware en slaat op informatie (gewoonlijk computer-
gerelateerd) die eenvoudig te wijzigen is. Dit is een breed domein en omvat
bijvoorbeeld ook foto’s, films, gegevens die je verstuurt via internet, een tekst-
document, enzovoorts. Al deze software heeft gemeen dat ze een bepaalde
structuur hebben: Voor foto’s en films zijn er verschillende bestandsformaten,
voor informatie die je verstuurt via internet gelden zogenaamde protocollen
die exact vastleggen hoe de gegevens eruit moeten zien, een tekst document
is gewoonlijk geschreven in Engelse tekens, enzovoorts. Net als dat een pro-
grammeertaal de structuur van een programma vastlegt, legt een softwaretaal

191

Samenvatting

in bredere zin, de structuur van een stuk software vast. We zeggen dat soft-
ware conformeert aan een softwaretaal.

Eén van de belangrijke eigenschappen van software is dat het eenvoudig
te veranderen is. Dit heeft als direct gevolg dat het daadwerkelijk vaak ver-
andert. Programma’s veranderen bijvoorbeeld als er fouten in gerepareerd
moeten worden, of als er functionaliteit moet worden toegevoegd. Verande-
ring van software vindt over het algemeen over een langere periode en in veel
stappen plaats. We spreken dan van software evolutie.

Net als software, veranderen software talen ook. Betere inzichten en tech-
nische ontwikkeling maken het vaak nodig om een taal aan te passen. Bij
natuurlijke talen zien we hetzelfde proces: Het Nederlandsch van de middel-
eeuwen is anders dan het hedendaags Nederlands. De evolutie binnen de in-
formatica vindt echter vele malen sneller plaats dan de evolutie bij natuurlijke
talen. We spreken meestal over maanden of weken in de informatica, waar
we over eeuwen spreken bij natuurlijke taal. Evolutie van een softwaretaal,
heeft als gevolg dat bestaande software niet meer conformeert aan de taal. De
software wordt daardoor moeilijk leesbaar. Immers, het lezen van een mid-
deleeuws boek is voor ons lastiger dan het lezen van een hedendaagse tekst.
Voor software, waar taal regels veel strikter worden gehanteerd, is software
met een geëvolueerde taal, niet meer bruikbaar.

Om de gevolgen van softwaretaal evolutie tegen te gaan, moet software
vertaald worden van de oude taal-variant naar de nieuwe taal-variant. We
noemen dit migratie. Migratie kan handmatig uitgevoerd worden als de ver-
andering van de taal bekend is. Maar vaak is de software is te groot voor een
handmatige migratie. Daarom worden er programma’s geschreven die de mi-
gratie uitvoeren. Het schrijven van zulke programma’s is veel werk. Evolutie
wordt daarom vaak zoveel mogelijk voorkomen. Het tegengaan, of vermijden
van evolutie van een taal heeft echter tot gevolg dat de kwaliteit van de taal
langzaamaan afneemt. Het wordt steeds lastiger om software te schrijven en
te verwerken. Een betere ondersteuning voor de evolutie van software talen
voorkomt dit.

Een van de aanpakken om softwaretaal evolutie beter te ondersteunen is
gekoppelde evolutie. Hierbij worden vaak-voorkomende softwaretaal evo-
lutiepatronen gekoppeld aan geschikte migraties (vertalingen) van software.
Met gekoppelde evolutie kunnen evolutiestappen tegelijk met de migratie
worden toegepast. Dit vereenvoudigt het proces en biedt de mogelijkheid
om zulke koppelingen te hergebruiken als in de toekomst een soortgelijke
evolutiestap optreed.

Gekoppelde evolutie van software en software talen komt voor in verschil-
lende domeinen van de informatica: In de programmaontwikkeling vereist
een evolutie van programmeertalen een migratie van programma’s; in de da-
taverwerking vereist evolutie van datamodellen een migratie van databases;
en in de modellering vereist evolutie van metamodellen een migratie van mo-
dellen.

192

Samenvatting

Dit proefschrift bespreekt verschillende onderwerpen in de context van ge-
koppelde evolutie van software talen en software in verschillende domeinen
van de informatica. Het richt zich op vragen als: Hoe evolueert een software-
taal? Hoe kunnen we softwaretaal evoluties koppelen aan software migraties?
Hoe kunnen we een gepasseerde softwaretaal evolutie reconstrueren? En hoe
kunnen we het softwaretaal evolutie probleem generaliseren over de verschil-
lende domeinen?

Naast een aantal wetenschappelijke publicaties en nieuwe inzichten in ge-
koppelde evolutie van software talen en software, heeft het onderzoek gere-
sulteerd in een tool set voor gekoppelde evolutie van web applicaties en hun
databases, genaamd Acoda6. Daarnaast heeft het onderzoek verschillende
case studies opgeleverd, welke concrete en realistische informatie bieden over
softwaretaal evolutie in de praktijk.

6http://swerl.tudelft.nl/bin/view/Acoda

193

Curriculum Vitae

P E R S O N A L D ATA

Full name Sander Daniël Vermolen
Date of Birth 19

th September 1984

Place of Birth Arnhem, The Netherlands

E D U C AT I O N

Ph.D. in Computer Science (2007 – 2012)
Delft University of Technology

M.Sc. in Computer Science (2005 – 2007)
Radboud University Nijmegen & Engineering College of Aarhus
Graduated with Honors

B.Sc. in Computer Science (2002 – 2005)
Radboud University Nijmegen
Graduated with Honors

E M P L O Y M E N T

2003 – 2007 Taught various courses at Radboud University Nijmegen
Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135,
6525 AJ Nijmegen, The Netherlands.

2007 – 2011 Assistent In Opleiding (AIO), Research Trainee
Software Technology Department, Delft University of Technology, Mekel-
weg 4, 2628 CD Delft, The Netherlands.

From 2012 Design Engineer – Development & Engineering
Software Metrology, ASML, De Run 6501, 5504 DR Veldhoven, The
Netherlands.

195

Titles in the IPA Dissertation Series

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty
of Science, UU. 2006-01

R.J. Corin. Analysis Models for Secu-
rity Protocols. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fac-
ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of
Hybrid Systems. Faculty of Mathe-
matics and Computer Science and
Faculty of Mechanical Engineering,
TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty of
Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking
Timed Automata - Techniques and
Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences,
VUA. 2006-07

C.-B. Breunesse. On JML: top-
ics in tool-assisted verification of JML
programs. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-08

B. Markvoort. Towards Hybrid Molec-
ular Simulations. Faculty of Biomedi-
cal Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adapta-
tion of Concerns in a Shared Data Space.
Faculty of Mathematics and Com-
puter Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermin-
istic and Probabilistic Choices. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic. Fac-
ulty of Sciences, Division of Math-
ematics and Computer Science,
VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-17

197

Titles in the IPA Dissertation Series

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising In-
terface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.
Faculty of Mathematics and Com-
puter Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Imple-
mentation and Composition. Faculty of
Mathematics and Natural Sciences,
UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natu-
ral Sciences, Mathematics, and Com-
puter Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for stream-
ing DSP applications. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous Dis-
tributed Systems. Faculty of Math-
ematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Alge-
bra. Faculty of Natural Sciences,
Mathematics, and Computer Sci-
ence, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and

Coverage. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-09

A. van Weelden. Putting types
to good use. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Processes.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2007-11

R. Boumen. Integration and Test plans
for Complex Manufacturing Systems.
Faculty of Mechanical Engineering,
TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series of

198

Titles in the IPA Dissertation Series

Empirical Studies about the UML. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Deliv-
ery. Faculty of Natural Sciences,
Mathematics, and Computer Sci-
ence,UvA. 2007-15

B.S. Graaf. Model-Driven Evolu-
tion of Software Architectures. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of
Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2007-19

W. Pieters. La Volonté Machinale:
Understanding the Electronic Voting
Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Id-
iomatic Crosscutting Concerns in Em-
bedded Systems. Faculty of Electri-
cal Engineering, Mathematics, and
Computer Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in

Source Code. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of High-
tech Multi-disciplinary Systems. Fac-
ulty of Mechanical Engineering,
TU/e. 2008-05

M. Bravenboer. Exercises in Free Syn-
tax: Syntax Definition, Parsing, and
Assimilation of Language Conglomer-
ates. Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Verifica-
tion of Optimistic Fair Exchange Proto-
cols. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical En-
gineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.
Faculty of Mathematics and Com-
puter Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Speci-
fications Using Context-Sensitive Wild-

199

Titles in the IPA Dissertation Series

cards. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-14

P. E. A. Dürr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-15

E.M. Bortnik. Formal Methods
in Support of SMC Design. Fac-
ulty of Mechanical Engineering,
TU/e. 2008-16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent
Stream Processing Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applications.
Faculty of Mathematics and Com-
puter Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Exper-
imental Aspects of Pattern Evaluation.
Faculty of Mathematics and Natural
Sciences, UL. 2008-22

R. Brijder. Models of Natural Compu-
tation: Gene Assembly and Membrane
Systems. Faculty of Mathematics and
Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty of
Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Devel-
opment. Faculty of Mathematics and
Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochas-
tic Time in Process Algebras for Per-
formance Evaluation. Faculty of
Mathematics and Computer Science,
TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from
Noisy Data Theory and Applications.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Pro-
visioning. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,

200

Titles in the IPA Dissertation Series

Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Systems.
Faculty of Mathematics and Com-
puter Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Appli-
cations. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electri-
cal Engineering, Mathematics, and
Computer Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Dig-
ital Exchange. Faculty of Math-
ematics and Computer Science,
TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping
Trust Management. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2009-17

C. Kaliszyk. Correctness and Avail-
ability: Building Computer Algebra on
top of Proof Assistants and making
Proof Assistants available over the Web.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of

201

Titles in the IPA Dissertation Series

Science, Mathematics and Computer
Science, RU. 2009-19

B. Ploeger. Improved Verification
Methods for Concurrent Systems. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and
Analysis of Probabilistic Models.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2009-21

R. Li. Mixed-Integer Evolution Strate-
gies for Parameter Optimization and
Their Applications to Medical Image
Analysis. Faculty of Mathematics
and Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks.
Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty of
Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2009-26

J.F.J. Laros. Metrics and Visualisa-
tion for Crime Analysis and Genomics.
Faculty of Mathematics and Natural
Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Electri-
cal Engineering, Mathematics, and
Computer Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking
Nondeterministic and Randomly Timed

Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented
Languages. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Sci-
ence, UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML
Modeling on the Quality of Software.
Faculty of Mathematics and Natural
Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of
Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Dis-
covery of Knowledge - Foundations, Im-
plementations and Applications. Fac-
ulty of Mathematics and Natural
Sciences, UL. 2010-09

D. Costa. Formal Models for Compo-
nent Connectors. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Fac-
ulty of Mathematics and Natural
Sciences, UL. 2010-11

202

Titles in the IPA Dissertation Series

R. Bakhshi. Gossiping Models: For-
mal Analysis of Epidemic Protocols.
Faculty of Sciences, Department of
Computer Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty of
Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2011-03

L. Astefanoaei. An Executable The-
ory of Multi-Agent Systems Refine-
ment. Faculty of Mathematics and
Natural Sciences, UL. 2011-04

J. Proença. Synchronous coordination
of distributed components. Faculty of
Mathematics and Natural Sciences,
UL. 2011-05

A. Moralı. IT Architecture-Based Con-
fidentiality Risk Assessment in Net-
works of Organizations. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2011-06

M. van der Bijl. On changing mod-
els in Model-Based Testing. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis
of Information Leakage in Probabilistic
and Nondeterministic Systems. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2011-09

M. Atif. Formal Modeling and Verifi-
cation of Distributed Failure Detectors.

Faculty of Mathematics and Com-
puter Science, TU/e. 2011-10

P.J.A. van Tilburg. From Computabil-
ity to Executability – A process-theoretic
view on automata theory. Faculty of
Mathematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration management
for models: Generic methods for model
comparison and model co-evolution.
Faculty of Mathematics and Com-
puter Science, TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty of
Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition
Model: Achieving Naturalness in Run-
time Enforcement. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2011-14

M. Raffelsieper. Cell Libraries
and Verification. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow
and Visibility on Triangulated Terrains.
Faculty of Mathematics and Com-
puter Science, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for
Quality of Service of Component Con-
nectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-17

R. Middelkoop. Capturing and
Exploiting Abstract Views of States
in OO Verification. Faculty of
Mathematics and Computer Science,
TU/e. 2011-18

M.F. van Amstel. Assessing and Im-
proving the Quality of Model Transfor-

203

Titles in the IPA Dissertation Series

mations. Faculty of Mathematics and
Computer Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Science,
Mathematics and Computer Science,
RU. 2011-20

H.J.S. Basten. Ambiguity Detection
for Programming Language Grammars.
Faculty of Science, UvA. 2011-21

M. Izadi. Model Checking of
Component Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-22

L.C.L. Kats. Building Blocks for
Language Workbenches. Faculty
of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2011-23

S. Kemper. Modelling and Analy-
sis of Real-Time Coordination Patterns.
Faculty of Mathematics and Natural
Sciences, UL. 2011-24

J. Wang. Spiking Neural P Systems.
Faculty of Mathematics and Natural
Sciences, UL. 2011-25

A. Khosravi. Optimal Geomet-
ric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2012-01

A. Middelkoop. Inference of Pro-
gram Properties with Attribute Gram-
mars, Revisited. Faculty of Science,
UU. 2012-02

Z. Hemel. Methods and Techniques
for the Design and Implementation

of Domain-Specific Languages. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2012-03

T. Dimkov. Alignment of Organi-
zational Security Policies: Theory and
Practice. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2012-04

S. Sedghi. Towards Provably Se-
cure Efficiently Searchable Encryption.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2012-05

F. Heidarian Dehkordi. Studies
on Verification of Wireless Sensor Net-
works and Abstraction Learning for
System Inference. Faculty of Science,
Mathematics and Computer Science,
RU. 2012-06

K. Verbeek. Algorithms for Car-
tographic Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2012-07

D.E. Nadales Agut. A Composi-
tional Interchange Format for Hybrid
Systems: Design and Implementation.
Faculty of Mechanical Engineering,
TU/e. 2012-08

H. Rahmani. Analysis of Protein-
Protein Interaction Networks by Means
of Annotated Graph Mining Algo-
rithms. Faculty of Mathematics and
Natural Sciences, UL. 2012-09

S.D. Vermolen. Software Language
Evolution. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2012-10

204

	Preface
	Contents
	Acronyms
	Introduction
	Model-Driven Engineering
	YellowGrass – Two example models
	Coupled Evolution
	Coupled Evolution Spaces
	Problem Statement
	Challenges & Research Questions
	Coupled Evolution Across Technological Spaces
	Coupled Evolution Design
	Coupled Evolution Implications

	Research Methodologies
	Thesis Overview
	Origin of Chapters

	A Survey on Coupled Software Language Evolution
	Introduction
	Terminology
	Publication Selection
	Selection Criteria
	Pilot Study
	Search Strategy
	Selection Results

	Approach Classification
	Grouping Publications to Approaches
	Deriving the Feature Model
	Resulting Feature Model
	Pilot Study
	Classification Results

	Dataware
	Technological Space Specifics
	Relational Dataware
	Object-oriented Dataware
	Intra-Space Interpretations

	Grammarware
	Technological Space Specifics
	Approaches
	Intra-Space Interpretations

	XMLware
	Technological Space Specifics
	Approaches
	Intra-Space Interpretations

	Modelware
	Technological Space Specifics
	Approaches
	Intra-Space Interpretations

	Inter-Space Interpretations
	Common and Uncommon Features
	Feature Portability
	Feature Correlations

	Evaluation
	Publication Selection
	Approach Classification
	Interpretation

	Conclusion

	A Catalog of Coupled Operators
	Introduction
	Metamodeling Formalism
	Metamodel
	Model
	Notational Conventions

	Origins of Coupled Operators
	Literature
	Case Studies

	Classification of Coupled Operators
	Language Preservation
	Model Preservation
	Bidirectionality

	Catalog of Coupled Operators
	Structural Primitives
	Non-structural Primitives
	Specialization / Generalization Operators
	Inheritance Operators
	Delegation Operators
	Replacement Operators
	Merge / Split Operators

	Discussion
	Completeness
	Metamodeling Formalism
	Tool Support

	Conclusion

	Generating Database Migrations for Evolving Web Applications
	Introduction
	WebDSL
	Data modeling
	Object-relational Mapping

	Modeling Data Model Evolution
	Coupled Operators
	Linguistic Integration
	Migration

	Schema Modification
	Property Creation
	Entity Creation

	Conservative Data Migration
	Entity Renaming
	Super Addition
	Entity Extraction
	Maximum Cardinality Generalization
	Property Pull-Up

	Lossy Migration
	Property Collection
	Property Identification

	Implementation
	Discussion
	Related Work
	Changing Persistence Implementation
	Performance & Uptime

	Conclusion

	Reconstructing Complex Metamodel Evolution
	Introduction
	Modeling Metamodel Evolution
	Metamodeling Formalism
	Difference Models
	Evolution Traces

	Reconstructing Primitive Evolution
	Mapping
	Dependencies between Operator Instances
	Dependency Ordering

	Reconstructing Complex Evolution
	Patterns
	Reordering traces
	Normal forms

	Reconstructing Masked Operator Instances
	Masked Operators
	Masked Detection Rules
	Applying Masked Detection Rules

	Related Work
	Matching
	Complex Detection

	Implementation
	Discussion
	Metamodeling Formalism
	Trace Selection
	Completeness
	Performance

	Conclusion

	Heterogeneous Coupled Evolution of Software Languages
	Introduction
	Data Model Evolution
	Coupled Data Evolution
	Defining Data Model Transformations
	Deriving Data Migrations

	Heterogeneous Coupled Transformation
	Horizontal Generalization
	Vertical Generalization

	Generic Architecture
	Deriving Domain Specific Transformation Languages
	Automated Transformation

	Related Work
	Conclusion

	Conclusion
	Summary of Contributions
	Research Questions Revisited
	Evaluation
	Future Research Recommendations
	Metamodeling Formalism
	Coupling Customization
	Implementing Migrations
	Coupled Evolution in the Wild

	Appendix: Case Study YellowGrass
	Context
	Issue tracking in YellowGrass
	YellowGrass.org
	Evolution

	Appendix: Case Study Researchr
	Context
	Researchr.org
	Evolution

	Appendix: Case Study Bugzilla
	Bug tracking in Bugzilla
	Evolution

	Bibliography
	Samenvatting
	Curriculum Vitae
	Titles in the IPA Dissertation Series

