
ar
X

iv
:0

80
8.

03
47

v1
 [

cs
.S

E
]

3
A

ug
 2

00
8

Towards a Process for Developing Maintenance Tools in Academia

Holger M. Kienle and Hausi A. Müller
University of Victoria

Victoria, Canada
{kienle,hausi}@cs.uvic.ca

Abstract

Building of tools—from simple prototypes to industrial-
strength applications—is a pervasive activity in academic
research. When proposing a new technique for software
maintenance, effective tool support is typically required
to demonstrate the feasibility and effectiveness of the ap-
proach. However, even though tool building is both per-
vasive and requiring significant time and effort, it is still
pursued in an ad hoc manner. In fact, little research has ad-
dressed the question how to make tool building in academia
more disciplined, predictable and efficient. In this paper,we
address these issues by proposing a dedicated development
process for tool building that takes the unique characteris-
tics of an academic research environment into account. We
first identify process requirements based on a review of the
literature and our extensive tool building experience in the
domain of maintenance tools. We then outline a process
framework based on work products that accommodates the
requirements while providing needed flexibility for tailoring
the process to account for specific tool building approaches
and project constraints. The work products are concrete
milestones of the process, tracking progress, rationalizing
(design) decisions, and documenting the current state of the
tool building project. Thus, the work products provide im-
portant input for strategic project decisions and rapid initi-
ation of new team members. Leveraging a dedicated tool
building process promises tools that are designed, build,
and maintained in a more disciplined, predictable and ef-
ficient manner.

1. Introduction

Typical research in the domains of software maintenance
and reverse engineering proposes techniques to improve
the comprehension of software systems. In order to eval-
uate a proposed technique and to demonstrate its feasibility
many researchers implement a tool. Such a tool can range
from a simple proof-of-conceptprototype to a fully-fledged,
industrial-strength application.

This paper explores the current state of tool building
practices in academia with the aim to improve upon the
state-of-the-art. This topic is worthwhile to address be-
cause even though tool building is a popular technique to
validate research in software engineering, it is neither sim-
ple nor cheap to accomplish. For example, tools such as
the Rigi and Moose reverse engineering environments re-
quire significant resources to develop and maintain. Rigi is
now being maintained for over a decade and this effort has
been accomplished by a number of students at the Master
and Ph.D. level as well as occasionally by dedicated staff
members. In this context the resulting constant turn-over
of (unexperienced) developers is a concern. Nierstrasz et
al., who have developed the Moose reengineering tool, ob-
serve that “crafting a tool requires engineering expertise
and effort, which consumes valuable research resources”
[30]. The transfer of engineering expertise in the domain of
tool building has to be addressed within each development
project. Furthermore, it also should be addressed within
the tool building community in order to communicate the
state-of-the-art and to further improve upon it. Currently,
the communication of engineering expertise to the commu-
nity is not sufficiently rewarded: research contributions in
conferences and journals are measured by novelty, not by
synthesis of existing work and experiences.

Having a process when building a maintenance tool is
especially desirable if it is a long-running project that has
a significant turnover of (student) developers. For longer-
term research this is often the case. Furthermore, to show
the effectiveness of these tools they should be sufficiently
stable and mature to serve in larger-scale (industrial) user
studies. Building a high-quality tool without following a
process exposes the research project to unnecessary risks.

Improving on the current tool building practice promises
tools that are designed, build, and maintained in a more
disciplined, predictable and efficient manner. Furthermore,
practices can emphasize certain non-functional tool require-
ments such as usability and adoptability, or a certain ap-
proach to tool building such as component-based develop-
ment. In this paper we advocate to employ an explicit tool
building process to raise the state-of-the-art.

http://arxiv.org/abs/0808.0347v1

This paper is organized as follows. Section 2 gives fur-
ther background on tool building in academia, concluding
that it is executed in an ad hoc manner and that a suitable
process can improve upon the state-of-the-art. We explore
then two more disciplined approaches to tool building that
have been pursued in the construction and maintenance of
SHriMP and TkSee. Section 3 presents the requirements
that are desirable for a tool building process in an academic
environment. These requirements have been distilled with
the help of a literature survey as well as from our own tool
building experiences. The identified requirements can, on
the one hand, provide important background information
and constraints for developing an appropriate tool-building
method, and, on the other hand, serve as evaluation criteria
to judge the efficacy of a proposed tool-building method.
Section 4 is a first step towards a dedicated process for
building tools. We advocate a flexible process framework
based on work products that can be easily tailored to ac-
commodate different needs. Importantly, the work products
that we are proposing satisfy our identified process require-
ments. Section 5 closes the paper with conclusions and fu-
ture work.

2. Background and Related Work

Research in tool support for software maintenance is ac-
tively pursued by many academics in software engineering.
In the following, we view such tools asmaintenance tools
that offer functionalities for the comprehension and analysis
of a target system with the goal to support engineers in the
performance of maintenance tasks. Examples of such tools
are software visualizers, bug trackers and slicers as well as
recommender systems, search and metrics engines. In this
paper we focus mostly on reverse engineering and graph-
based software visualization tools because it is our main
expertise and interest. Given that the construction of main-
tenance tools is a pervasive activity in academic research,
surprisingly little work has focused on how tools are built
and how to improve upon the current practice.

Some researchers have published experiences about tool
building. For example, Lanza describes his experiences
with the CodeCrawler software visualizer [22], discussing
CodeCrawler’s architecture (composed of three subsystems:
core, metamodel, and visualization engine), the visualiza-
tion engine (realized by extending the HotDraw frame-
work), and desirable interactive mechanisms for usability.
Furthermore, he distills lessons learned for all of the dis-
cussed issues. He observes that “to our knowledge there
is no explicit work about the implementation and archi-
tecture of reverse engineering tools, and more specifically
about software visualization tools.” Guéhéneuc describes
his use of design patterns and Java language idioms when
constructing the Ptidej tool suite [12]. The special issue
on Experimental Software and Toolkits (EST) [45] of Else-

vier’s Science in Computer Programmingjournal is devoted
to the description of academic research tools. One tool of
the special issue, g4re, falls within the maintenance domain
[20].

Besides the published tool building experiences dis-
cussed above, researchers have also identified require-
ments for maintenance and reverse engineering tools [19,
sec. 3.2]. For example, Tichelaar discusses six requirements
for reengineering environments [43, sec. 5.1]. Wong has
distilled 23 high-level and 13 data requirements for soft-
ware understanding and reverse engineering tools [46]. He
also recommends to “summarize and distill lessons learned
from reverse engineering experience to derive requirements
for the next generation of tools.”

The growing interest of researchers to report their tool
building experiences is a positive development that should
be further strengthened within the research community.
However, so far the focus is almost exclusively on docu-
menting engineering expertise, but not on process. Unfor-
tunately, most researchers do not report at all about their
tool development process. It seems that researchers often
develop their tools by themselves and are the only users of
the tool during and after development. Tools are then evalu-
ated with a case study or anecdotal evidence. As a result, the
building of tools resembles acraft rather thanprofessional
engineering[34].

One approach to professionalize tool building is to fol-
low a process. Indeed, all software development projects
should use a well-defined process—tool-building in an aca-
demic environment is no exception to this rule. According
to Kruchten, without such a process the “development team
will develop in an ad hoc manner, with successes relying on
the heroic efforts of a few dedicated individual contributors.
This is not a sustainable condition” [21, p. 15]. A process
should provide guidance on what work products should be
produced when, how, and by whom. A well-defined process
enables a repeatable and predictable way of building soft-
ware systems. There are a few examples of researchers that
touch on process aspects when relating their experiences.
The following sections give examples of two approaches to
tool building—SHriMP and TkSee—that can provide valu-
able input towards identifying process requirements. These
can in turn be used when defining a suitable process for the
domain of academic tool building. However, to our knowl-
edge, no full process has been proposed so far. The closest
research that we are aware of is Chirouze et al.’s work on
Extreme Researching (XR), which is a process specifically
designed for applied research and development in a dis-
tributed environment that has to cope with changing human
resources and rapid prototyping [5]. It is an adaptation of
Extreme Programming (XP) and has been developed by Er-
icsson Applied Research Laboratories to support distributed
telecommunications research. XR is based on several core
principles taken from XP (short development cycles, test-

driven development, collective ownership, and discipline)
and encodes them in a set of activities (e.g., remote pair pro-
gramming, unit testing, collective knowledge, coding stan-
dards, frequent integration, and metaphor). Dedicated tool
support is available for XR with a web-based portal. Based
on three projects, the authors of XR estimate that their pro-
cess has yielded an increase of output of around 24% and
reduced project-overrun time on average by half.

2.1. Tool Building in SHriMP and TkSee

The development history of theSHriMP program com-
prehension tool is one of the few more comprehensive
sources that allow us to infer requirements for tool-building.

The SHriMP project is an example of building a tool
that has been continuously refined and evaluated, following
an iterative approach of designing and implementing tools,
which has been proposed by the team’s leading professor
[38, sec. 11.1.1]. Evolving a tool such as SHriMP is a ma-
jor research commitment, involving several students at the
Ph.D. and master level at any given time. SHriMP had sev-
eral major implementations. The first implementation was
based on Rigi (with Tcl/Tk and C/C++), followed by a Java
port. The Java version of SHriMP was then re-architected
in a component-based technology, JavaBeans, to facilitate
closer collaboration between reverse engineering research
groups.

The Rigi-based version of SHriMP was evaluated and
improved based on two user studies with 12 and 30 par-
ticipants, respectively [41] [42]. The results of both user
studies helped to improve SHriMP by identifying several
shortcoming. Wu and Storey have also published the results
of their first Java port of SHriMP; they state that “during
the development of this prototype, we took into considera-
tion the knowledge from previous prototypes and empirical
evaluations” [47]. Even though they do not provide further
details, we can infer that their development process is (1)
prototype-based, (2) iterative, and (3) based on feedback
from empirical evaluations.

TheTkSeesearch tool (written in Tcl/Tk and C++) is an
example of a tool that has been improved based on the feed-
back obtained from developers in industry. Early versions
of TkSee were delivered to users at Mitel in 1996. At the
time, the tool was used by relatively few user, which used
only a small subset of its features. Generally, users were re-
luctant to adopt new tools. Lethbridge and Herrera describe
TkSee’s development process as follows [25, p. 89]:

“TkSee had been developed in a university research environment
following an informal and opportunistic development process. Fea-
tures had been added by students and researchers when they had had
bright ideas they wished to experiment with, hence it lackedcom-
plete documents describing its requirements, its design (except that
of its database architecture [24]) and how to use it. There was con-
siderable staff turnover among TkSee developers because many were
students. . . . The newer staff was often not able to understand the
tool or the purpose of certain features.

To improve TkSee, feedback was obtained from field ob-
servations as well as formal user studies using think-aloud
protocol and videotaping. The results were then commu-
nicated to the tool developers in a report and sessions with
video clips to “emphasize certain points and convince them
of the seriousness” of the (usability) problems. Similar to
SHriMP, we can conclude that tool development had at least
one iteration that improved the tool based on feedback from
a user study. Furthermore, the use of Tcl/Tk would facilitate
rapid prototyping of TkSee.

The approaches to tool building of both SHriMP and Tk-
See provide valuable input to identify requirements that a
dedicated process for tool building should exhibit.

3. Process Requirements

This section introduces requirements for a software pro-
cess to develop maintenance tools. A dedicated develop-
ment process has to accommodate the particular character-
istics and constraints of the target domain. For instance,
tool development in an academic research environment of-
ten is ad hoc and unstructured. Tools are often constructed
by students that have only a few years of programming ex-
perience, and that typically work alone or in small teams
with informal communication flow and without an explicit
process. Furthermore, they often work not closely super-
vised and are evaluated based on their finished product, not
on how they have constructed it.

Researchers in the domain have reported some expe-
riences that allow to distill properties that an appropriate
development process should probably possess. We also
draw from informal discussions with other researchers in
the maintenance domain, and from our own experiences
of developing software visualization and reverse engineer-
ing tools. Our own experiences include the development
and maintenance of the Rigi and Bauhaus tools as well as
the tools constructed in the context of the Adoption-Centric
Software Engineering (ACSE) project [19].

The following sections discuss the requirements that we
have been able to identify for a tool building process in an
academic research setting.

3.1. Feedback-Based

Many ideas for improvements of software systems orig-
inate from their users. There is evidence that software de-
velopment projects are the more successful, the moreuser-
developer linksthey have [18]. These links are defined as
the techniques or channels that allow users and develop-
ers to exchange information; examples are surveys, user-
interface prototypes, requirements prototypes, interviews,
bulletin boards, usability labs, and observational studies.

As with many other software development projects, of-
ten the researchers developing a research tool have a poor
initial understanding of its requirements. Requirements

elicitation is difficult, for instance, because the target users
are ill-defined and the tool’s functionality might be not fully
understood yet. To alleviate this problem and to bootstrap
the first release, Singer and Lethbridge propose to first in-
volve maintenance engineers (who will later use the tool) to
understand their particular needs and problem domain be-
fore starting the design and implementation of the tool [36].
This can be achieved with questionnaires, (structured) in-
terviews, observation sessions, and (automated) logging of
tool use. For instance, Lethbridge and Singer have used a
simple, informal approach to elicit initial tool requirements
from future users [35]:

“For the first release, we brainstormed a group of software engineers
for their needs, and then designed, with their continued involvement,
a tool called SEE (Software Exploration Environment).”

Once a research tool has reached a first beta release,
feedback should be obtained. Lethbridge and Singer fol-
low a process with two main phases: (1) study a significant
number of target users to thoroughly understand the nature
of their work, and then (2) develop and evaluate tools to help
the target users work better. Importantly, the second phase
involves “ongoing involvement with [target users]” [26].
User feedback can be obtained, for instance, with (longitu-
dinal) work practice studies of individuals or groups. Such
studies observe and record activities of maintainers in their
normal work environment, working on real tasks. The de-
signers of the Augur software exploration tool, for instance,
report that “to gain some initial feedback on Augur’s effec-
tiveness, we have conducted informal evaluations with de-
velopers engaged in active development” [9]. Hundhausen
and Douglas have used the finding of an ethnographic study
with students in a course (involving techniques such as par-
ticipant observation, semi-structured interviews, and video-
tape analysis) to redefine the requirements for their algo-
rithm visualization tool [16].

Wong states that “case studies, user experiments, and
surveys are all necessary to assess the effectiveness of a
reverse engineering tool” [46, p. 93]. Many researchers
conduct informal case studies of their tools by themselves,1

considering themselves as typical users [44]. However, it
is not clear whether this approach can generate the nec-
essary feedback to further improve a tool. A more effec-
tive approach is user studies. In the best case, feedback is
provided by the actual or potential future users of the tool;
however, obtaining feedback from this type of user is of-
ten impossible. As an alternative, researchers use other—
presumably “similar”—subjects such as computer science
students. For example, Storey conducted a study with 12
students to assess a new visualization technique introduced
with the SHriMP tool. Observations and user comments re-
sulting from the study generated several improvements [41,
sec. 5.3]. Storey explains her strategy as follows:

1For instance, in a survey of twelve visualization tools, twowere eval-
uated with user studies and eleven with a case study [39].

“We are currently planning further user studies to evaluatethe
SHriMP and Rigi interfaces. Observations from these studies will
be used to refine and strengthen the framework of cognitive design
issues which will, in turn, be used to improve subsequent redesigns
of the SHriMP interface” [40].

In another user study involving students, researchers did ask
13 questions about their visualization tool, sv3D, with the
goal “to gather feedback from first time users about some of
the sv3D features” [27]. They conclude that the users’ “an-
swers provided us with valuable information that supports
the implementation of new features in sv3D.”

To summarize, researchers have tried to obtain feedback
from different types of subjects (e.g., professionals who will
use the tool, students who substitute for “real” users of the
tool, and, last but not least, themselves) as well as with dif-
ferent methods (e.g., case studies, field studies, surveys,and
formal experiments).

3.2. Iterative

Iterative software development processes—as opposed
to processes that follow a waterfall or sequential strategy—
are an approach to building software in which the overall
life-cycle is composed of a sequence of iterations. Boehm’s
spiral model, the Rational Unified Process (RUP), and Ex-
treme Programming are examples of iterative software de-
velopment processes. Developing software iteratively is
among the six best practices identified by Kruchten [21].

The waterfall model provides minimal opportunity for
prototyping and iterative design [11], but “is fine for small
projects that have few risks and use a well-known technol-
ogy and domain, but it cannot be stretched to fit projects that
are long or involve a high degree of novelty or risk” [21,
p. 75]. As illustrated by Rigi and SHriMP, tool-building
projects can run for several years. Since research tools typ-
ically explore new ideas and strive to advance the state-of-
the-art, they are risky, potentially involving new algorithms
and techniques. Thus, the waterfall approach is not suitable
for the development of research tools.

Iterative software development has several benefits com-
pared to the waterfall model; especially important bene-
fits in the context of tool building are that user feedback
is encouraged, making it possible to elicit the tool’s real
requirements, and that each iteration results in an exe-
cutable tool release that can be evaluated. Generally, itera-
tive development is most suitable to cope with requirements
changes [23]. As in other software projects, requirements in
tool-building can change frequently (e.g., because of user-
feedback and modified hypothesis).

A particular example of the iterative nature of tool de-
velopment is provided by the development of a schema and
corresponding fact extractor. A schema embodies a certain
domain (e.g., C++ code or software architecture), which
has to be iteratively refined. Changes in the schema trig-
ger changes in the fact extractor, and vice versa [29].

Figure 1. Storey’s tool-building process [38]

As an outcome of the SHriMP tool, Storey proposes
an iterative approach for designing and implementing tools
[38]. It is a process consisting of “several iterative phases
of design, development and evaluation.” Figure 1 depicts a
rendering of the process iterations, illustrated with SHriMP
as the subject. There is an “iterative cycle of design and
test” that aims at improving a tool [40]. The (initial) de-
sign of the tool is guided by the cognitive design elements
framework, which provides a catalog of issues that should
be addressed by software exploration tools. Testing of tool
design and implementation can be accomplished by user
studies. This cycle is embedded in a larger iterative cycle
for improving the framework. When adopting Storey’s pro-
cess, the larger cycle could be omitted or replaced with a
different framework.

Similar to Storey, Wong argues for an iterative approach
when building reverse engineering tools. He explains the
process with his proposed Reverse Engineering Notebook:

“The Notebook research itself undergoes continuous evolution. The
evolution follows a spiral model . . . Each iteration of the Notebook
involves several states, including studies with users, evaluating alter-
native technologies, considering compatibility constraints and adop-
tion risks, validating the product, and planning for the next phase”
[46, p. 99].

3.3. Prototype-Based

The construction of prototypes is common in engineer-
ing fields (e.g., scaled-down models in civil engineering).
For software construction, prototyping is the “development
of a preliminary version of a software system in order to al-
low certain aspects of that system to be investigated” [33].
The prototype typically lacks functionality and does not
meet all non-functional requirements. Rapid prototyping
is the use of tools or environments that support prototype
construction. Examples of technologies that facilitate rapid
prototyping are weakly-typed (scripting) languages with
support for GUI construction (e.g., Tcl/Tk and Smalltalk),
tools for rapid application development (e.g., IBM’s Lotus

Notes), and domain-specific prototyping environments and
languages (e.g., Matlab).

A throwaway prototype produces a cheap and rough ver-
sion of the envisioned system early on in the project—it
need not be executable and can be a paper simulation or
storyboard [4]. Such a prototype is useful to obtain and val-
idate user requirements and is then discarded once the initial
requirements have been established. Exploratory prototypes
are typically throwaway prototypes that are “designed to be
like a small experiment to test a key assumption involving
functionality or technology or both” [21, p. 161]. As op-
posed to the construction of a throwaway prototype, an evo-
lutionary approach to prototyping continuously evolves the
prototype into the final product.

Using prototypes in software development has a number
of benefits. They are effective for defect and risk avoidance,
and for uncovering potential problems (e.g., verification of
the proposed system architecture, trying out a new technol-
ogy or algorithm, identification of performance bottlenecks,
or exploration of alternative designs) [3]. Yang has used
rapid prototyping to develop a tool called the Maintainer’s
Assistant; he describes several benefits:

“There are several advantages of rapid prototyping which can be
taken to develop the Maintainer’s Assistant itself. For instance, the
system can be developed much faster by rapid prototyping, sothat
it can speed up the implementation. The user is involved in the pro-
cess, so that he or she (mainly the builder in our system) can de-
termine if the development is moving in the right direction.Rapid
prototyping produces a model of the final system, so that the user,
as well as builder, can see the final system in the early development
stage” [48].

Prototyping has potential drawbacks also. In contrast to
a description of a system’s behavior, executable prototypes
are well suited to represent what a system does. However,
they are less well suited to capture design rationale (i.e.,
why was the system built and why in this way)—this should
be documented explicitly [32]. There is also the threat that
a prototype that was originally planned to be thrown away
is evolved into the final product [10]. Evolutionary proto-
typing is then “merely the official name given for poor de-
velopment practices where initial attempts at development
are kept rather than thrown away and restarted” [23].

Prototypes are well suited for applied research—
Chirouze et al. go as far as stating that “the idea of rapid pro-
totyping and researching is intrinsically linked” [5]. Wong
proposes an iterative development strategy for the build-
ing of maintenance tools. In this approach, “each itera-
tion builds an evolutionary prototype that is intended to be
a solid foundation for the next iteration” [46, p. 99].

Prototypes have been successfully used in the building
of software engineering tools (e.g., using Visual Basic [15],
and Tcl/Tk [41]). A tool prototype can serve as an initial
proof-of-concept. Such a prototype does not need to fulfill
certain requirements. For instance, a prototype can demon-
strate the usefulness of a novel algorithm without meeting

the scalability requirements of a production tool. However,
if user studies are based on the prototype, it might have to
meet much higher quality standards. For example, Storey et
al. report that

“The first prototype of the SHriMP interface was implementedin
Tcl/Tk. Tcl/Tk is a scripting language and user interface library use-
ful for rapidly prototyping graphical interfaces. However, its graph-
ics capabilities are not optimized for efficiently displaying the large
graphs typical of software systems. The second prototype has been
implemented using Pad++, a graphics extension for Tcl/Tk. Pad++
is highly optimized for efficiently displaying large numbers of ob-
jects and smoothly animating the motions of panning and zooming”
[40].

3.4. Other Requirements

Based on our experiences, we believe that the following
requirements should be considered for a tool-building pro-
cess as well:

lightweight: The notion of a lightweight process is not
clearly defined. However, evidence of a lightweight process
is that it strives to minimize (intermediate) artifacts such
as vision statement, use-case model, and status assessment,
recognizing that these artifacts are not the goal of a process,
but a means to an end. Martin says, “a good process will
decrease the demand for such intermediate artifacts to the
barest possible minimum” [28]. Extreme Programming has
four core values from which twelve practices are derived;
one of these values is simplicity [2]. The SEI’s Personal
Software Process Body of Knowledge states that “a process
description should be brief and succinct” [31, Key Concept
1.1.1]. A goal of configuring RUP is that the process “must
be made as lean as possible while still fulfilling its mission
to rapidly produce predictably high-quality software” [21,
p. 31]. Cockburn introduces two factors that determine a
method’s weight:method size(i.e., “number of control el-
ements, including deliverables, standards, activities, mile-
stones, quality measures, and so on”) andmethod density
(i.e., “the detail and consistency required in the elements”)
[6]. He says, “a relatively small increase in methodology
size or density adds a relatively large amount to the project
cost” [6]. Agile methods are typically more lightweight
than plan-driven approaches.

component-based:Component-based software develop-
ment (CBSD) promises lower development costs and
higher productivity compared to implementing systems
from scratch [14]. Researchers often rely on (off-the-shelf)
components and products when constructing tools. For ex-
ample, fact extraction of source code has been realized by
leveraging Reasoning Refine, GNU GCC, Eclipse, SNIFF+
and Source Navigator, and visualizations of software struc-
tures have been implemented on top of AT&T gaphviz,
Rational Rose, Adobe FrameMaker, Microsoft Visio, and

Web browsers. However, following a component-based ap-
proach for tool building has unique challenges. It is nec-
essary, for instance, to evaluate candidate components in
terms of functionality, interoperability, and customizability.
When realizing software visualization functionality with
components, Lanza cautions that “reusing graph visualiza-
tion tools and libraries like [graphviz] can break down the
implementation time, but it can also introduce new prob-
lems like lack of control, interactivity and customizability.
. . . The first experiments we did with external engines soon
reached a limit, because they were not customizable and
flexible enough for our needs” [22]. In order to meet such
challenges, a process should explicitly address CBSD is-
sues.

adaptive: A process should be flexible enough to ac-
commodate changing requirements of the system under
construction. However, evolving requirements—or other
changes in business, customer, or technological needs—
might make it necessary to adapt the process itself during
the development effort. The SEI’s Personal Software Pro-
cess Body of Knowledge states that “a quality process must
be easy to learn and adapt to new circumstances” [31, Key
Concept 5.1.4]. Fowler describes the adaptive nature of a
process as follows, “A project that begins using an adaptive
process won’t have the same process a year later. Over time,
the team will find what works for them, and alter the pro-
cess to fit” [8]. A process can be adapted after an iteration
as the result of a process review.

Even though we could not find explicit evidence for these
process requirements in the literature, we believe that they
should be part of an effective tool-building approach in
academia.

4. Process Framework for Tool Building

To advance the goal of an effective tool building ap-
proach for academia, it is necessary to provide developers
with a suitable development process (i.e., it has to meet the
process requirements of the previous section). This process
needs to encode guidelines on how to build tools in a re-
peatable and predictable way.

The dilemma with proposing a process is as follows: On
the one hand, we need a development process for tool build-
ing; on the other hand, the individual projects seem too
diverse to be accommodated by a single, one-size-fits-all
process. Each individual tool-building project has its own
unique characteristics such as the tool’s requirements and
functionality, the degree of technical uncertainty, the com-
plexity and size of the problem, the number of developers,
the background of the development team, and so on. This
is especially the case for tool-building projects in academia,
which can differ significantly from each other.

To resolve this dilemma, we do not define and mandate
a full process; instead we are proposing aprocess frame-
work. This framework addresses the tool-building require-
ments discussed in Section 3, but needs to be instantiated
by researchers to account for the unique characteristics of
their own development projects. The process framework is
composed of a set of work products (WPs). A WP is “any
planned, concrete result of the development process” [17].

The process framework’s focus on WPs is inspired by
IBM OOTC’s process, which is described in the bookDe-
veloping Object-Oriented Software: An Experience-Based
Approach[17]. It focuses on WPs because often there is
agreement onwhat should be produced, but not onhow
it should be produced. The developers of the process say,
“it was decided that an approach that standardized on work
products but allowed for individual choices on particular
techniques used to produce work products was the best fit”
[17, p. 4]. As a result, concrete WPs provide necessary
guidance for tool builders without unnecessarily constrain-
ing them.

4.1. Work Products

We define seven core WPs that reflect important stages
in tool development, ranging from requirements elicitation,
over architecture, to prototype construction. The core WPs
of the process framework address specific issues of the do-
main. We purposely omit more generic WPs that address
issues such as implementation and testing.

Because of limited space we can only briefly describe
each WP; a more detailed description of each WP is avail-
able in the first author’s dissertation [19, sec. 7.2]. We also
give example of interactions between WPs to illustrate that
WPs support each other: one WP can provide valuable input
for another WP.

Intended Development Process:This WP instantiates a
suitable tool development process, which should meet our
identified process requirements and account for project-
specific characteristics. For example, a project that wantsto
employ components should reflect this practice by accom-
modating CBSD principles (such as guidance in selecting
and adapting suitable components, and in assembling the
component-based system). To support these tasks, the pro-
cess framework already offers two WPs: Candidate Com-
ponents and Tool Architecture.

Functional Requirements: This work product captures
the users’ expectations of the tool’s functionality, provid-
ing a basis for communication between users and devel-
opers, and enabling to estimate development effort. For
maintenance tools, functionality will entail fact extraction,
analysis, and visualization. These functional units are typi-
cally exposed in the tool’s architecture (see Tool Architec-
ture WP). This WP can also contain a feature list, which

can be bootstrapped from tool comparisons published in the
literature (e.g., [1]).

Non-functional Requirements: This WP describes the
tool’s quality attributes. Tools should address importantdo-
main requirements such as scalability, interoperability,cus-
tomizability, usability, and adoptability. Such requirements
are often difficult to formalize and validate. There should be
a rationalization for each of these quality attributes on how
the tool will meet them. Obtaining user feedback with pro-
totypes (see Technical and UI Prototype WPs) can be used
in such cases to clarify quality attributes.

Candidate Components: This WP addresses the identifi-
cation, assessment, and selection of (off-the-shelf) compo-
nents and products that can be leveraged when building the
tool. To enable a comparison among candidates, assess-
ment criteria (reflecting the Functional and Non-functional
Requirements WPs) have to be defined first. Documenting
the rationale for selecting a certain component increases the
confidence of the tool developers into the assessment and
selection. Note that the selection decision may come to the
conclusion that there is no suitable candidate component in
which case the required functionality has to be implemented
from scratch.

User Interface Prototype: This WP mandates the con-
struction of a UI prototype. A typical objective for a proto-
type is that it should be good enough to enable user inter-
action and feedback; and detailed and complete enough to
support some kind of evaluation. The Functional and Non-
functional Requirements WPs can be used to identify the
tool’s “main line” functionalities that the prototype should
focus on. If a candidate component is available and this
component offers scripting support then it can be used as
a rapid prototyping environment. The development of the
prototype can give the developers valuable first insights for
the actual tool development.

Technical Prototype: This WP is concerned with the con-
struction of a prototype to explore issues related to the de-
sign, implementation, and architecture of the tool under
construction. This is in contrast to the UI Prototype WP,
which is exclusively concerned with user-interface design.
Prototyping can be used as a risk mitigation technique to re-
solve or explore uncertainties of tool development that can-
not be addressed by theoretical analysis or research alone.
In the context of CBSD, exploratory prototypes are espe-
cially useful to provide input for the Candidate Components
WP because public information about components can be
inaccurate, misleading, or outdated.

Tool Architecture: This WP documents the tool’s high-
level architecture. It is discussed in more detail in the next
section.

The full description of each WP follows a template to
provide a common structure. This template consists of de-
scription, purpose, technique, advice and guidance, and ref-
erences to related work. In the following section, a more
complete and detailed description following the template is
given.

4.2. Sample Work Product: Tool Architecture

description: The Tool Architecture WP captures the sys-
tem architecture of the tool under construction. It can be
seen as the set of early, global design decisions. The ar-
chitecture places constraints on the tool’s design and im-
plementation. The architecture is often visualized with di-
agrams, but it can also take the form of a textual descrip-
tion of non-functional requirements and derived architec-
tural decisions.

purpose: An architecture can be used to show the parti-
tioning of the system into components; the communication
patterns and mechanisms between components; the nature
and services of the used components; etc. Without an archi-
tecture, it may be difficult to reason about tool properties,to
communicate its design principles to new project members,
and to maintain its (conceptual) integrity. The architecture
can be used to reason about certain Non-functional Require-
ments of the system (e.g., performance, modifiability, and
reusability).

technique: The tool’s architecture can be described as a
conceptual architecture diagram that shows the tool’s main
components. Often a single customized candidate com-
ponent implements the functionality associated with a cer-
tain tool functionality (i.e., extractor, analyzer, visualizer,
or repository). In the early project stage, a component in
the diagram may indicate its intended functionality without
revealing its realization. For example, there may be a com-
ponent that is meant to implement repository functionality.
Only later on in the project a decision will be made about
the nature of the repository (e.g., local file system, relational
database, or XML database). Still later on, the actual com-
ponent may be chosen.

read/write data

ExtractorComponent

VisualizerComponent

RepositoryComponent

write to

read from

<<OTS>>

<<visualizer>>
<<in−house>>

<<repository>>
<<OTS>>

<<extractor>>

Figure 2. A tool architecture in UML

Architectural diagrams are typically visualized with UML.
UML stereotypes can be used to convey additional mean-

ing. For example, Egyed et al. use stereotypes to distin-
guish between<<in-house>> and<<COTS>> compo-
nents [7]. Similarly, stereotypes can be used to identify the
tool component functionality. Figure 2 shows an example of
a tool’s architecture modeled in UML. The tool is composed
of three components. The repository component exposes an
interface (shown in UML’s shorthand (“lollipop”) interface
notation) to read and write data. The extractor and visual-
izer components use this interface to write and read data, re-
spectively. Stereotypes are used to indicate the tool compo-
nent types, and to distinguish between third-party and cus-
tom components.

advice and guidance:The tool architecture can be effec-
tive to assess whether the resulting tool meets established
design principles. For example, a component-based sys-
tem will be more maintainable if it minimizes coupling
among components and relies on open standards. Boehm
et al.’s MBASE approach identifies issues—grouped into
simplifiersand complicators—that make the development
of component-based systems easier or harder [37]. Sim-
plifiers that are reflected in the architecture include “clean,
well-defined APIs” and “a single COTS package;” compli-
cators include “multiple, incompatible COTS packages.”

To come up with an architecture it is often helpful to reuse
existing expertise in the form of reference models and archi-
tectures, architectural patterns, or architectural mechanisms
[21]. Several researchers have proposed reference models
and architectures for reverse engineering tools (e.g., [24]
[13]), which can be used as a starting point to define a tool’s
architecture.

references: The OOTC process defines System Architec-
ture and Subsystem Model WPs; there is also a Rejected
Design Alternatives work product that can be used to record
why a certain architecture was not chosen. RUP defines two
artifacts related to architecture: Software ArchitectureDoc-
ument and Architectural Prototype [21, p. 86].

4.3. Discussion

The WP oriented approach of the proposed process
framework has been inspired by OOTC. However, the
framework’s individual WPs are not the same as the ones
described by OOTC because they are motivated by the pro-
cess constraints and characteristics of our domain.

The process framework describes a minimum set of
WPs. A tailored version of the framework is free to in-
troduce additional ones, as appropriate. Specifically, a tool-
building project that experiments with a novel or unproven
technology could introduce dedicated WPs to make sure
this risk is addressed adequately. For example, if a new
tool wanted to employ XML databases as a repository—an
unfamiliar approach to the project members—a Repository

Technical Prototype WP could be defined. This WP could
prescribe tasks such as creation of a sample schema, and
benchmarking with realistic data sets. The process frame-
work has a number of desirable characteristics:

lightweight: We have argued before that a tool-building
process should be lightweight. In keeping with the require-
ment of a lightweight process, the process framework itself
defines only a minimal set of WPs, and each WP should
be as concise as possible (i.e., rather 2–3 pages than 10–20
pages). The descriptions of the WPs in the process frame-
work are also kept concise (around 1000 words each) to fos-
ter a rapid deployment of the process.

adaptive: Adaptive processes are desirable for tool-
building projects because they often have an unstable envi-
ronment (e.g., the composition and size of the development
team can change considerably during its life-time). The WP
orientation and separation of concerns of the process frame-
work “addresses the risk of losing ground when tools, no-
tations, techniques, method, or process need to be adjusted
by allowing us to vary them while maintaining the essence
and value of completed work” [17, p. 15].

tailorable: The framework is tailorable in the sense that
researchers are free to extend the process framework with
their own WPs. Researchers can also omit WPs if their tool-
building approach has different process constraints. For in-
stance, a research project may wish to incorporate an ex-
plicit traceability requirement for its process, or to eliminate
the Technical Prototype WP if they have sufficient under-
standing about the technology.

separation of concerns:The WP oriented approach leads
to a separation of concerns: WPs are independent from
tools and notation as well as development process and tech-
niques.

reuse: The process framework defines a reusable set of
WPs. These can be reused by new team members to rapidly
understand the current state of a tool project, and by other
researchers to jump-start their own tool-building projects—
thus, WPs can be seen as preserving valuable tool build-
ing knowledge across projects and people. In the best case,
WPs lead to a situation where existing WPs are reused
whenever possible, reserving the definition of new WPs for
genuinely new contexts [4].

5. Conclusions and Future Work

In this paper we strive to advance academic tool build-
ing beyond the craft stage. What is needed is a more
predicable approach that provides processes, techniques,
and guidance to tool builders. The identified process re-
quirements (i.e., feedback-based, iterative, prototype-based,

lightweight, component-based, and adaptive) and the out-
lined process framework (consisting of seven core work
products) are a first step in the direction towards the pro-
fessional engineering stage. The process framework specif-
ically addresses the process requirements of the domain of
maintenance tool building, and an academic environment.
Importantly, we have grounded the process requirements by
analyzing the domain with a literature review of relevant
tool building experiences.

It is an open question whether the proposed process
framework is suitable for similar domains. It seems likely
that the process framework generalizes to the whole do-
main of software engineering tool building and to environ-
ments that are similar to academic research such as research
labs. However, one should be careful to jump to conclusions
without a thorough investigation of the target domain. We
hope that other researchers will investigate the suitability of
our process framework in their domains.

In future work we want to apply our process framework
in the construction of maintenance tools. It seems especially
promising to first use the process on Master students imple-
menting a relatively small tool with well defined scope. The
work products that are created by the students during the
implementation effort can be used to document progress,
record constraints, and rationalize decision. Furthermore,
the work products can be used to record tool-building ex-
periences as an effective means to communicate important
lesson’s learned to subsequent generations of students that
begin to develop tools under similar constraints. Lastly, we
want to explore tool support for defining and evolving the
process framework and its work products. Such tool sup-
port could be implemented on top of IBM Rational Method
Composer.

References

[1] S. Bassil and R. K. Keller. Software visualization tools: Survey and
analysis. 9th IEEE International Workshop on Program Compre-
hension (IWPC’01), pages 7–17, May 2001.

[2] K. Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2000.

[3] B. Boehm. Making RAD work for your project.IEEE Computer,
32(3):113–115, Mar. 1999.

[4] J. Cameron. Configurable development processes.Communications
of the ACM, 45(3):72–77, Mar. 2002.

[5] O. Chirouze, D. Cleary, and G. G. Mitchell. A software methodol-
ogy for applied research: eXtreme Researching.Software—Practice
and Experience, 35(15):1441–1454, Dec. 2005.

[6] A. Cockburn. Selecting a project’s methodology.IEEE Software,
17(4):64–71, July/Aug. 2000.

[7] A. Egyed, S. Johann, and R. Balzer. Data and state synchronic-
ity problems while integrating COTS software into systems.4th
International Workshop on Adoption-Centric Software Engineering
(ACSE’04), pages 69–74, May 2004.

[8] M. Fowler. The new methodology.MartinFowler.com, Apr. 2003.
http://www.martinfowler.com/articles/newMethodology.html.

[9] J. Froehlich and P. Dourish. Unifying artifacts and activities in a vi-
sual tool for distributed software development.26th ACM/IEEE In-
ternational Conference on Software Engineering (ICSE’04), pages
387–396, May 2004.

http://www.martinfowler.com/articles/newMethodology.html

[10] V. S. Gordon and J. M. Bieman. Rapid prototyping: Lessons
learned.IEEE Software, 12(1):85–95, Jan. 1995.

[11] J. Grudin. Interactive systems: Bridging the gaps between develop-
ers and users.IEEE Computer, 24(4):59–69, Apr. 1991.

[12] Y.-G. Guéhéneuc. Ptidej: Promoting patterns with patterns. 1st
ECOOP workshop on Building a System using Patterns, July 2005.
http://www.iro.umontreal.ca/˜ptidej/Publications/Documents/ECOOP05BSUP.doc.pdf.

[13] J. Hainaut, V. Englebert, J. Henrard, J.-M. Hick, and D.Roland. Re-
quirements for information system reverse engineering support. 2nd
IEEE Working Conference on Reverse Engineering (WCRE’95),
pages 136–145, July 1995.

[14] G. T. Heineman and W. T. Councill.Component-Based Software
Engineering: Putting the Pieces Together. Addison-Wesley, 2001.

[15] M. E. C. Hull, P. N. Nicholl, P. Houston, and N. Rooney. Towards a
visual approach for component-based software development. Soft-
ware – Concepts & Tools, 19(4):154–160, Aug. 2000.

[16] C. Hundhausen and S. Douglas. A language and system for con-
structing and presenting low fidelity algorithm visualizations. In
S. Diehl, editor,Software Visualization, volume 2269 ofLecture
Notes in Computer Science, pages 227–240. Springer-Verlag, 2002.

[17] IBM Object-Oriented Technology Center.Developing Object-
Oriented Software: An Experience-Based Approach. Prentice Hall,
1997.

[18] M. Keil and E. Carmel. Customer-developer links in software de-
velopment.Communications of the ACM, 38(5):33–44, May 1995.

[19] H. M. Kienle. Building Reverse Engineering Tools
with Software Components. PhD thesis, Department
of Computer Science, University of Victoria, Nov. 2006.
https://dspace.library.uvic.ca:8443/dspace/handle/1828/115.

[20] N. A. Kraft, B. A. Malloy, and J. F. Power. A tool chain forreverse
engineering c++ applications.Science of Computer Programming,
69(1–3):3–13, Dec. 2007.

[21] P. Kruchten.The Rational Unified Process: an introduction. Object
Technology Series. Addison-Wesley, 1999.

[22] M. Lanza. Codecrawler—lessons learned in building a software vi-
sualization tool.7th IEEE European Conference on Software Main-
tenance and Reengineering (CSMR’03), pages 1–10, Mar. 2003.

[23] P. A. Laplante and C. J. Neill. Opinion: The demise of thewaterfall
model is imminent.ACM Queue, 1(10):10–15, Feb. 2004.

[24] T. C. Lethbridge and N. Anquetil. Architecture of a source code ex-
ploration tool: A software engineering case study. Technical Report
TR-97-07, University of Ottawa, Computer Science, 1997.

[25] T. C. Lethbridge and F. Herrera. Assessing the usefulness of the TK-
See software exploration tool. In H. Erdogmus and O. Tanir, editors,
Advances in Software Engineering: Topics in Comprehension, Evo-
lution, and Evaluation, chapter 11, pages 73–93. Springer-Verlag,
Dec. 2001.

[26] T. C. Lethbridge and J. Singer. Strategies for studyingmainte-
nance. 2nd Workshop on Empirical Studies of Software Mainte-
nance (WESS’96), pages 79–83, Nov. 1996.

[27] A. Marcus, D. Comorski, and A. Sergeyev. Supporting theevolution
of a software visualization tool through usability studies. 13th IEEE
International Workshop on Program Comprehension (IWPC’05),
pages 307–316, May 2005.

[28] R. C. Martin. RUP vs. XP. objectmentor.com, 2001.
http://www.objectmentor.com/resources/articles/RUPvsXP.pdf.

[29] D. L. Moise and K. Wong. Issues in integrating schemas for re-
verse engineering. In J.-M. Favre, M. Godfrey, and A. Winter, edi-
tors,International Workshop on Meta-Models and Schemas for Re-
verse Engineering (ateM’03), volume 94, pages 81–91. Elsevier,
May 2004.

[30] O. Nierstrasz, S. Ducasse, and T. Gı̂rba. The story of Moose: an ag-
ile reengineering environment.10th European Software Engineer-
ing Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE-
13), pages 1–10, Sept. 2005.

[31] M. Pomeroy-Huff, J. Mullaney, R. Cannon, and M. Se-
bern. The personal software process(psp) body of knowl-
edge. Special Report CMU/SEI-2005-SR-003, Software
Engineering Institute, Carnegie Mellon University, Aug. 2005.
http://www.sei.cmu.edu/pub/documents/05.reports/pdf/05sr003.pdf.

[32] K. Schneider. Prototypes as assets, not toys: Why and how to extract
knowledge from prototypes.18th ACM/IEEE International Con-
ference on Software Engineering (ICSE’96), pages 522–531, May
1996.

[33] R. Schwaninger. Rapid prototyping with
Tcl/Tk. Linux Journal, May 1998.
http://www.linuxjournal.com/article/2172.

[34] M. Shaw. Prospects for an engineering discipline of software. IEEE
Software, 7(6):15–24, Nov. 1990.

[35] J. Singer and T. Lethbridge. Studying work practices toassist
tool design in software engineering.6th IEEE International Work-
shop on Program Comprehension (IWPC’98), pages 173–179, June
1998.

[36] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. Anexamina-
tion of software engineering work practices.Conference of the Cen-
tre for Advanced Studies on Collaborative Research (CASCON’97),
pages 209–223, Nov. 1997.

[37] I. Sommerville. Integrated requirements engineering: A tutorial.
IEEE Software, 22(1):16–23, Jan./Feb. 2005.

[38] M.-A. D. Storey.A Cognitive Framework for Describing and Eval-
uating Software Exploration Tools. PhD thesis, Simon Fraser Uni-
versity, Dec. 1998.

[39] M. D. Storey, D. Cubranic, and D. M. German. On the use of visual-
ization to support awareness of human activities in software devel-
opment: A survey and a framework.ACM Symposium on Software
visualization (SoftVis’05), pages 193–202, May 2005.

[40] M. D. Storey, F. D. Fracchia, and H. A. Müller. Cognitive design
elements to support the construction of a mental model during soft-
ware exploration.Journal of Systems and Software, 44(3):171–185,
Jan. 1999.

[41] M. D. Storey, K. Wong, P. Fong, D. Hooper, K. Hopkins, andH. A.
Müller. On designing an experiment to evaluate a reverse engineer-
ing tool. 3rd IEEE Working Conference on Reverse Engineering
(WCRE’96), pages 31–40, Nov. 1996.

[42] M. D. Storey, K. Wong, and H. A. Müller. How do program un-
derstanding tools affect how programmers understand programs.
4th IEEE Working Conference on Reverse Engineering (WCRE’97),
pages 12–21, Oct. 1997.

[43] S. Tichelaar.Modeling Object-Oriented Software for Reverse Engi-
neering and Refactoring. PhD thesis, Universität Bern, Dec. 2001.

[44] M. A. Toleman and J. Welsh. Systematic evaluation of design
choices for software development tools.Software – Concepts &
Tools, 19(3):109–121, 1998.

[45] M. van den Brand. Guest editor s introduction: Experimental soft-
ware and toolkits (EST).Science of Computer Programming, 69(1–
3):1–2, Dec. 2007.

[46] K. Wong. The Reverse Engineering Notebook. PhD thesis, Depart-
ment of Computer Science, University of Victoria, 1999.

[47] J. Wu and M. D. Storey. A multi-perspective software visualization
environment. Conference of the Centre for Advanced Studies on
Collaborative Research (CASCON’00), pages 15–24, Oct. 2000.

[48] H. Yang. The supporting environment for a reverse engineering
system—the maintainer’s assistant.Conference on Software Main-
tenance (CMS’91), pages 13–22, Oct. 1991.

This work is licensed under a Creative Commons Attribution-Noncommercial-

Share Alike 3.0 United States License. The license is available here:

http://creativecommons.org/licenses/by-nc-sa/3.0/us/.

http://www.iro.umontreal.ca/~ptidej/Publications/Documents/ECOOP05BSUP.doc.pdf
https://dspace.library.uvic.ca:8443/dspace/handle/1828/115
http://www.objectmentor.com/resources/articles/RUPvsXP.pdf
http://www.sei.cmu.edu/pub/documents/05.reports/pdf/05sr003.pdf
http://www.linuxjournal.com/article/2172
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

	. -2mmIntroduction
	. -2mmBackground and Related Work
	. -2mmTool Building in SHriMP and TkSee

	. -2mmProcess Requirements
	. -2mmFeedback-Based
	. -2mmIterative
	. -2mmPrototype-Based
	. -2mmOther Requirements

	. -2mmProcess Framework for Tool Building
	. -2mmWork Products
	. -2mmSample Work Product: Tool Architecture
	. -2mmDiscussion

	. -2mmConclusions and Future Work

