
Titre:
Title:

Approximate Graph Matching for Software Engineering

Auteur:
Author:

Hinnoutondji Kpodjedo

Date: 2011

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Kpodjedo, H. (2011). Approximate Graph Matching for Software Engineering
[Thèse de doctorat, École Polytechnique de Montréal]. PolyPublie.
https://publications.polymtl.ca/670/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/670/

Directeurs de
recherche:

Advisors:
Philippe Galinier, & Giuliano Antoniol

Programme:
Program:

Génie informatique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/670/
https://publications.polymtl.ca/670/

UNIVERSITÉ DE MONTRÉAL

APPROXIMATE GRAPH MATCHING FOR SOFTWARE ENGINEERING

HINNOUTONDJI KPODJEDO

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)

AOUT 2011

c© Hinnoutondji Kpodjedo, 2011.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

APPROXIMATE GRAPH MATCHING FOR SOFTWARE ENGINEERING

présentée par : KPODJEDO, Hinnoutondji

en vue de l’obtention du diplôme de : Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

Mme. BOUCHENEB, Hanifa, Doctorat, présidente.

M. GALINIER, Philippe, Doct., membre et directeur de recherche.

M. ANTONIOL, Giuliano, Ph.D., membre et codirecteur de recherche.

M. MERLO, Ettore, Ph.D., membre.

M. ALBA, Enrique, Ph.D., membre.

iii

GREETINGS

I would like to thank Professors Philippe Galinier and Giulio Antoniol for their crucial support

throughout the four years of my Ph.D. I have learned a lot in their company and have grown

both as a researcher and a human being. Their different styles and research interests brought

me complementary perspectives on my research work and their advices and contributions

were capital for the completion of my thesis. I sincerely feel blessed having the honor to work

under those exceptionally talented researchers.

I would also like to thank Professor Yann-Gael Gueheneuc for his advice, guidance, and

cheerful presence throughout my Ph.D. Most of the experiments conducted in this thesis use

input from tools developed by Professor Gueheneuc and I would like to commend him for his

permanent availability.

My thanks also go to Professor Filippo Ricca, with whom I had the pleasure to collaborate

with during my Ph.D. work. Thanks for challenging my proposals and helping me to improve

the presentation of my ideas.

I would also like to thank the members of my Ph.D. committee who monitored my work

and took effort in reading and providing me with valuable comments on this thesis.

I am very thankful to my colleagues of SOCCERLab and PtiDej for their friendship and

the productive discussions. We are almost twenty now so I will restrain from naming you all.

Good luck in your research project and future careers.

Last but not least, I would like to thank members of my family for their constant support.

I am also very grateful for my fiancee Ginette, for her love and patience during the Ph.D.

period. Without all the encouragement and understanding, it would have been impossible

for me to finish this work.

Finally, I would like to thank everybody who was important to the successful realization

of this thesis, as well as expressing my apology that I could not mention personally one by

one.

iv

RÉSUMÉ

La représentation en graphes est l’une des plus communément utilisées pour la modé-

lisation de toutes sortes d’objets ou problèmes. Un graphe peut être brièvement présenté

comme un ensemble de nœuds reliés entre eux par des relations appelées arêtes ou arcs. La

comparaison d’ objets, représentés sous forme de graphes, est un problème important dans

de nombreuses applications et une manière de traiter cette question consiste à recourir à

l’appariement de graphes.

Le travail présenté dans cette thèse s’intéresse aux techniques d’appariement approché

de graphes et à leur application dans des activités de génie logiciel, notamment celles ayant

trait à l’évolution d’un logiciel. Le travail de recherche effectué comporte trois principaux

aspects distincts mais liés. Premièrement, nous avons considéré les problèmes d’appariement

de graphes sous la formulation ETGM (Error-Tolerant Graph Matching : Appariement de

Graphes avec Tolérance d’Erreurs) et proposé un algorithme performant pour leur résolution.

En second, nous avons traité l’appariement d’artefacts logiciels, tels que les diagrammes de

classe, en les formulant en tant que problèmes d’appariement de graphes. Enfin, grâce aux

solutions obtenues sur les diagrammes de classes, nous avons proposé des mesures d’évolution

et évalué leur utilité pour la prédiction de défauts. Les paragraphes suivants détaillent chacun

des trois aspects ci-dessus mentionnés.

Appariement approché de graphes.

Plusieurs problèmes pratiques peuvent être formulés en tant que problèmes d’Apparie-

ment Approché de Graphes (AAG) dans lesquels le but est de trouver un bon appariement

entre deux graphes. Malheureusement, la littérature existante ne propose pas de techniques

génériques et efficaces prêtes à être utilisées dans les domaines de recherche autres que le trai-

tement d’images ou la biochimie. Pour tenter de remédier à cette situation, nous avons abordé

les problèmes AAG de manière générique. Nous avons ainsi d’abord sélectionné une formula-

tion capable de modéliser la plupart des différents problèmes AAG (la formulation ETGM).

Les problèmes AAG sont des problèmes d’optimisation combinatoire reconnus comme étant

(NP-)difficiles et pour lesquels la garantie de solutions optimales requiert des temps prohi-

bitifs. Les méta-heuristiques sont un recours fréquent pour ce genre de problèmes car elles

permettent souvent d’obtenir d’excellentes solutions en des temps raisonnables.

Nous avons sélectionné la recherche taboue qui est une technique avancée de recherche

locale permettant de construire et modifier graduellement et efficacement une solution à un

problème donné. Nos expériences préliminaires nous ont révélé qu’il était suffisant d’initia-

liser une recherche locale avec un sous-ensemble très réduit (2 à 5%) d’une solution (quasi-

v

)optimale pour se garantir d’excellents résultats. étant donné que dans la plupart des cas,

cette information n’est pas disponible, nous avons recouru à l’investigation de mesures de

similarités pouvant nous permettre de prédire quels sont les appariements de nœuds les plus

prometteurs.

Notre approche a consisté à analyser les voisinages des nœuds de chaque graphe pour asso-

cier à chaque possible appariement de nœud une valeur de similarité indiquant les chances de

retrouver la paire de nœuds en question dans une solution optimale. Nous avons ainsi exploré

plusieurs possibilités et découvert que celle qui fonctionnait le mieux utilisait l’estimation la

plus conservatrice, celle où la notion de voisinage similaire est la plus ”restrictive”. De plus,

pour attacher un niveau de confiance à cette mesure de similarité, nous avons appliqué un

facteur correcteur tenant compte notamment des alternatives possibles pour chaque paire de

nœuds. La mesure de similarité ainsi obtenue est alors utilisée pour imposer une direction

en début de recherche locale. L’algorithme qui en résulte, SIM-T a été comparé à différents

algorithmes récents (et représentant l’état de l’art) et les résultats obtenus démontrent qu’il

est plus efficace et beaucoup plus rapide pour l’appariement de graphes qui partagent une

majorité d’éléments identiques.

Appariement approché de diagrammes en génie logiciel.

Compte tenu de la taille et de la complexité des systèmes orientés-objet, retrouver et com-

prendre l’évolution de leur conception architecturale est une tache difficile qui requiert des

techniques appropriées. Diverses approches ont été proposées mais elles se concentrent géné-

ralement sur un problème particulier et ne sont en général pas adaptées à d’autres problèmes,

pourtant conceptuellement proches.

Sur la base du travail réalisé pour les graphes, nous avons proposé MADMatch, un algo-

rithme (plusieurs-à-plusieurs) d’appariement approché de diagrammes. Dans notre approche,

les diagrammes architecturaux ou comportementaux qu’on peut retrouver en génie logiciel

sont représentés sous forme de graphes orientés dont les nœuds (appelées entités) et arcs pos-

sèdent des attributs. Dans notre formulation ETGM, les différences entre deux diagrammes

sont comprises comme étant le résultat d’opérations d’édition (telles que la modification, le

renommage ou la fusion d’entités) auxquelles sont assignées des coûts. L’une des principales

différences des diagrammes traités, par rapport aux graphes de la première partie, réside

dans la présence d’une riche information textuelle. MADMatch se distingue par son intégra-

tion de cette information et propose plusieurs concepts qui en tirent parti. En particulier, le

découpage en mots et la combinaison des termes obtenus avec la topologie des diagrammes

permettent de définir des contextes lexicaux pour chaque entité. Les contextes ainsi obtenus

sont ultérieurement utilisés pour filtrer les appariements improbables et permettre ainsi des

réductions importantes de l’espace de recherche.

vi

A travers plusieurs cas d’étude impliquant différents types de diagrammes (tels que les dia-

grammes de classe, de séquence ou les systèmes à transition) et plusieurs techniques concur-

rentes, nous avons démontré que notre algorithme peut s’adapter à plusieurs problèmes d’ap-

pariement et fait mieux que les précédentes techniques, quant à la précision et le passage à

l’échelle.

Des métriques d’évolution pour la prédiction de défauts.

Les tests logiciels constituent la pratique la plus répandue pour garantir un niveau rai-

sonnable de qualité des logiciels. Cependant, cette activité est souvent un compromis entre

les ressources disponibles et la qualité logicielle recherchée. En développement Orienté-Objet

(OO), l’effort de tests devrait se concentrer sur les classes susceptibles de contenir des défauts.

Cependant, l’identification de ces classes est une tâche ardue pour laquelle ont été utilisées

différentes métriques, techniques et modèles avec un succès mitigé.

Grâce aux informations d’évolution obtenues par l’application de notre technique d’appa-

riement de diagrammes, nous avons défini des mesures élémentaires d’évolution relatives aux

classes d’un système OO. Nos mesures de changement sont définies au niveau des diagrammes

de classes et incluent notamment les nombres d’attributs, de méthodes ou de relations ajou-

tés, supprimés ou modifiés de version en version. Elles ont été utilisées en tant que variables

indépendantes dans des modèles de prédiction de défauts visant à recommander les classes

les plus susceptibles de contenir des défauts. Les métriques proposées ont été évaluées selon

trois critères (variables dépendantes des différents modèles) : la simple présence (oui/non) de

défauts, le nombre de défauts et la densité de défauts (relativement au nombre de Lignes de

Code). La principale conclusion de nos expériences est que nos mesures d’évolution prédisent

mieux, de manière significative, la densité de défauts que des métriques connues (notamment

de complexité). Ceci indique qu’elles pourraient aider à réduire l’effort de tests en concentrant

les activités e tests sur des volumes plus réduits de code.

vii

ABSTRACT

Graph representations are among the most common and effective ways to model all kinds

of natural or human-made objects. Once two objects or problems have been represented as

graphs (i.e. as collections of objects possibly connected by pairwise relations), their com-

parison is a fundamental question in many different applications and is often addressed us-

ing graph matching. The work presented in this document investigates approximate graph

matching techniques and their application in software engineering, notably as efficient ways

to retrieve the evolution through time of software artifacts. The research work we carried

involves three distinct but related aspects. First, we consider approximate graph matching

problems within the Error-Tolerant Graph Matching framework, and propose a tabu search

technique initialized with local structural similarity measures. Second, we address the match-

ing of software artifacts, such as class diagrams, and propose new concepts able to integrate

efficiently the lexical information, found in typical diagrams, to our tabu search. Third, based

on matchings obtained from the application of our approach to subsequent class diagrams,

we proposed new design evolution metrics and assessed their usefulness in defect prediction

models. The following paragraphs detail each of those three aspects.

Approximate Graph Matching

Many practical problems can be modeled as approximate graph matching (AGM) prob-

lems in which the goal is to find a ”good”matching between two objects represented as graphs.

Unfortunately, existing literature on AGM does not propose generic techniques readily usable

in research areas other than image processing and biochemistry. To address this situation, we

tackled in a generic way, the AGM problems. For this purpose, we first select, out of the pos-

sible formulations, the Error Tolerant Graph Matching (ETGM) framework, which is able to

model most AGM formulations. Given that AGM problems are generally NP-hard, we based

our resolution approach on meta-heuristics, given the demonstrated efficiency of this family

of techniques on (NP-)hard problems. Our approach avoids as much as possible assumptions

about graphs to be matched and tries to make the best out of basic graph features such as

node connectivity and edge types. Consequently, the proposal is a local search technique using

new node similarity measures derived from simple structural information. The proposed tech-

nique was devised as follows. First, we observed and empirically validated that initializing

a local search with a very small subset of ”correct” node matches is enough to get excellent

results. Thus, instead of directly trying to correctly match all nodes and edges from two

graphs, one could focus on correctly matching a few nodes. Second, in order to retrieve such

node matches, we resorted to the concept of local node similarity which consists in analyzing

viii

nodes’ neighborhoods to assess for each possible node match the likelihood of its inclusion in

a good matching. We investigated many ways of computing similarity values between pairs

of nodes and proposed additional techniques to attach a level of confidence to computed

similarity value. Our work results in a similarity enhanced tabu algorithm (Sim-T) which is

demonstrated to be more accurate and efficient than known state-of-the-art algorithms.

Approximate Diagram Matching in software engineering

Given the size and complexity of OO systems, retrieving and understanding the history

of the design evolution is a difficult task which requires appropriate techniques. Building

on the work done for generic AGM problems, we propose MADMatch, a Many-to-many

Approximate Diagram Matching algorithm based on an ETGM formulation. In our approach,

design representations are modeled as attributed directed multi-graphs. Transformations

such as modifying, renaming, or merging entities in a software diagram are explicitly taken

into account through edit operations to which specific costs can be assigned. MADMatch

fully integrates the textual information available on diagrams and proposes several concepts

enabling accurate and fast computation of matchings. We notably integrate to our proposal

the use of termal footprints which capture the lexical context of any given entity and is

exploited in order to reduce the search space of our tabu search. Through several case

studies involving different types of diagrams (such as class diagrams, sequence diagrams and

labeled transition systems), we show that our algorithm is generic and advances the state of

art with respect to scalability and accuracy.

Design Evolution Metrics for Defect Prediction

Testing is the most widely adopted practice to guarantee reasonable software quality.

However, this activity is often a compromise between the available resources and sought

software quality. In object-oriented development, testing effort could be focused on defective

classes or alternatively on classes deemed critical based on criteria such as their connectivity

or evolution profile. Unfortunately, the identification of defect-prone classes is a challenging

and difficult activity on which many metrics, techniques, and models have been tried with

mixed success. Following the retrieval of class diagrams’ evolution by our graph matching

approach, we proposed and investigated the usefulness of elementary design evolution metrics

in the identification of defective classes. The metrics include the numbers of added, deleted,

and modified attributes, methods, and relations. They are used to recommend a ranked list

of classes likely to contain defects for a system. We evaluated the efficiency of our approach

according to three criteria: presence of defects, number of defects, and defect density in

the top-ranked classes. We conducted experiments with small to large systems and made

comparisons against well-known complexity and OO metrics. Results show that the design

evolution metrics, when used in conjunction with those metrics, improve the identification

ix

of defective classes. In addition, they provide evidence that design evolution metrics make

significantly better predictions of defect density than other metrics and, thus, can help in

reducing the testing effort by focusing test activity on a reduced volume of code.

x

TABLE OF CONTENTS

GREETINGS . iii

RÉSUMÉ . iv

ABSTRACT . vii

TABLE OF CONTENTS . x

LIST OF TABLES . xvi

LIST OF FIGURES . xix

CHAPTER 1 INTRODUCTION . 1

1.1 Basic notions and concepts . 1

1.1.1 Elements from Graph Theory . 1

1.1.2 Hard problems and Meta-Heuristics . 4

1.2 Research context and motivation . 8

1.3 Research problems and objectives . 9

1.3.1 Approximate Graph Matching . 9

1.3.2 Diagram Matching in Software Engineering 10

1.3.3 Evolution metrics for Defect prediction 10

1.4 Thesis plan . 11

CHAPTER 2 RELATED WORK . 12

2.1 Graph matching in research literature . 12

2.1.1 Graph Matching formulations . 12

2.1.1.1 Exact Graph Matching . 13

2.1.1.2 Approximate Graph Matching 15

2.1.2 Approximate Graph Matching Algorithms 16

2.1.2.1 The Hungarian algorithm . 17

2.1.2.2 Algorithms based on Tree Search 18

2.1.2.3 Continuous Optimization . 19

2.1.2.4 Spectral methods . 19

2.1.2.5 Meta-Heuristics . 20

2.1.3 Evaluation of graph matching approaches 20

xi

2.1.3.1 Application-centric evaluation 21

2.1.3.2 Experiments on synthetic graphs 21

2.1.4 Toward a generic approach for Graph Matching 22

2.2 Differencing software artifacts . 23

2.2.1 Differencing Algorithms at File Level 24

2.2.2 Differencing Algorithms at the Design Level 25

2.2.3 Logic-based Representations . 25

2.3 Defect Prediction . 26

2.3.1 Static OO Metrics . 26

2.3.2 Historical Data . 27

2.3.3 Code Churn . 27

CHAPTER 3 ADDRESSING APPROXIMATE GRAPH MATCHING 29

3.1 Problem definition . 30

3.1.1 ETGM definitions and formulations . 30

3.1.1.1 Preliminary definitions . 30

3.1.1.2 Error-Tolerant Graph Matching. 31

3.1.2 Refining the cost model . 32

3.1.3 Modeling Graph Matching problems with the ETGM cost parameters . 34

3.2 Generic datasets for the AGM problem . 36

3.2.1 The random graph generator . 36

3.2.2 Benchmarks . 39

3.2.2.1 Core Benchmark . 39

3.2.2.2 Additional Benchmarks . 40

3.3 Solving ETGM problems with a tabu search 40

3.3.1 Our tabu search procedure . 41

3.3.2 Considerations about local search and graph matching 42

3.4 Node similarity measures for graph matching 43

3.4.1 Local Similarity for node matches . 43

3.4.1.1 Elements of local similarity 46

3.4.1.2 Counting the identical elements 46

3.4.1.3 Formal definitions of the potential 47

3.4.1.4 Basic similarity measure . 48

3.4.2 Enhancing the local similarity measures 48

3.4.2.1 Using a discrimination factor 48

3.4.2.2 Enhanced similarity measures 49

xii

3.4.3 Evaluation of the similarity measures. 50

3.5 Solving ETGM with similarity-aware algorithms. 52

3.5.1 The Sim-H algorithm . 52

3.5.2 The SIM-T algorithm . 52

3.5.3 Tested algorithms and experimental plan 53

3.6 Algorithms Evaluation on MCPS . 56

3.6.1 Algorithms’ results on directed graphs 57

3.6.2 Algorithms’ results on undirected graphs 60

3.6.3 Computation times . 61

3.7 Complementary experiments . 62

3.7.1 Other types of graphs . 62

3.7.1.1 Assessing the effect of graph size 62

3.7.1.2 Denser graphs . 63

3.7.2 Results on a less tolerant cost function: the f1,1 64

3.8 Discussion . 65

3.9 Conclusion . 67

CHAPTER 4 MATCHING SOFTWARE DIAGRAMS 69

4.1 Modeling Diagram Matching as a many-to-many ETGM problem 69

4.1.1 Running Example . 70

4.1.2 Minimalist Model for Diagram Representation 70

4.1.3 Diagram matching within an ETGM framework 72

4.1.3.1 Integrating lexical information 72

4.1.3.2 From one-to-one to many-to-many matching 73

4.1.4 Assigning costs to edit operations. 74

4.1.4.1 Basic cost parameters . 74

4.1.4.2 Assigning costs to merge operations 76

4.1.4.3 Tuning the ETGM Cost Model 77

4.2 MADMatch: A search based Many-to-many Approximate Diagram Matching

approach . 79

4.2.1 Obvious matches and Filter I . 80

4.2.2 Getting the terms composing entities’ names 82

4.2.3 ”Termal footprint” and Entity-Term Matrix (ETM) 83

4.2.4 Entity ”Semilarity” and Filter II . 85

4.2.5 Entity similarity . 86

4.2.6 Tabu Search . 90

xiii

4.2.7 Application on the running example . 91

4.3 Empirical evaluation . 92

4.3.1 Research Questions . 92

4.3.2 Experimental plan for class diagrams 93

4.3.2.1 Modeling and extraction . 93

4.3.2.2 Class diagram differencing . 95

4.3.2.3 API Evolution . 96

4.3.3 Experimental plan for sequence diagrams 97

4.3.4 Experimental plan for Labeled Transition Systems (LTS) 99

4.3.5 Analysis plan of the results . 102

4.3.5.1 Accuracy metrics and manual validation 102

4.3.5.2 Devising scalability analysis 106

4.3.5.3 Devising genericness analysis 106

4.3.6 Experimental settings . 107

4.4 Evaluation results . 107

4.4.1 RQ1 – Accuracy of the returned solutions 108

4.4.1.1 Class Diagram Differencing 108

4.4.1.2 API Evolution . 111

4.4.2 RQ2 – MADMatch Scalability . 111

4.4.3 RQ3 – MADMatch Genericness . 112

4.4.3.1 Results on sequence diagrams 114

4.4.3.2 Results on Labeled Transition Systems 117

4.5 Discussion . 119

4.5.1 Summary . 119

4.5.2 Qualitative analysis of the DNSJava case study 119

4.5.2.1 Class/package evolution . 120

4.5.2.2 Method/Attribute Level . 123

4.5.3 Challenges for matching techniques . 124

4.5.3.1 Challenging situations . 124

4.5.4 Considerations about entity evolution 128

4.5.4.1 Top-Down changes . 128

4.5.4.2 Transversal changes . 129

4.6 Conclusion . 129

CHAPTER 5 DESIGN EVOLUTION METRICS FOR DEFECT PREDICTION . . . 131

5.1 Design Evolution Metrics . 132

xiv

5.1.1 Definitions . 133

5.2 Case Study . 134

5.2.1 Objects . 135

5.2.2 Treatments . 136

5.2.3 Research Questions . 136

5.2.4 Analysis Method . 137

5.2.5 Building and Assessing Predictors . 139

5.3 Results and Discussion . 141

5.3.1 RQ1 – Metrics Relevance . 141

5.3.1.1 Most Used Metrics . 141

5.3.1.2 Proportion of variability explained 141

5.3.2 RQ2 – Defect-proneness Accuracy . 143

5.3.2.1 Most Used Metrics . 143

5.3.2.2 Analysis of the Obtained Means 145

5.3.2.3 Wilcoxon Tests . 145

5.3.2.4 Cohen-d Statistics . 146

5.3.3 RQ3 – Defect count prediction . 147

5.3.3.1 Most Used Metrics . 147

5.3.3.2 Analysis of the Obtained Means 149

5.3.3.3 Wilcoxon Tests . 149

5.3.3.4 Cohen-d Statistics . 150

5.3.4 RQ4 – Defect Density Prediction . 151

5.3.4.1 Most Used Metrics . 152

5.3.4.2 Analysis of the Obtained Means 152

5.3.4.3 Wilcoxon Tests . 154

5.3.4.4 Cohen-d Statistics . 155

5.4 Threats to Validity . 156

5.5 Conclusion . 158

CHAPTER 6 CONCLUSION . 160

6.1 Synthesis . 160

6.1.1 Approximate Graph Matching . 161

6.1.2 Approximate Diagram Matching in software engineering 163

6.1.3 Design Evolution Metrics for Defect Prediction 163

6.2 Limitations . 164

6.3 Future Work . 165

xv

6.3.1 Improving the algorithms . 165

6.3.2 Hybrid diagram matching approach . 166

6.3.3 Performing more experiments . 166

6.3.4 Software evolution . 167

BIBLIOGRAPHY . 168

xvi

LIST OF TABLES

Table 1.1 Complexity classes . 5

Table 3.1 Percentage of good node matches in top 5% similar (S3D2) node matches. 51

Table 3.2 Overview of our experiments and algorithms parameters 56

Table 3.3 MCPS results on directed graphs with labels on both edges and nodes

(score in percentage of the µ0 score) . 58

Table 3.4 MCPS results on directed graphs with labels on nodes (score in per-

centage of the µ0 score) . 59

Table 3.5 MCPS results on directed graphs with labels on edges (score in per-

centage of the µ0 score) . 59

Table 3.6 MCPS results on Directed, Unlabeled graphs (score in percentage of

the µ0 score) . 60

Table 3.7 MCPS results on Undirected, Unlabeled graphs (score in percentage of

the µ0 score) . 61

Table 3.8 Computation Times (in seconds) . 62

Table 3.9 MCPS results on Small, Directed graphs (score and computation time) 63

Table 3.10 MCPS results on Small, Undirected graphs (score and computation time) 64

Table 3.11 MCPS results on large graphs (n=3000, d=6, q=0.8) 64

Table 3.12 MCPS results on dense graphs (n=300, d=60, q=0.8) 64

Table 3.13 f1,1 results on Directed graphs (score and computation time) 65

Table 4.1 ETGM cost parameters . 76

Table 4.2 ETGM Aggregate parameters . 78

Table 4.3 Terms in the example – number of occurrences are in brackets 83

Table 4.4 Valid pairs of the running example after Filter II 87

Table 4.5 LCS between terms of setLabelDrawnVerticla and drawVerticalLabel . 88

Table 4.6 Modeling class diagrams . 95

Table 4.7 Class diagram differencing: summary of the object systems (MAD-

Match vs. UMLDiff) . 96

Table 4.8 API Evolution: summary of the object systems (MADMatch versus

AURA) . 97

Table 4.9 Modeling sequence diagrams . 98

Table 4.10 Modeling labeled transition systems . 99

Table 4.11 MADMatch versus AURA (incorrect matches are in brackets, pA=pAgreement,

dP=dPrecision, dR=dRecall) . 111

xvii

Table 4.12 Matching Specification to Markov model 118

Table 4.13 Matching Specification to EDSM model 118

Table 4.14 Refactorings found on DNSJava at the package and class level 121

Table 4.15 Accuracy of different techniques for class-level operations on DNSJava

(N/A indicates operations out of the scope of ADM’04) 121

Table 4.16 DNSJava: A selection of change patterns occurring on methods 125

Table 4.17 DNSJava: A selection of change patterns occurring on attributes 125

Table 4.18 A selection of renaming patterns . 126

Table 5.1 Summary of the object systems . 134

Table 5.2 RQ1: Metrics kept 75% (or more) times when building linear regression

models to explain the number of defects—TM = C&K for Rhino and

ArgoUML, TM = Z&Z for Eclipse . 142

Table 5.3 Adjusted R2 from linear regressions on Rhino 142

Table 5.4 Adjusted R2 from linear regressions on ArgoUML 144

Table 5.5 Adjusted R2 from linear regressions on Eclipse 144

Table 5.6 RQ2: Metrics kept 75% (or more) times when building logistic regres-

sion models to predict defective classes—TM = C&K for Rhino and

ArgoUML, TM = Z&Z for Eclipse . 145

Table 5.7 C&K+DEM ≤ C&K? p-value of Wilcoxon signed rank test for the F-

measure of defective classes (confidence level: light grey 90%, dark grey

95%) . 146

Table 5.8 C&K+DEM ≤ random? p-value of Wilcoxon signed rank test for the

F-measure of defective classes (confidence level: 95%) 147

Table 5.9 Assessing C&K+DEM improvement over C&K: Cohen-d statistics (per-

centage of defective classes) . 148

Table 5.10 Assessing C&K+DEM improvement over random: Cohen-d statistics

(percentage of defective classes) . 148

Table 5.11 RQ3: Metrics kept 75% (or more) times when building Poisson regres-

sion models to predict the number of defects—TM = C&K for Rhino

and ArgoUML, TM = Z&Z for Eclipse 148

Table 5.12 C&K+DEM ≤ C&K? p-value of Wilcoxon signed rank test for the

percentage of defects per top classes (confidence level: light grey 90%,

dark grey 95%) . 150

Table 5.13 C&K+DEM ≤ random? p-value of Wilcoxon signed rank test for the

percentage of defects per top classes (confidence level: 95%) 151

xviii

Table 5.14 Assessing C&K+DEM improvement over C&K: Cohen-d statistics (per-

centage of defects) . 152

Table 5.15 Assessing C&K+DEM improvement over random: Cohen-d statistics

(percentage of defects) . 153

Table 5.16 RQ4: Metrics kept 75% (or more) times when building Poisson re-

gression models with different metric sets—TM = C&K for Rhino and

ArgoUML, TM = Z&Z for Eclipse . 153

Table 5.17 DEM ≤ C&K? p-value of Wilcoxon signed rank test for the percentage

of defects per top LOCs (confidence level: light grey 90%, dark grey

95%) . 154

Table 5.18 DEM ≤ random? p-value of Wilcoxon signed rank test for the percent-

age of defects per top LOCs (confidence level: 95%) 155

Table 5.19 Assessing DEM improvement over C&K: Cohen-d statistics (defect den-

sity) . 156

Table 5.20 Assessing DEM improvement over random: Cohen-d statistics (defect

density) . 156

xix

LIST OF FIGURES

Figure 1.1 Types of graphs . 3

Figure 1.2 Search space, local and global optimum 7

Figure 2.1 Main Graph Matching Formulations 13

Figure 2.2 Main Families of Algorithms used for Graph Matching 17

Figure 3.1 Modeling of the MCPS and the f1,1 problems 35

Figure 3.2 Generation of a pair of random unlabeled graphs with controlled dis-

tortion . 38

Figure 3.3 Devising enhanced node similarity measures for graph matching 44

Figure 3.4 Simple example of graph matching . 45

Figure 3.5 Precision of prediction in top 5% candidates on all directed graphs . . . 52

Figure 3.6 SIM-T: A similarity enhanced tabu search 54

Figure 3.7 Results on all directed graphs (Average score in percentage of the µ0

score) . 58

Figure 4.1 Example of class diagrams to be matched 70

Figure 4.2 Simple Meta-Model for software diagrams 71

Figure 4.3 Modeling of the running example . 72

Figure 4.4 Merges . 74

Figure 4.5 Block diagram of the MADMatch algorithm 81

Figure 4.6 Samples from the entity-term matrices of the running example 84

Figure 4.7 Samples from the entity-term matrices of the running example 85

Figure 4.8 Possible Moves . 91

Figure 4.9 MADMatch Evaluation approach . 94

Figure 4.10 InserireEnteEmettitore EasyCoin1.2 . 100

Figure 4.11 InserireEnteEmettitore EasyCoin2.0 . 100

Figure 4.12 ModificareEnteEmettitore EasyCoin1.2 101

Figure 4.13 Labeled Transition System S . 103

Figure 4.14 Labeled Transition System M . 103

Figure 4.15 Labeled Transition System E . 104

Figure 4.16 Sample from an output file of MADMatch 106

Figure 4.17 Boxplots of the compared accuracy measures from MADMatch versus

UMLDiff . 109

Figure 4.18 Computation times for DNSJava, JFreeChart and ArgoUML 113

Figure 4.19 Matching InserireEnteEmettitore1.2 to InserireEnteEmettitore2.0 . . . 115

xx

Figure 4.20 Matching InserireEnteEmettitore1.2 to ModificareEnteEmettitore1.2 . . 116

Figure 5.1 Average F-measure for defective classes on Rhino per top classes 146

Figure 5.2 Average F-measure for defective classes on ArgoUML per top classes . 147

Figure 5.3 Average F-measure for defective classes on Eclipse per top classes . . . 149

Figure 5.4 Average Percentage of defects on Rhino per top classes 150

Figure 5.5 Average Percentage of defects on ArgoUML per top classes 151

Figure 5.6 Average Percentage of defects on Eclipse per top classes 152

Figure 5.7 Average Percentage of defects on Rhino per top LOCs 154

Figure 5.8 Average Percentage of defects on ArgoUML per top LOCs 155

Figure 5.9 Average Percentage of defects on Eclipse per top LOCs 156

Figure 6.1 From graph matching to defect prediction: Summary and publications . 161

Figure 6.2 Synthesis of the AGM algorithms SIM-T and MADMatch 162

1

CHAPTER 1

INTRODUCTION

The work presented in this thesis aims essentially to propose a generic approach for the

automatic processing of matching (or conversely differencing) tasks in software engineering.

Such matching tasks are diverse but they typically involve software artifacts represented as

diagrams. Those diagrams can be thought of as graphs given that they consist of entities

linked together by relations. Graph matching appears then as the natural paradigm able

to address those problems in a generic way. In particular, considering that artifacts to be

matched are not necessarily identical, it is of interest to select a kind of graph matching

which allows some flexibility about paired elements. Approximate graph matching fulfills

this requirement in the sense that matched elements do not have to present the exact same

information. However, the available body of work in this domain does not permit a straight

adaptation from existing generic purpose algorithms. Original contributions to approximate

graph matching are thus needed in order to effectively achieve the goals outlined above. In

short, approximate graph matching techniques, their application on software diagrams and

the insights gained from a software quality perspective constitute the main topics of this

research document.

In the following sections, we first present some basic notions and concepts used throughout

this document and introduce in more detail the context and motivation of our research. We

then formulate our research problems and objectives before concluding with the presentation

of the organization of the rest of this document.

1.1 Basic notions and concepts

In order to ease the reading of this document, we introduce some basic notions from graph

and computational complexity theory.

1.1.1 Elements from Graph Theory

Graph theory (Berge (1958)) is a field of mathematics and computer science which focuses on

the study of graphs and related problems. The mathematical structures referred to as graphs
1 represent a very powerful tool able to model a very large range of – natural or human-made

– objects or problems. They are thus among the most common representations of structures

1The first use of this term for mathematical structures is attributed to James Joseph Sylvester in 1878.

2

and are notably used for networks, molecules, images etc. The relevance of graph theory in so

many applied sciences contributes to the emergence of a large, specialized (and occasionally

ambiguous) vocabulary associated to graphs. In the following subsections, we present basic

notions about graphs which are relevant to the present thesis.

Informally, a graph can be described as a collection of objects (called nodes, vertices or

points) possibly connected by pairwise relations (called edges or lines). This general definition

is the basis for different models and generates many variants. The most common distinction

is between directed and undirected graphs: in directed graphs (or digraphs), relations (thus

called arcs, directed edges or arrows) linking two nodes are oriented and represented as

ordered pairs of nodes. Other important types of graphs include: multi-graphs (also called

pseudo-graphs) in which pairs of vertices can be connected by more than one edge, weighted

graphs in which a weight (usually a real number) is associated with every edge (or node)

and labeled graphs in which labels (usually strings) are attached to the edges and nodes. In

addition, research literature sometimes refers to attributed graphs which can be viewed as a

generalization of labeled and weighted graphs in the sense that many attributes (of possibly

different types) can be attached to a single node or edge. Figure 1.1 presents examples for

each of the above mentioned types of graphs.

A graph G is usually represented as a couple (V,E) where V is the set of the vertices and

E the set of edges. The cardinality of the set V (the number of vertices) is referred to as

the order of the graph while the cardinality of E (the number of edges) is the size 2. Given

a vertex v, its degree (or valence) is the number of edges incident to v and denoted deg(v).

In directed graphs, one usually distinguishes between the number of arcs originating from a

vertex v (out-degree of v) and the number of arcs which destination is v (in-degree of v).

Similarly, considering the neighbors of a given node v (i.e. the nodes with an arc going to

or coming from v), one may distinguish between in-neighbors (nodes with an arc going to

v) and out-neighbors (nodes with an arc coming from v). Additionally, to each graph can

be associated a measure of density which expresses the ratio of the number of edges and the

number of possible edges; a graph with a relatively low density will be said sparse.

Although graphs can be defined using sets, they are more complex structures and many

simple definitions on sets are less trivial when it comes to graphs. This is the case for the

definition of a subgraph. Given a graph G = (V,E), a subgraph GS = (VS, ES) of G will

certainly satisfy the constraints VS ⊆ V and ES ⊆ E but those are not the only ones. The

graph obtained by considering a subset H of V and all the edges existing between two of

its vertices is G(H), the subgraph of G induced by H. Alternatively, the same subset H may

correspond to a partial subgraph of G if it contains only part of the edges existing between

2The term size is frequently and wrongly used to refer to the number of vertices

3

Figure 1.1 Types of graphs

4

two vertices of H.

Once two objects or problems have been represented as graphs, determining whether they

are equal is not a trivial task and corresponds to the graph isomorphism problem (Miller

(1979)). This well-known problem of graph theory equates to finding a bijection between

the vertex sets of the two graphs which preserves information about the edges and vertices.

In most cases, this bijection simply does not exist and a more general question is then to

determine how much (quantitatively and qualitatively) two given graphs are similar: do they

share common parts? If so, in what extent and at which level of detail?

1.1.2 Hard problems and Meta-Heuristics

Difficulty of Computational problems.

Computational problems can be defined as generic requests over a set of (generally) infinite

collection of objects, called instances. A first classification of those problems is based on the

type of request made by a given problem. For instance, one may distinguish between decision

problems (requiring yes or no answers for every instance) and optimisation problems (where

the goal is to find a solution optimizing a given function). However, given that other kinds

of problems (including optimisation problems) can be reformulated as decision problems,

research in computability theory has typically focused on decision problems. Thus, a more

important distinction is often made between decidable and undecidable problems. Decidable

problems are those for which there exists an algorithm able to solve them. Here, an algorithm

can be defined as a finite sequence of instructions which finishes and produces a correct answer

for every instance of a problem.

In general, the performance of an algorithm is assessed by considering its use of compu-

tational resources such as storage (memory use) and especially time. For a given algorithm,

the concept of time complexity refers to the number of elementary operations which might

be needed to process problem instances of arbitrarily large size. Based on their growth rates,

algorithms will be roughly classified (in decreasing order of run-time efficiency) as either

polynomial (O(nc), c ∈ R), exponential (O(cn), c > 1) or factorial (O(n!)) 3. Furthermore,

in theoretical computer science, an algorithm’s complexity depends on the mathematical

model used to represent a general computing machine. Two main (equivalent) models of a

Turing (Turing (1937)) machine (TM) are usually considered: deterministic TM and non-

deterministic TM. In essence, from any given state, a deterministic TM uses a fixed set of

rules to determine its future actions while a non-deterministic TM may have multiple possible

future actions, with any of those multiple paths potentially leading to a solution.

The inherent level of difficulty of a problem is assessed using complexity classes derived

3n being the instance size

5

from the consideration of all the possible algorithms which could be used to solve the con-

sidered problem. Depending on the time complexity and the type of TM considered, one can

distinguish four main complexity classes for decision problems, as presented in Table 1.1.

Exponential time complexity problems (EXPTIME, NEXPTIME) are considered as hard
4 and are intractable (due to combinatorial explosion) for all instances but those with the

smallest input size. In contrast, the complexity class P is generally perceived as the class of

problems admitting efficient (i.e. polynomial) algorithms. As for the class NP, it represents

the set of decision problems admitting efficiently (i.e. in polynomial time by a deterministic

Turing machine) verifiable proofs that the answer is indeed yes. For function problems, this

means that one can verify in polynomial time that a given solution is indeed a correct one.

NP includes P but whether P equals NP (i.e. NP ⊂ P) is still an open question (Cook

(1971)) and one of the main unsolved problems in mathematics 5. The complexity class NP

also includes the set of NP-complete (NPC) decision problems (Garey and Johnson (1979a))

which can be informally presented as the hardest problems in NP. A problem proven to be

NP-complete is generally considered as one for which a polynomial algorithm does not exist (if

P 6= NP). Another important complexity class often associated to NP (though not included

in NP) is the NP-hard complexity class which represent computational problems (including

problems other than decision problems) ”at least as hard as the hardest problems in NP”.

Given that there are no known polynomial algorithms able to solve optimally NP-hard or

NP-complete problems, there is interest in algorithms proposing good solutions at reasonable

times.

Meta-Heuristics.

Meta-Heuristics (Glover and Kochenberger (2003)) represent a family of techniques often

used to address hard problems. Although they do not guarantee optimal solutions, their

high adaptability and their ability to search very large spaces of solutions explains their

popularity for many combinatorial optimization problems: from graph coloring (Galinier and

Hao (1999)) to the Traveling Salesman Problem (Lin and Kernighan (1973)). In particular,

the TSP is a well-known combinatorial optimization problem formulated as follows: ”Given

a list of cities and their pairwise distances, the task is to find a shortest possible tour that

4Note that EXPTIME actually contains P and NP.
5http://www.claymath.org/millennium/

Table 1.1 Complexity classes

Deterministic Turing machine Non-Deterministic Turing machine

Polynomial P NP
Exponential EXPTIME NEXPTIME

6

visits each city exactly once”. It will be used in the following to illustrate main ideas behind

meta-heuristics.

Meta-heuristics usually try to optimize an objective function and proceed by using three

main resolution strategies:

1. Constructive heuristics: the algorithm builds a solution from an initially empty config-

uration (e.g. greedy algorithms)

2. Local search: A complete solution is iteratively modified (e.g. hill climbing, simulated

annealing, tabu search)

3. Evolutionary search: A population of solutions is evolved through genetic operators

such as selection, crossover, mutation (e.g. genetic algorithms)

Greedy algorithms (Cormen et al. (1990)) build a solution based on the maximization

at each iteration of a greedy criterion (which may use information other than the objective

function). For instance, with respect to the TSP, a well-known greedy algorithm is the

Nearest-Neighbor (NN) algorithm which selects as the next city to visit, the nearest unvisited

one. Greedy algorithms are usually very fast and can provide good solutions but for some

problem instances, they are susceptible to return very bad solutions (Gutin et al. (2002)).

Local search algorithms define neighborhoods for solutions through possible moves from

one solution to another, with the purpose of gradually moving solutions toward areas opti-

mizing the objective function. For instance, from a given solution of the TSP (a tour that

visits each city exactly once), a possible move is to permute the order in which two cities

are visited. Ideally, from any given solution, the best possible moves would improve the

objective function up to the point where the optimum is reached. In practice, a local search

can get stuck in local optima: all neighboring solutions are worse than a given solution lO

(a local optimum) but there are better solutions than lO in other search areas, as illustrated

in Figure 1.2. Hill-Climbing (the simplest local search algorithm) is very vulnerable to this

kind of scenarii because it does not permit a degradation of the objective function.

More sophisticated local search algorithms such as tabu search (proposed by Glover

(1989)) and simulated annealing (Kirkpatrick et al. (1983)) propose additional mechanisms

to escape local optima. In essence, a tabu search will forbid, through the use of (so-called)

tabu lists, that the local search returns to areas recently visited. Usually, the mechanism

does not explicitly forbid entire solutions but will rather try to prevent that moves recently

made are rapidly (in terms of subsequent iterations) undone. Clearly, doing and undoing the

same moves in a limited number of iterations can be harmful to the search process; the tabu

search is designed to prevent this kind of situation. In the example proposed in 1.2, the tabu

7

Figure 1.2 Search space, local and global optimum

mechanism may allow the search to get away from the local optima by constantly forbidding

the return to the local optimum area.

As for simulated annealing (Kirkpatrick et al. (1983)), it is inspired from a metallurgy

technique (annealing) which uses the controlled cooling of a material as a way to reduce its

defects. Each iteration, a random move mv is selected; if it improves the current solution, it is

always accepted, otherwise whether mv is accepted or not depends on a probability computed

using a cooling parameter T (the temperature) and the extent of the degradation brought

by mv. At the beginning, the temperature T, initially high, is gradually lowered along with

the probability of accepting moves degrading the solution. In the example proposed in 1.2, a

simulated annealing may escape from the local optima by allowing moves which degrade the

objective function.

Note that, unlike hill-climbing which usually stops when it reaches an optimum (either

local or global), more complex local search algorithms need stop criteria. Those criteria can be

based on a given number of iterations (possibly consecutive iterations without improvements

of the objective function), the computation time, or even algorithm-specific parameters (such

as the final temperature in simulated annealing).

Genetic algorithms (Holland (1975)), inspired from the evolutionary theory of Darwin,

manage the evolution of a population (of solutions) toward the breeding of the fittest indi-

vidual (with respect to the objective function). To achieve this goal, genetic operators (such

as selection, crossover, and mutation) and principles (such as the survival of the fittest, etc.)

are applied from generation to generation. At each generation, the best-fit individuals of

the current population are selected for reproduction and generate offspring through crossover

8

and mutation operators. In general, the number of individuals is kept constant and thus, the

least-fit individuals do not make it to the next generation.

Meta-heuristics define generic frameworks which should be enhanced by information spe-

cific to the problems at hand. It is strongly recommended that greedy criterion, neighborhood

definition, genetic operators etc. should all leverage a deep understanding of the problem

being addressed (Wolpert and Macready (1997)).

1.2 Research context and motivation

Development of software applications involves much more than coding and every serious

software project is expected to generate many by-products essential for its good completion

quality and evolution. Consequently, most software projects involve the production of arti-

facts which help describe their functionalities, architecture, design or implementation. The

analysis of those by-products is particularly useful and fuels many important advances in soft-

ware engineering as a discipline and profession. As software evolves, so do or should those

by-products. Thus, comparing software artifacts is a recurrent task for which researchers and

practitioners need efficient algorithms and tools. More specifically, given two objects gener-

ated by software activities, there is often the need to retrieve the similarities and differences

between them. A considerable amount of research has been devoted to address this issue

from the perspective of a specific problem or artifact but very few work have tried to define

and tackle an underlying and more general ”comparison problem”. This matter of facts may

prevent or hinder progress on many interesting (well-established or emerging) software engi-

neering sub-fields because part of the research effort could have to be diverted in developing

custom-made algorithms for specific artifact comparison.

In practice, comparing two software artifacts equates to determine the changes (or dif-

ferences) between them. Indeed, software engineering literature contains many approaches

for the differencing (”diff-ing”) of an artifact. Most of the proposed algorithms actually pro-

ceed as follows: ”match elements and infer the changes” to put it simply. Matching elements

and/or sub-parts of considered artifacts is thus the core of most proposals and the work

involved beyond this step is mostly trivial. Additionally, most of the software artifacts are

(or can be represented as) diagrams and those diagrams are essentially graphs with richer

information attached to nodes and edges. A generic and comprehensive approach applicable

on graphs could then be an interesting option permitting to deal efficiently with the various

matching problems identifiable in software engineering.

Graph matching refers to a set of problems involving the comparison of two graphs.

It is often divided in two classes: exact graph matching and approximate graph matching

9

(also referred to as inexact graph matching). Exact graph matching includes well-known

problems of graph theory such as graph isomorphism but it imposes a strict correspondence

on nodes and relations to be matched. This is not practical in most real-life applications,

including matching tasks in software engineering, where matchings of interest should tolerate

errors of correspondence. On one hand, approximate graph matching offers that flexibility

along with some elegant ways of modeling differencing problems. On the other hand, a

review of algorithms addressing approximate graph matching reveal that (i) the vast majority

of proposed approaches are very application-oriented and (ii) their target graphs do not

necessarily look like the kind of graphs and diagrams found in software engineering. In

fact, the (sometimes very specific) target graphs used in the evaluation of most techniques

originate from a few research communities such as those of image processing, computer vision

and bio-chemistry. As a result, researchers and practitioners from many fields, when facing an

approximate graph matching problem, can be hard-pressed in choosing between algorithms

(designed for other specific applications) and risk ending up with their choice being unable to

scale up to the size of their own target graphs. Ultimately, this explains in part the lack of a

unified framework for the resolution of matching tasks in software engineering and prompts

the need to design and evaluate a generic AGM approach on generic graphs.

1.3 Research problems and objectives

From the research context, it is clear that our research problem integrate elements from

computer science, software engineering and graph theory. The problems we address are

interconnected but present their own specificity and challenges as exposed below.

1.3.1 Approximate Graph Matching

Determining the extent of similarity between two objects or problems represented as graphs

is a recurrent and important question. Given two graphs, an intuitive answer consists in

matching, with respect to some constraints, nodes and arcs from the first graph to nodes

and arcs from the second. In many domains, the generated or observed graphs are subject

to all kinds of distortions or modifications. There is thus, a needed flexibility about the

constraints imposed on the matched elements. Such flexibility is typically introduced through

mechanisms of bonus and/or malus: matching two elements may result in either a gain or a

loss depending on how similar they are. The sought solution is then the one which maximizes

the gains and/or minimizes the losses. This general schema is translated into many different

formulations but they share a common characteristic: their NP-hardness. This means (if

P 6= NP) that polynomial algorithms cannot guarantee to solve them optimally. Most

10

of the relevant literature on AGM propose many interesting techniques addressing a given

formulation. However, there are also important work aiming to propose common framework

and formulation able to integrate most of the specific variants. Those frameworks provide

the basis of the investigation for a generic AGM technique which can be effective and efficient

for most formulations and target graphs.

Our first research objective is thus formulated as follows: Propose an approximate

graph matching approach readily usable on (or easily adaptable to) matching problems arising

in many real-life applications. Consequently, our focus is on graphs stripped of specificities

encountered in given fields and the goal is to develop efficient techniques making the best use

of the minimal information one can retrieve on every graph: structural information.

1.3.2 Diagram Matching in Software Engineering

Identifying the commonalities and differences between two diagrams is an important task in

software engineering, especially in software evolution analysis. Accurate information about

the history of (or subsequent changes occurring on) a given artifact or entity is much needed

in many applications such as project planning or defect prediction. Although graph matching

can be used as a robust framework to address those activities, (software) diagrams have some

specificities which should be integrated in order to have efficient algorithms. In particular, in

contrast with the graphs that we address in the first research objective, textual information is

in this context as important as structural information, prompting the need to explore textual

similarity comparison and asking the question of the weighting of structural and textual

information.

Our second research objective is thus formulated as follows: Propose a generic and

scalable approach for the automatic processing of diagram comparison problems arising in

software engineering.

1.3.3 Evolution metrics for Defect prediction

There are a number of insights one can get from the comparison of software artifacts. In

particular, in a software evolution context, there are many valuable information one can get

from the evolution profile of a given entity. Once changes occurring on entities are retrieved,

software engineers and testers may be interested in inferring directly useful knowledge about

the system being developed.

Defect prediction has been one of the most active research lines with direct practical use

for the industry. The potential of this research is enormous: if it becomes possible to predict

the location and/or number of bugs in specific modules, savings in terms of testing effort

11

would be substantial. The problem has been tackled from a number of perspectives, from

sampling techniques to machine learning models but the main input are metrics which are

proposed and supposed to correlate with defect occurrences. The relation between changes

and defects is an established one but there was no work investigating the effect of hi-level

changes on the defect proneness of source code.

Consequently, our third research objective is to propose evolution metrics able to

predict defect location.

1.4 Thesis plan

The rest of this document is organized as follows. Chapter 2 reviews three research areas

related to our work, i.e., graph matching, differencing software artifacts and defect prediction.

Chapter 3 presents our approach on approximate graph matching. Our proposal is a tabu

search initialized using adequate structural similarity measures. Chapter 4 presents the

adaptation and application of our graph matching framework on software diagrams and

discuss some of our findings. In Chapter 5, we define simple design evolution metrics for

object-oriented systems and investigate their use for defect prediction. Finally, Chapter 6

summarizes our work and outlines possible future directions.

12

CHAPTER 2

RELATED WORK

The current chapter is devoted to the review of the three main research areas relevant to the

work presented in this thesis. In the following, we first review graph matching literature (the

different formulations and techniques) then present an overview of differencing approaches in

software evolution before ending with related work on defect prediction.

2.1 Graph matching in research literature

Graph representations are among the most common and effective ways to model all kinds

of natural or human-made objects. Once two objects or problems have been represented

as graphs, their comparison is a fundamental question in many different applications and is

referred to as graph matching.

Research work on graph matching is very active and multi-disciplinary as graphs to be

matched can represent images (Toshev et al. (2007)), molecules (Wang et al. (2004)), soft-

ware artifacts (Abi-Antoun et al. (2008)) etc. Formulations of the problem and proposed

algorithms are manifold. The body of work is so large and diverse that, reminiscent of what

can be observed for graphs, the vocabulary associated to graph matching is very extended

and sometimes ambiguous.The goal of the current section is to present a concise picture of

the state-of-the-art in graph matching. In the following, we first present the most important

formulations of graph matching and the main families of techniques used for these problems.

We then discuss the way the evaluation of the proposed techniques is conducted, in particu-

lar the benchmarks used and conclude by highlighting the lessons learned and the intuitions

confirmed from the review of graph matching literature.

2.1.1 Graph Matching formulations

Graph matching is a generic term which corresponds in fact to many different specialized

formulations which can be regrouped in two main categories: exact graph matching and

approximate graph matching 1. Figure 2.1 previews the most important formulations of

graph matching, the ones which will be detailed in the following.

1Some authors prefer Inexact Graph Matching or Best Graph Matching.

13

Figure 2.1 Main Graph Matching Formulations

2.1.1.1 Exact Graph Matching

Graph matching problems of this category do not tolerate differences between matched nodes

and edges. They abide to the edge-preservation constraint which requires that edges con-

necting two matched nodes must be perfectly matched. The main problems of this category

are Graph Isomorphism (Miller (1979)) and Induced Subgraph Isomorphism (Cook (1971))

but there exist other interesting formulations.

Graph Isomorphism (GI) Given two graphs G1 = (V1, E1) and G2 = (V2, E2), with

|V1| = |V2|, the problem consists in determining whether there exists a bijective one-to-one

mapping f : V1 → V2 such that (x1, y1) ∈ E1 ⇔ (f(x1), f(y1)) ∈ E2. In the general

case, when some kind of information (labels, weights, attributes) is attached to the ver-

tices and edges, appropriate formulations will usually require the preservation of that in-

formation: information(x1) = information(f(x1)) ∀x1 ∈ V1 and information(x1, y1) =

information(f(x1), f(y1)) ∀(x1, y1) ∈ V1 × V1. When such a mapping f exists, G1 is said to

be isomorphic to G2. In most problem instances, the strong constraints described above and

their implications (for instance, only vertices of the same degree can be matched) will reduce

drastically the mapping possibilities and ease the discovery of a bijective mapping. However,

in the general case, it is still unclear whether polynomial algorithms can solve optimally the

GI problem.

Induced Subgraph Isomorphism Given two graphs G1 = (V1, E1) and G2 = (V2, E2),

with |V1| ≤ |V2|, the problem consists in determining whether there exists an isomorphism

14

between the smallest graph (G1) and an induced subgraph SG2 of the biggest graph (G2).

The problem is known to be NP-complete.

Exact Subgraph Matching Matching two given graphs equates to mapping their sub-

parts: nodes, edges and arguably subgraphs. There can be some ambiguity in the adopted

subgraph definition. In our view, one can talk about exact graph matching only if the sub-

graphs induced by the matched vertices are isomorphic. In that sense, the maximum common

subgraph (MCS) problem in which the goal is to find the largest (in terms of the number

of vertices or edges) common subgraph of two graphs can be classified only if precision is

brought on which kind of subgraph is sought. If one is seeking common induced subgraphs,

it corresponds to the maximum common induced subgraph (MCIS) 2 problem (Garey and

Johnson (1979b)) which can be classified as an exact graph matching problem. Note that

the MCIS problem is known to be NP-hard and can be used to model Graph Isomorphism

and Induced Subgraph Isomorphism.

Reformulation as a maximum clique problem A common way to tackle exact graph

matching is through the reformulation as another well known and studied problem of graph

theory: the maximum clique problem (Haris et al. (1999); Raymond et al. (2002)). Given

an undirected graph G = (V,E), a clique is a subset C of V such that there exists an edge

connecting every two vertices of C. A maximum clique is simply a clique of the largest

possible size in a given graph. The link with graph matching is made by considering a

compatibility (or association) graph whose vertex set is included 3 in the cartesian product

of the vertex sets of the two graphs (G1 and G2) to be matched. Between each two vertices

(x1, x2) and (y1, y2) (with x1, y1 ∈ V1 and x2, y2 ∈ V2) of this compatibility graph, there

will be a link if the node matches are compatible: information linking (or not) x1 and y1 is

identical to information linking (or not) x2 and y2. Retrieving the maximum clique in such a

graph equates to finding the maximum (relatively to the number of nodes) common induced

subgraph between G1 and G2. Additional mechanisms (such as weights assigned to the nodes

or edges) can be used to find the biggest subgraph in terms of edges 4. The maximum clique

problem is known to be NP-hard (Karp (1972)).

2also called Maximum Common Subgraph Isomorphism problem
3The vertex set of a compatibility graph may exclude some pairs if information attached to them is not

compatible.
4It is even possible to keep the clique analogy for approximate graph matching, provided substantial

adjustments.

15

2.1.1.2 Approximate Graph Matching

In most real-life scenarios, the information brought by exact graph matching formulations is

not satisfactory. Their strict constraints, while potentially very helpful in algorithms, usually

prevent the detection of common parts between two graphs. Consequently, more flexible

graph matching formulations have been proposed, among which the Maximum Common

Partial Subgraph (MCPS) problem (Raymond et al. (2002)), the Weighted Graph Match-

ing (WGM) problem (Umeyama (1988)) and the Error-Tolerant Graph Matching (ETGM)

problem (Sanfeliu and Fu (1983); Bunke (1998)).

Maximum Common Partial Subgraph (MCPS) The MCPS problem is among the

simplest approximate graph matching formulations and it can serve as a good introduction

to core ideas of approximate graph matching. Similar to the MCIS problem, it clearly refers

to the optimization (maximization) of a certain criterion: usually, the number of perfectly

matched edges5. And more importantly, it relaxes the edge-preserving constraint of exact

graph matching: given two nodes x1 and y1 from one graph and their matched counterparts

x2 and y2 from the other graph, information linking (or not) x1 and y1 is not required to be

identical to information linking (or not) x2 and y2. Exact correspondences will still be sought

as they will contribute to the objective function This formulation of Approximate Graph

Matching is useful in many practical contexts (notably in bio-chemistry applications) but

it is quite limited by the fact that its objective function is a simple count of perfect (edge)

matches.

Weighted Graph Matching (WGM) The WGM problem (Umeyama (1988)) is a graph

matching formulation which targets graphs with weights on their edges and aims to minimize

the distance between the adjacency matrices of two given graphs. The original formulation

assumes that the two graphs have the same size and a permutation matrix P can thus be

used to encode a solution; Pij = 1 if vertex i of graph G1 is matched to vertex j of graph G2

and zero otherwise. Formally, the WGM problem is defined using a least-square formulation:

minP∈Π||A1 − P T A2P ||
2
F

where Π is the set of permutation matrices, A1 and A2 the adjacency matrices of the graphs

G1 and G2 and ||.||2 is the square of an euclidean norm. Node information can be exploited if

a dissimilarity function or matrix is provided for the nodes. The objective function can thus

5When looking for a common partial subgraph, maximizing the number of vertices is a trivial problem.
The number of edges is the only interesting option and this explains the occasional confusion of the MCPS
problem with the Maximum Common Edge Subgraph (MCES) problem

16

integrate nodes and the optimal matching will contain not only edges with similar weights,

but also vertices with similar labels. The objective function then becomes

minP∈Π(1− α)||A1 − P T A2P ||
2
F + αCT P T

where C is a matrix encoding pairwise dissimilarities between vertex labels of two graphs, and

α controls the trade-off between edge and vertex alignment components (the greater α, the

more importance is given to matching vertices with similar labels). Furthermore, the WGM

problem can be extended to graphs of different sizes through the introduction of dummy

nodes. Unlike the MCPS, comparison of the graph elements (nodes and edges) does not

result in a binary yes/no answer and this allows a more fine-grained comparison in the cases

where information dissimilarity on the graph elements (nodes an edges) can be quantified. A

severe limitation of this formulation is that the edges cannot have attributes other than their

weight. Consequently, one can not explicitly forbid the matching of specific types of edges or

even apply specific costs for specific edges.

Error Tolerant Graph Matching(ETGM) In this formulation (Sanfeliu and Fu (1983);

Bunke (1998)), the matching cost of two graphs is based on an explicit model of the errors

(distortions) that can occur (i.e. missing nodes, etc.) and the costs that they may trigger.

This idea is often extended to the concept of graph edit operations: one defines a set of

edit operations on graphs, each with an assigned cost, and the goal of the problem is to

find a series of those operations (transforming the first graph into the second one) with

a minimum cost. Those operations are typically deletions (corresponding to unmatched

elements from the first graph), insertions (corresponding to unmatched elements from the

second graph) and substitutions (occurring when elements are matched). Costs assigned to

those operations inform about the desired matching and algorithms can be applied to find

the cheapest sequence of operations needed to transform one of the two graphs into the

other. Under certain constraints on the assigned costs, this edit cost can satisfy distance

requirements (commutativity, etc.) and Error Tolerant Graph Matching is sometimes called

the Graph Edit Distance (GED) problem. The ETGM problem is proven NP-hard (Bunke

(1998)) and can be used to model other AGM formulations provided the right edit operations

and associated costs.

2.1.2 Approximate Graph Matching Algorithms

Various kinds of techniques have been proposed to address the different formulations of graph

matching problems. The line between formulations and techniques for Graph Matching is

17

Figure 2.2 Main Families of Algorithms used for Graph Matching

quite blurred, and many algorithms are only applicable for a given formulation or type of

graph. Figure 2.2 presents the most important families of techniques used to address graph

matching problems. We propose in the following a more detailed review (partially inspired

by the classification of Conte et al. (2004)) of those techniques.

2.1.2.1 The Hungarian algorithm

The Hungarian method (Kuhn (1955)) 6 is an algorithm widely used in graph matching

problems. It solves optimally in polynomial time the assignment problem which consists in

finding a maximum weight matching in a weighted bipartite graph. When used for graph

matching, the vertex set of the bipartite graph is the union of the vertex sets of the two

graphs to be matched; edges exist only between nodes of different graphs and are weighted

with a node similarity value expressing the similarity (or the mapping cost) of the nodes in

presence.

Node Similarity The similarity between nodes of two graphs is an important concept (not

limited to its use by the Hungarian problem) in graph matching and certainly one of the most

intuitive measures for assessing the quality of a given node match. Node similarity refers to

6The name is an acknowledgment of the influence of earlier works of two Hungarian mathematicians:
Denes Koenig and Jeno Egervary.

18

the measurement of common features between two nodes. In a graph matching context, the

considered nodes come from different graphs and the computed measure is generally used to

fill a weighted assignment matrix (e.g. Jouili and Tabbone (2009); Riesen and Bunke (2009)).

There are three main categories depending on the kind and magnitude of information used

to compute the similarity: (i) application-specific node similarity based on specific object

features (such as name, etc.) (Antoniol et al. (2001)), (ii) global node similarity based on

node indexing (notably from random walks) (Shokoufandeh and Dickinson (1999); Gori et al.

(2005)) and (iii) local similarity based on node neighborhoods (Jouili and Tabbone (2009);

Riesen and Bunke (2009)). Recently, Jouili and Tabbone (2009) proposed, for weighted

graphs, a simple node signature used to compute a local node similarity measure. Each node

is associated with a vector whose components are the node degree and the incident edges’

weights. A dissimilarity value can then be computed between any pair of nodes by using

a Manhattan distance between the signature vectors. In the same vein, BP, an algorithm

proposed in Riesen and Bunke (2009) for the GED problem, involves the computation, for

each possible node match, of a value accounting for its optimal contribution in reducing

the cost of the matching. This is done considering the nodes’ information and immediate

neighbors and can somehow qualify as a node similarity measure 7. Both Jouili and Tabbone

(2009) and Riesen and Bunke (2009) reformulate the AGM problem as a weighted bipartite

graph matching - whose weights are the distances between the pairs of nodes - then solved

with a Hungarian algorithm.

The accuracy of the Hungarian algorithm is severely limited by the fact that it optimizes

the mapping of the nodes based on a static assessment of their similarity. It remains never-

theless a very popular choice for graph matching problems because of its simplicity and the

fact that it can be readily used as part of more complex approaches (Zaslavskiy et al. (2009)).

2.1.2.2 Algorithms based on Tree Search

Solutions to graph matching problems can be incrementally built using techniques based on

tree search. Here, the search (with backtracking allowed) - is directed by the cost of the

partial solution being built and various heuristics can be used to prune paths which are esti-

mated unfruitful (following branch and bound principles) or, on the contrary prioritize most

promising paths (inspired by the notorious A* search algorithm 8). The range and power

of prediction of the proposed heuristics (You and Chan (1990)) are essential for reasonable

computation times and (near) optimal results. If the prediction is wrongly done, the optimal

7This assertion actually depends on the cost parameters.
8The A* algorithm, widely used in path finding and graph traversal, uses a best-first search and finds the

least-cost path from a given initial node to one goal node.

19

solution can be missed. At the same time, if there is no or very limited prediction, the search

space may be entirely explored, thus eliminating the very interest of using tree search. Some

authors also put their efforts into redefining or simplifying the graph matching problem. As

examples of this, we can cite decomposition techniques (Eshera and Fu (1984)), transforma-

tion models (Cordella et al. (1996)). Overall, some tree-search based techniques are optimal

algorithms (Dumay et al. (1992)) but the major drawback of this category of techniques is

the often prohibitive computation times required when the graphs are not very small ones.

2.1.2.3 Continuous Optimization

The scientific literature is rich in fast and efficient - if not optimal - algorithms designed to

resolve continuous optimization problems. This explains the ”popularity” of this family of

techniques even if it means (i) casting an inherently discrete problem into a continuous, non

linear problem, (ii) solving the new problem with an appropriate continuous optimization

technique, and (iii) eventually converting the obtained solution back into the initial discrete

problem. This class of techniques has been used notably for the WGM formulation (Almo-

hamad and Duffuaa (1993)). Instead of directly searching for permutation matrices between

the nodes of the considered graphs, a relaxation is applied in order to find doubly stochastic

matrices. Such matrices X = (xij) satisfy the following linear constraints

xij ≥ 0,
∑

i

xij = 1,
∑

j

xij = 1∀ i and j

and include permutation matrices. The problem is reformulated as a linear programming

problem and can be solved using the simplex algorithm. Once the doubly stochastic matrix

is obtained, it can be converted back to a permutation matrix using standard assignment

algorithms such as the Hungarian.

Note that other continuous optimization approaches have been proposed: from “sim-

ple” probabilistic relaxation framework (Kittler and Hancock (1989)) to the definition of a

Bayesian graph edit distance (Myers et al. (2000)).

2.1.2.4 Spectral methods

Spectral methods originate from the observation that the node-to-node adjacency matrices

of isomorphic graphs have the same eigenvalues and eigenvectors. The converse is not true

as two adjacency matrices sharing the same eigenvalues and eigenvectors do not necessarily

define two isomorphic graphs. Plus, the used information is purely structural: it does not

consider at all information on nodes and it does not take into account possible additional

20

information on edges (labels, attributes). Despite all this, spectral decomposition (also called

eigendecomposition) constitute an interesting starting point for a graph matching problem

and the idea was pioneered by Umeyama (1988). The spectral decomposition of a matrix pro-

vide a canonical representation using eigenvalues and eigenvectors, thus simplifying complex

matrix computations.

Simply put, the spectral approach takes advantage of this decomposition through a con-

venient relaxation of the WGM formulation: from the search of a permutation matrix to

that of an orthogonal matrix9. The orthogonal matrix satisfying optimally the WGM formu-

lation can then be computed. When the two graphs to be matched are nearly isomorphic,

the conversion of such orthogonal matrices in permutation matrices is trivial. Otherwise, a

standard assignment algorithm such as the Hungarian can be applied. As far as approximate

matching is concerned, results obtained from spectral methods gain in accuracy as the con-

sidered graphs are nearly isomorphic but some proposals (Caelli and Kosinov (2004)) can be

somewhat robust to distortions. In the literature, spectral features are often combined with

other methods like continuous optimization techniques, clustering techniques (Carcassoni and

Hancock (2001); Caelli and Kosinov (2004); Sarti (2005)) or simply used to guide a greedy

search procedure (Shokoufandeh and Dickinson (2001)).

2.1.2.5 Meta-Heuristics

Given that most graph matching problems are NP-hard (Crescenzi and Kann (1997)), many

algorithm proposals integrate meta-heuristics such as simulated annealing (Eshera and Fu

(1984)), deterministic annealing (Gold and Rangarajan (1996)), genetic algorithms (Barecke

and Detyniecki (2007); Salmon and Wendling (2007)), tabu search (Sorlin and Solnon (2005))

etc. Search meta-heuristics are (usually) non-deterministic methods which are proposed for

the exploration of (usually very large) search spaces. In Salmon and Wendling (2007), a

genetic algorithm is proposed to solve a graph matching problem involving graphic symbols.

The objective function used is the sum of the similarity values between matched nodes and

edges. Edge matches are implicitly defined by node matches. A solution is encoded using

node matches and crossovers consist of exchanges of node matches between two parents.

2.1.3 Evaluation of graph matching approaches

In many graph problems involving NP-hard combinatorial optimizations (such as the maxi-

mum clique or the graph coloring problem), there exist standardized, sometimes centralized

benchmarks on which researchers can evaluate their approach. Records of best solutions are

9A square matrix M(N*N) with real coefficients is said to be orthogonal if its inverse is equal to its
transpose.

21

kept and the contribution of a new algorithm to the state of art can be quantified to a certain

point. The situation is quite different for graph matching problems. Exact Graph Match-

ing (EGM) benefits from very clean and restrictive formulations which ease the proposal

of standardized benchmarks for Graph Isomorphism, Subgraph Isomorphism and Maximum

Common Induced Subgraph problems as materialized by Foggia et al. (2001). However, as

already stated, EGM formulations are of limited use in practice. As ”real-life” problems

encountered in virtually every area of applied science, graph matching problems of interest

mostly fall in the approximate graph matching (AGM) category and they are often addressed

by researchers within the reduced scope of some specific activity. With respect to the na-

ture of the datasets used, evaluation of proposed techniques fall in two main categories:

application-centric and experiments on synthetic data.

2.1.3.1 Application-centric evaluation

The evaluation of the proposed AGM techniques is often conducted on very specific 10 data

(sometimes not publicly available). Rather than generic datasets, the evaluation of AGM

techniques is organized around several application-driven benchmarks, the most used coming

from image 11 and bio-chemistry communities 12. Unfortunately, those datasets are gener-

ally not stored in a graph format and often require sizable knowledge of the relevant field

before being exploitable. Moreover, even within a given research field, the conversions of

those data into graphs are not always uniform and a given dataset can have different graph

representations from one (often quite complex) conversion technique to another. As a result,

researchers and practitioners from other fields cannot really benefit from the considerable

amount of work already performed in research areas such as image and video processing

or bio-chemistry. Another problem worth mentioning is that most graphs considered in

application-driven matching techniques are undirected and quite small (less than 100 nodes)

prompting adequacy and scalability issues when in presence of large graphs.

2.1.3.2 Experiments on synthetic graphs

While the vast majority of techniques for graph matching are evaluated on specific applica-

tions, many publications also include or focus on experiments conducted on synthetic data,

with pairs of graphs generated with a controlled level of noise. Given one graph, a second

graph will be generated by performing one or several of the following operations:

10Some publications on face recognition techniques propose algorithms evaluated only on the faces of the
involved researchers.

11e.g. the GREC’05 database at http://symbcontestgrec05.loria.fr/ or the COIL-100 database at
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

12e.g. the NCIS database of molecules at http://dtp.nci.nih.gov/docs/3d database/dis3d.html

22

1. adding a given percentage of new edges (Zaslavskiy et al. (2009))

2. reverting the edge information (no edge ⇒ new edge and vice versa) for a given per-

centage of randomly chosen pairs of nodes (Emms et al. (2009); DePiero and Krout

(2003))

3. deleting a given percentage of nodes (Massaro and Pelillo (2003); DePiero and Krout

(2003))

4. applying noise on nodes and edges (adding or subtracting an ǫ) in case of weighted

graphs (Barecke and Detyniecki (2007))

Such distortions enable controlled experiments and inform about the efficiency and limits

of the evaluated techniques. However, to the best of our knowledge, the distortion models

encountered in the literature are very limited and there is no proposal for a generic distortion

model for the evaluation of graph matching algorithms.

2.1.4 Toward a generic approach for Graph Matching

In summary, our literature review reveals the diversity of formulations, techniques and bench-

marks used for graph matching. Given our research objective which is the proposal of a

generic approach for graph matching, some options seem more natural than others. First,

out of the possible different formulations, ETGM is arguably the most complete: given the

right edit operations and associated costs, it can model all the other formulations and is a

solid choice for any approach aiming for genericness. As for the algorithms, meta-heuristics

represent a family of techniques with demonstrated efficiency on NP-hard problems and

adaptable to any graph matching formulation. Moreover, in Kang and Naughton (2008), a

simple Hill Climbing method was deemed superior to more sophisticated methods including

pioneering algorithms using continuous optimization (Almohamad and Duffuaa (1993)) and

spectral methods (Umeyama (1988)). Finally, the question of the evaluation of devised tech-

niques calls for the proposal of an extended model able to generate synthetic graphs on which

generic algorithms can be tested.

There are also a number of interesting and worth mentioning assumptions and intuitions

about Graph Matching in the literature. In Raymond et al. (2002), the MCPS problem is

addressed through a reformulation in a maximum clique problem by an algorithm named

RASCAL. Interestingly, a screening procedure is performed on the considered pair of graphs

- using characteristics such as their number of edges - and the MCPS algorithm is only

applied if the graphs are deemed similar enough. This is consistent with the intuition that

one is generally more interested in having a good matching when the graphs considered are

23

similar. Another interesting idea is present in Sammoud et al. (2006) which considers a good

matching as one that maximizes the number of common node and edge features between the

matched parts of the graphs in presence. Along with the widespread use of node similarity

in graph matching, this suggests (unsurprisingly) that the idea of similarity is very central

in graph matching problems (independently of their formulations) and should be leveraged

in proposed heuristics. The more elements (nodes and edges) one will be able to perfectly

match between two graphs, the (probably) better the obtained matching. Those intuitions

offer interesting perspectives: every (meaningful) objective function of graph matching will

try to maximize commonalities and minimize differences in matched parts. Optimal solutions

for such simple graph matching variants are probably ”close” to optimal solutions for more

complex objective functions.

2.2 Differencing software artifacts

In software engineering, design artifacts are generally represented as diagrams and they are

used to describe the structure or behavior of a software. For a given software, some dia-

grams (e.g. class diagrams) will inform about its structure (or static view) by focusing on

components and their inter-connections while others (such as sequence diagrams or labeled

transition systems) will capture its behavioral description (or dynamic view). The need to

compare such diagrams arises in many contexts, among which the following: (i) retrieving

the evolution of a given artifact through the life of a system, (ii) comparing variants of a

model, (iii) maintaining traceability between different types of software artifacts.

Here, we will consider the evolution of software artifacts. Large Object Oriented systems

exist that have been under continuous development and evolution for many years. When

maintaining and evolving such systems, developers must understand the rationale of previous

changes and the underlying design decisions. Similarly, managers may rely on the history of

the design evolution to plan future maintenance and evolution tasks.

Modeling software diagrams as graphs is usually an easy and straightforward task given

that those diagrams are essentially graphs with more information attached to the nodes and

arcs. Consequently, graph and tree matching algorithms have been proposed in the literature

to help developers in identifying structural changes between the designs of subsequent releases

of large OO systems (Antoniol et al. (2001); Godfrey and Zou (2005); Kim and Notkin (2009);

Mandelin et al. (2006); Tu and Godfrey (2002); Xing and Stroulia (2005a,b)). In a typical

setting, a design representation, usually the class diagram, is first recovered from the code and

then a matching algorithm is applied to several versions in order to gain insight on the design

evolution. Most of these matching algorithms have been tailored to a specific representation

24

(e.g. XML DOM tree) and only address a specific problem, such as class diagram evolution.

Some of them are efficient but it may be difficult to adapt them to a different representation

or to tackle a different problem, e.g. the evolution of state or activity diagrams.

There exist several pieces of work in the literature related to the analysis of software

evolution (Antoniol et al. (2001); Canfora et al. (2009); Godfrey and Zou (2005); Kim and

Notkin (2009); Lanza et al. (2009); Mandelin et al. (2006); Tu and Godfrey (2002); Xing

and Stroulia (2005a,b)). In general, differencing algorithms compute the delta between two

releases of a system using a flat representation (i.e. considering a system as a sequence of

lines of code) or using various underlying representations (e.g. logic facts).

2.2.1 Differencing Algorithms at File Level

Several algorithms have been presented in the literature (e.g. S.G. et al. (1992)) that model

software evolution at the level of lines of code and that report added and deleted lines. These

algorithms are relatively simple to implement (e.g. using the Unix diff algorithm) and to

apply. Yet, as noted in Canfora et al. (2009); Xing and Stroulia (2005b), they are not adapted

to study the evolution of a system. Indeed, when used in the context of software evolution,

these algorithms miss important information. For example, when a class is renamed, the

Unix diff algorithm would report the change as the original class being deleted and a new

class being added, while a developer would be interested to understand the renaming (Xing

and Stroulia (2005b)).

Canfora et al. (2009) presented a novel line-differencing algorithm, ldiff, that overcomes

Unix diff limitations to identify changed text lines. ldiff is a language-independent algorithm

that can be used for tracking the evolution of classes as a sequence of lines to track the

evolution of source clones or to monitor vulnerable instructions of networking systems. It

could also be used to analyze different artifacts, such as source code, use cases, and test cases.

ldiff focuses on tracking blocks of lines across file releases, trying to distinguish between line

changes and additions/deletions.

Godfrey and Zou (2005); Tu and Godfrey (2002) proposed an algorithm, Beagle, to analyze

the evolution of software systems. Their algorithm works at the file-structure level, using

origin analysis (Tu and Godfrey (2002)). In essence, they apply a process which borrows

techniques from software clone detection and tries to decide if a class is introduced in a new

release or if it should be seen as the same class that has changed during the evolution from

the old release to the new one.

25

2.2.2 Differencing Algorithms at the Design Level

The problem of detecting changes between the designs of subsequent releases of systems has

been already studied in the past by (Antoniol et al. (2001)). Their algorithm recovers the

design from the source code in an intermediate representation and compares it with subse-

quent releases. The proposal includes a maximum match (Cormen et al. (1990)) algorithm

(similar to the Hungarian algorithm of Kuhn (1955)) applied to a bipartite graph. Nodes

in the bipartite graph are the classes of the two releases and the similarity between them

is derived from class and attribute/method names by means of string edit distance. The

algorithm did not deal with the class relations.

Xing and Stroulia (2005a,b) proposed UMLDiff for differencing different versions of a sys-

tem. Their tool, implemented as an Eclipse plug-in with a PostgreSQL database, integrates

a fact extractor which reverse-engineers, from Java source code, a model of object-oriented

(OO) software systems which includes ”classes, the information they may own, the services

they can deliver, and the associations and relative organization among them”. UMLDiff

takes as input this model which contains elements organized hierarchically (subsystems, then

packages, then classes and interfaces, then attributes and operations) and tries to identify

moves (e.g. an operation is moved from one class to another) and renaming of elements.

More specifically, given two versions of an OO software system and their reverse-engineered

diagrams represented as two graphs G1(V1, E1) and G2(V2, E2), UMLDiff first retrieves trivial

matches (entities having the same information in both graphs) which serve as landmarks to

recover the actual changes between the two versions. Using lexical and structural similarity

between elements from the two graphs, UMLDiff proceeds to multiple rounds of renaming

and move identification, with each match between two elements serving as new evidence for

the matching of other related elements.

2.2.3 Logic-based Representations

Some algorithms use logic-based facts to analyze the evolution of software systems. For

example, LSdiff (Kim and Notkin (2009)) groups the results representing the differences and

infers logic rules to discover and represent systematic structural changes.

A fact extractor (as for example grok Holt (1998)) is first applied on two releases of a same

system. Then, LSdiff computes the differences between extracted facts to obtain fact-level

differences. These differences are then condensed into simpler rules grouping similar code

changes.

26

2.3 Defect Prediction

Predicting location, number or density of defects in systems is a difficult task that has been

studied in several previous works. We focus on the works using metrics extracted from design

or code, project or software historical data, and code churns to predict defects.

2.3.1 Static OO Metrics

Several researchers identified correlations between static OO metrics, such as the Chidamber

and Kemerer (C&K) metrics (Chidamber and Kemerer (1994)), and location of defects. The

intuition supporting the use of complexity metrics for the prediction of defective classes is

that complex code is more defect-prone than simple code.

Basili et al. (1996) were among the first to use the OO metrics proposed by C&K (Chi-

damber and Kemerer (1994)) to predict defective classes. To validate their work, these au-

thors collected data on the development of eight similar small-sized information management

systems (180 classes in total). All eight systems were developed using an OO analysis/design

method and the C++ programming language. Results showed that five out of the six con-

sidered metrics, defined in Section 5.2.2, appear to be useful to predict defective classes:

WMC(Weighted Methods for Class), DIT(Depth of Inheritance Tree), RFC(Response For

Class), NOC(Number Of Children), CBO(Coupling Between Objects) 13.

Another empirical study (Cartwright and Shepperd (2000)) conducted on an industrial

C++ system (over 133 KLOC) supported the hypothesis that classes participating in in-

heritance structures have a higher defect density than others. It followed that C&K’s DIT

and NOC metrics could be used to identify classes that are likely to be more defective, thus

confirming the previous work by Basili et al.

Gyimóthy et al. (2005) compared the accuracy of a large metric suite, including C&K

metrics, to predict defective classes in the open-source system Mozilla. They concluded that

CBO is the best predictive metric. They also found LOC to be useful in the prediction.

Zimmermann et al. (2007) related bug reports for Eclipse (releases 2.0, 2.1, and 3.0)

to fixes, i.e. they computed the mapping of packages and files to the number of defects

in each considered release. They conducted an empirical study using common complexity

metrics (e.g. fan-in and fan-out) to define prediction models. Their models showed that a

combination of complexity metrics can predict defects, suggesting that the more complex a

class, the more defective. We use in this paper their work as a comparison basis to evaluate

our proposed metrics.

Emam et al. (2001) showed that, after controlling for the confounding effect of “size”,

13LCOM(Lack of Cohesion Of Methods) was not found useful

27

the correlation between OO metrics and defect-proneness disappeared: many OO metrics

are correlated with size and, therefore, “add nothing” to the models that predict defects.

This latter work can be regarded as an incentive to develop new metrics, possibly based on

software evolution, to avoid strong correlation with size.

2.3.2 Historical Data

Some researchers used historical data to predict defects, following the intuition that systems

with defects in the past will also have defects in the near future.

Ostrand et al. (2005) proposed a negative binomial regression model based on various

metrics (e.g. number of defects in previous releases, code size) to predict the number of

defects per file in the next release. The model was applied with success on two large industrial

systems, one with a history of 17 consecutive releases over four years, the other with 9 releases

over two years. For each release of the two systems, the top 20% of the files with the highest

predicted number of defects contained between 71% and 92% of the defects actually detected,

with an overall average of 83%.

Graves et al. (2000) presented a study on a large telecommunication system of approxi-

mately 1.5 million lines of code. They used the system defect history in a two-year period

to build several predictive models. These models were based on combinations of the ages of

modules, the number of changes done to the modules, and the ages of the changes. They

showed that size and other standard complexity metrics were generally poor predictors of

defects compared to metrics based on the system history.

2.3.3 Code Churn

Code churn is the amount of change taking place within the code source of a software unit

over time (Nagappan and Ball (2005)). It has been used by some researchers to identify

defective artifacts: changes often introduce new defects in the code. We share with these

researchers the intuition that frequently-changed classes are most likely to contain defects.

Nagappan and Ball (2005) used a set of relative code churn measures to predict defects.

Predictive models were built using statistical regression models using several measures related

to code churn (e.g. Churned LOC, the sum of added and changed lines of code between two

releases of a file). They showed that the absolute measures of code churn generate a poor

predictor while the proposed set of relative measures form a good predictor. A case study

performed on Windows Server 2003, with about 40 million lines of code, illustrated the

effectiveness of the predictor by discriminating between defective and non-defective files with

an accuracy of 89%.

28

Munson and Elbaum (1998) predicted defects in an embedded real-time system using the

notion of code churn over 19 successive versions. The analyzed system is composed of 3,700 C

modules for about 300 KLOC. Code churn metrics were found to be among the most highly

correlated metrics with bug reports (Pearson correlation of 0.65).

Hassan (2009) proposed a measure of entropy for code changes based on the idea that

a change affecting only one file is less complex than a change affecting many different files.

The proposed metrics, based on Shannon’s entropy, were proven superior to metrics based

on prior defects and–or changes for six different systems.

Moser et al. (2008) proposed 17 change metrics at the file level, ranging from the number of

refactorings, authors, bug fixes, age to various measures of code churn. Using three different

binary classifiers, they found that their metrics were significantly better than the ones of

Zimmermann et al. on the Eclipse data set. Replication value of this work was unfortunately

impaired as the new metric data set was not made publicly available14.

14The definitions are available but one would have to recompute them on the Eclipse data set.

29

CHAPTER 3

ADDRESSING APPROXIMATE GRAPH MATCHING

The work presented in this chapter is devoted to the investigation and proposal of generic

approaches for one-to-one Approximate Graph Matching (AGM) problems. This research

objective is further refined by the choices of generic formulations and resolution techniques:

namely the Error-Tolerant Graph Matching (ETGM) formulation and Meta-Heuristics tech-

niques. In our ETGM formulation, the objective is to find the cheapest series of (explicitly

defined and valued) basic graph edit operations able to transform one considered graph into

the other. Provided the right cost model, an ETGM formulation is suitable for most graph

matching problems. The same can be said for Meta-Heuristics which are a family of search

techniques widely and successfully used for various combinatorial optimization problems.

The core of our proposal stems from the empiric observation that the building of excellent

matchings is greatly eased if one can initialize such building with a few correct node matches1.

It is then of interest to try to guess which node matches can successfully initialize search

techniques and the investigation of node similarity measures appears as a promising way

to tackle the initialisation phase. Such investigations resulted in the proposal of multi-

component similarity measures that can be intensively used in the early stages of local search

algorithms. This ultimately leads to a similarity-enhanced tabu search: (SIM-T) which

compared very favorably to state-of-the-art algorithms such as BP (Riesen and Bunke (2009))

and PATH (Zaslavskiy et al. (2009)) for experiments involving different AGM problems and

synthetic random graphs.

In this chapter, we formally present (in Section 3.1) the adopted formulation (an Error

Tolerant Graph Matching (ETGM) framework) and our target AGM problems. We then

introduce our proposal for the generation of generic benchmarks for the evaluation of AGM

algorithms (Section 3.2). Following which, we present a tabu search for the ETGM problem

and report on preliminary experiments conducted with this technique(Section 3.3). After

that, we elaborate on the investigation and proposal of node similarity measures in a graph

matching context (Section 3.4), and similarity-enhanced algorithms (Section 3.5). The generic

algorithm resulting from our work (SIM-T) is finally evaluated (Sections 3.6 and 3.7) and

its efficiency is compared against selected state-of-the-art algorithms. A general discussion

including the limitations of our approach is provided in Section ?? and we finally conclude

1A node match is simply a pair (n1, n2) with n1 a node from the first graph and n2 a node from the second
graph.

30

in Section ??.

3.1 Problem definition

The graph matching formulation we adopted in our work is the Error Tolerant Graph Match-

ing framework. This conception of graph matching is quite elegant and offers extended

possibilities for the modeling of different graph matching problems. In essence, differences

between two graphs to be matched are perceived as resulting from edit operations and costs

assigned to those operations determine the sought solutions. As a generalization of the Maxi-

mum Common Induced Subgraph (MCIS) (Bunke (1997)), the error-tolerant graph matching

is known to be NP-hard. In the following, we present the ETGM formulation and consider-

ations about the cost model.

3.1.1 ETGM definitions and formulations

The following definitions mostly adapted from Bunke (1997) contextualize the error tolerant

graph matching in a theoretical framework, from a definition of labeled graphs to the cost

function of an ETGM.

3.1.1.1 Preliminary definitions

Labeled Graph. Given two finite alphabets of symbols,
∑

V and
∑

A, a graph is defined as

a triple (V, LV , LA) where V is the finite set of elements, called nodes or vertices; LV : V →
∑

V is the node labeling function; LA : V × V →
∑

A is the arc labeling function. Non-arcs

are assigned a special null label. The set of arcs A is then implicitly given by considering

only arcs with a label different from null.

Induced Subgraph. Let G = (V, LV , LA) and G′ = (V ′, LV ′ , LA′) be two graphs; G′ is

an induced subgraph of G (G′⊆G) if V ′ ⊆ V , LV ′(x) = LV (x)∀x ∈ V ′, and LA′((x, y)) =

LA((x, y)) ∀(x, y) ∈ V ′ × V ′. It follows that, given a graph G = (V, LV , LA), any subset

V ′ ⊆ V of its vertices uniquely defines an induced subgraph of G.

Graph Isomorphism. Let G1 = (V1, LV 1, LA1) and G2 = (V2, LV 2, LA2) be two graphs.

A graph isomorphism between G1 and G2 is a bijective mapping f : V1 → V2 such that

LV 1(x) = LV 2(f(x))∀x ∈ V1, LA1((x, y)) = LA2((f(x), f(y))∀(x, y) ∈ V1×V1. This definition

of graph isomorphism as a bijective mapping with strict edge-preservation frames the graph

isomorphism problem as an exact graph matching problem.

31

Common Subgraph. Let G1 = (V1, LV 1, LA1) and G2 = (V2, LV 2, LA2) be two graphs and

G′
1⊆G1, G′

2⊆G2. If there exists a graph isomorphism between G′
1 and G′

2, then both G′
1 and

G′
2 are called a common subgraph of G1 and G2.

Maximum Common Induced Subgraph. Let G1 and G2 be two graphs. A graph G

is called a Maximum Common Induced Subgraph (MCIS) of G1 and G2 if G is a common

subgraph of G1 and G2 and there exists no other common subgraph of G1 and G2 which has

more nodes 2 than G.

3.1.1.2 Error-Tolerant Graph Matching.

Let G1 = (V1, LV 1, LA1) and G2 = (V2, LV 2, LA2) be two graphs. An Error-Tolerant Graph

Matching (ETGM) from G1 to G2 is a bijective function f : V̂1 → V̂2 where V̂1 ⊆ V1, V̂2 ⊆ V2.

We say x ∈ V̂1 is matched to node y ∈ V̂2 if f(x) = y. Furthermore, any node from V1 − V̂1

is said to be deleted from G1, and any node from V2 − V̂2 is said to be inserted in G2 under

f . The subgraphs of G1 and G2 which are induced by the sets V̂1 and V̂2 are denoted Ĝ1 and

Ĝ2, respectively.

The mapping f indirectly implies edit operations on the arcs of G1 and G2. If f(x1) = x2

and f(y1) = y2, then the arc (x1, y1) will be considered matched to the arc (x2, y2) and the

arc (y1, x1) will be considered matched to the arc (y2, x2). Also, if a node s is deleted from

G1, then any arc incident to s is said to be deleted. Similarly, if a node z is inserted in G2,

then any arc incident to z is said to be inserted, too. Consequently, any ETGM f can be

understood as a set of (valued) edit operations (substitutions, deletions, and insertions of

both nodes and arcs) which transform a given graph G1 into another graph G2.

Given the definition of f (a bijective function between subsets of V1 and V2), an ETGM

abides to a one-to-one constraint, meaning that every node of a given graph is matched to at

most one node of another graph.

The cost of an ETGM f : V̂1 → V̂2 from a graph G1 = (V1, LV 1, LA1) to a graph G2 =

(V2, LV 2, LA2) is given by

c(f) =
∑

(x1)∈V̂1

cnm(x1, f(x1)) +
∑

x1∈V1−V̂1

cnd(x1) +
∑

x2∈V2−V̂2

cni(x2) +

∑

(x1,y1)∈Â1

cam((x1, y1), (f(x1, y1))) +
∑

(x1,y1)∈A1−Â1

caud((x1, y1)) +
∑

(x2,y2)∈A2−Â2

caui((x2, y2))

2The MCIS can also be formulated as the common subgraph with the more arcs.

32

where cnm(x1, f(x1) is the cost of matching a node x1 ∈ V̂1 to another f(x1) ∈ V̂2, cnd(x1)

the cost of deleting a node x1 ∈ V1 − V̂1 from G1, cni(x2) is the cost of inserting a node

x2 ∈ V2 − V̂2 in G2, cam((x1, y1), (f(x1), f(y1))) is the cost of matching an arc (x1, y1) ∈ Â1

to another (f(x1), f(y1)) ∈ Â2, caud((x1, y1)) is the cost of deleting an arc (x1, y1) ∈ A1 − Â1

from G1, caui((x2, y2)) is the cost of inserting an arc (x2, y2) ∈ A2 − Â2 in G2.

All costs are non-negative real numbers. The shorthand notations A1, Â1, A2, Â2 and

have been used for V1 × V1, V̂1 × V̂1, V2 × V2 and V̂1 × V̂1, respectively.

Initial matching cost An important aspect in ETGM formulations is that empty solutions

are not cost-free. An empty matching (or solution) actually corresponds to the deletion of all

elements (nodes and arcs) from the first graph and the insertion of all elements in the second

graph. There is thus an initial matching cost representing the cost one would pay when

there is no matched elements. Consequently, solutions returned by matching algorithms are

expected to be much cheaper than this initial matching cost. The value of a given solution is

to be estimated relatively to the initial matching cost. A key aspect of ETGM is that perfect

matching between two elements (el1, el2) should be cheaper than the deletion of el1 and the

insertion of el2.

3.1.2 Refining the cost model

More insight must be given to the cost function of an ETGM. We propose a matrix represen-

tation to clarify our use of cost parameters. In the most general form, two matrices - one for

nodes, the other for the arcs - can be used to represent matching costs in an ETGM while

four matrices can be used for nodes/arcs deletion/insertion. Thus, we can have, considering

the alphabets LV and LA, the following matrices

• Cnm(|LV 1|, |LV 2|) for node matching,

• Cam(|LA1|, |LA2|) for arc matching,

• Cnd(|LV 1|, 1) for node deletion,

• Caud(|LA1|, 1) for arc deletion,

• Cni(1, |LV 2|) for node insertion,

• Caui(1, |LA2|) for arc insertion.

Subsequently, Cam(l1)(l2) is the cost for matching an arc labeled l1 to an arc labeled l2 while

Caud(l1) is the cost for deleting from the first graph an arc labeled l1.

33

In many settings, it may not be necessary (nor practical3) to assign precise values to

every single cell of the cost matrices. For simplification purposes, one can use single values

for each edit operation, except possibly for the arc matching which actually relates to different

operations. For instance, one might want to distinguish between the following operations:

• amp: Perfect arc matching for real arcs (with labels other than null)

• Matching of non-arcs (a non-arc is an ordered pair of nodes with no relation between

them, assigned with null)

• ams: Structural error (arc matching involving a real arc and a non-arc)

• aml: Label error (arc matching involving two real arcs with different labels)

In summary, simple cost models can be defined using the following formulas.

cnm(x1, f(x1)) =

∣

∣

∣

∣

∣

0 if LV 1(x1) = LV 2(f(x2)),

cnm otherwise

∣

∣

∣

∣

∣

∀x1 ∈ V̂1,

cnd(x1) = cnd ∀x1 ∈ V1 − V̂1,

cni(x2) = cni ∀x2 ∈ V2 − V̂2,

cam(a1, a2) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 if LA1(a1) = LA2(a2) = null,

camp else if LA1(a1) = LA2(a2) 6= null,

caml else if LA1(a1) 6= null

andLA2(a2) 6= null

andLA1(a1) 6= LA2(a2)

cams otherwise

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

∀ a1 = (x1, y1) ∈ A1 and a2 = (f(x1), f(y1)) ∈ A2

caud(a1) = caud for any a1 = (x1, y1) ∈ A1 − Â1,

caui(a2) = caui for any a2 = (x2, y2) ∈ A2 − Â2

We then use the octuple (cnm, cnd, cni, caud, caui, camp, cams, caml) to describe any cost func-

tion. The values of those costs could be related to the probability of occurrence of the

associated distortions. Therefore, one may want the cost of a structural error to be inferior

to that of a label error, if changing the label of an arc is less likely than dropping / losing

the arc itself.

3It may be hard to define precisely the cost values.

34

3.1.3 Modeling Graph Matching problems with the ETGM cost parameters

In this section, we explore the modeling of graph matching problems as optimization problems

using the eight cost parameters previously defined. We take interest in well-known problems

such as Graph Isomorphism, Subgraph Isomorphism, Maximum Common Induced Subgraph,

Maximum Common Partial Subgraph but also consider more intuitive definitions of graph

matching problems.

The Graph Isomorphism problem can be modeled using the following values: (cnm, cnd,

cni, caud, caui, camp, cams, caml) = (∞,∞,∞,∞,∞, 0,∞,∞). Those values express the strict

constraints of Graph Isomorphism: the matching must be perfect (cnm = cams = caml = ∞)

and complete (cnd = cni = caud = caui = ∞. However, their use in an algorithm could

be problematic, especially when considering the costs related to the constraint of com-

pleteness of the matching: a solution cannot be built gradually since every non-complete

matching would be assigned an infinite cost. A better alternative could be the follow-

ing: (cnm, cnd, cni, caud, caui, camp, cams, caml) = (∞, 1, 1, 1, 1, 0,∞,∞). This setting allows the

building of a solution (while forbidding any matching error) and is more suitable for an algo-

rithm. Using these parameters, one will be able to conclude to a graph isomorphism between

two graphs if the algorithm returns a solution of cost zero.

For the Subgraph Isomorphism problem, given two graphs G1 and G2, with G1 being the

smallest graph, the following setting: (cnm, cnd, cni, caud, caui, camp, cams, caml) = (∞, 1, 0, 1, 0, 0,

∞,∞) can be used, the difference with Graph Isomorphism being that insertions are cost-

free. Again, one will be able to conclude to a subgraph isomorphism between the two graphs

if the algorithm returns a solution of cost zero.

Maximum Common Subgraph problems (MCIS and MCPS) are inherently optimiza-

tion problems and are thus easily modeled using ETGM parameters. The following setting

(cnm, cnd, cni, caud, caui, camp, cams, caml) = (∞, 1, 1, 0, 0, 0,∞,∞) is appropriate for the MCIS

problem defined relatively to the number of nodes. It forbids matching errors and a solution

with the lowest cost (over the set of all possible solutions) will be indeed a MCIS for the two

considered graphs.

As for an MCPS defined relatively to the number of arcs, it can correspond to the following

setting (cnm, cnd, cni, caud, caui, camp, cams, caml) = (∞, 0, 0, 1, 1, 0, 1, 2). These values should be

understood as follows. Initially (empty matching), an arc a1 (from G1) would be deleted

(caud = 1) and an arc a2 (from G2) would be inserted (caui = 1): there would be an initial

cost of 2. If a1 and a2 are matched, there are two possible situations: (i) they generate a

perfect match, there is zero (camp = 0) cost and this actually corresponds to a gain of 2

relatively to the initial matching cost, (ii) they generate a label error, the cost is 2 (caml = 2)

and there is no improvement relatively to the empty matching. Alternatively, if a1 and a2

35

Figure 3.1 Modeling of the MCPS and the f1,1 problems

36

are matched to non-arcs, the cost (cams + cams = 1+1 = 2) will not improve relatively to the

empty matching. The actual score of a matching in terms of the number of arcs is then half

its improvement relatively to the empty matching. Figure 3.1 illustrates the modeling of the

MCPS.

Apart from well-established graph matching problems, we also took interest in more

intuitive definitions of graph matching problems. One particularly simple definition is one

in which there is a bonus b in case of perfect arc matches and a penalty p for arc match

errors. We refer to those graph matching problems as the fb,p problems. For instance, the

f1,1 (equivalent to fn,n, n > 0) problem refers to a graph matching setting in which one gains

1 for each perfect arc match and loses 1 for each arc match error. Its modeling using the 8 cost

parameters of an ETGM corresponds to the setting (cnm, cnd, cni, caud, caui, camp, cams, caml) =

(∞, 0, 0, 1, 1, 1, 2, 3) and is further detailed on Figure 3.1.

Facing the impossibility to apply algorithms on all possible approximate graph matching

problems, we opted for the selection of a (much) reduced subset of AGM problems. Our first

selection is the MCPS problem that we deem a very representative AGM problem. In fact,

except from the strict constraint on node matches 4, this problem definition is one with a high

tolerance to arc match errors. We believe that the MCPS of two considered graphs would

have significant intersection with the optimal solutions of most graph matching formulations.

The MCPS problem actually corresponds to the f1,0 problem from the fb,p family of graph

matching problems defined above. We thus also took interest in evaluating algorithms on

the f1,1 problem which definition is significantly less tolerant than that of f1,0. Experiments

proposed in the work were performed based on those two specific problems.

3.2 Generic datasets for the AGM problem

As discussed in Chapter 2, there is a lack of generic standardized benchmarks on which

researchers can test their approach for approximate graph matching. In this section, we

propose a simple model for the building with controlled distortion of pairs of random directed

edge-labeled graphs and present the datasets used in our experiments.

3.2.1 The random graph generator

Our goal is to generate pairs of graphs for which a near optimal solution is known. Our

proposal is a generator able to build pairs of random graphs with differences introduced

given some parameters. Initially, the two graphs have the same number n of (unlabeled

4actually irrelevant for unlabeled nodes.

37

and isolated) nodes, and a complete random matching µ0 is built. The final output of the

generator is a pair of graphs (G1 and G2) produced using the following parameters:

• Graph Parameter n represents the initial number of nodes for the two graphs.

• Graph Parameter d is function of the expected density of the graphs and represents the

expected mean of in and out degree of a node.

• Graph Parameter nl indicates the number of different node labels.

• Graph Parameter el indicates the number of different arc labels.

• Graph Parameter u is a boolean indicating whether we require the graphs to be sym-

metric directed, i.e. undirected.

• Distortion Parameter q(0 ≤ q ≤ 1) is used in order to control the similarity between the

two graphs. Given a node match5 (x1, x2) (with x1 a node from G1 and x2 a node from

G2), q represents the probability of imposing the same label on x1 and x2. Similarly,

given any couple of nodes (x1, y1) of the graph G1, q represents the probability of

imposing the same arc label for their matches (x2, y2) in G2. The larger the value of q,

the most similar the two graphs. In particular, for q = 0, the two graphs will be built

independently; and for q = 1, the two graphs will be isomorphic.

• Distortion Parameters p1 and p2 represent percentages of additional nodes respectively

in G1 and G2 and can be seen as additional noise parameters. The actual number of

nodes in the two generated graphs is n + p1 × n for G1 and n + p2 × n for G2.

Given values for the parameters (n, d, nl, el, q, p1, p2, u), the generator builds the two

graphs G1 and G2. A pair of nodes in G1 or G2 is assigned an arc with a density prob-

ability p = d/(n − 1). An arc label (resp. node label) is assigned to each arc (resp. node)

following a uniform distribution (with respect to the set of labels). Matched (according to µ0)

nodes and arcs in the two graphs are imposed to be assigned the same label with probability

q. Additionally, for each graph Gi, pi% of n vertices may be added. Arcs are then added

(i) within the set of new nodes and (ii) between the new nodes and the old nodes following

the same density probability and label distribution defined above. Figure 3.2 illustrates the

generation process.

In addition to the two graphs, the generator returns the matching µ0 which serves through-

out this chapter as a reference to evaluate any matching involving the two generated graphs.

5from µ0

38

(a) First graph generation (b) Second graph Generation

(c) Additional Noise

Figure 3.2 Generation of a pair of random unlabeled graphs with controlled distortion

39

The score of µ0 for a given cost function is likely to be an optimum for very similar graphs.

In particular for isomorphic graphs, µ0 is without doubts an optimal solution. But as the

similarity (q) decreases, alternative better matchings may exist. The chances of such situa-

tions are even higher when additional noise is introduced (using p1 or p2). Nevertheless, the

matching µ0 probably qualifies as a near optimal solution for any pair of graphs produced by

our generator if the similarity level is reasonably high and the noise limited. In the following,

each value of the triplet (q, p1, p2) will be referred to as a similarity class.

3.2.2 Benchmarks

We divided our experiments in several parts, with a core benchmark on which we applied

every algorithm, and additional benchmarks on which reduced experiments are conducted in

order to answer specific questions.

3.2.2.1 Core Benchmark

We use the following values for our core benchmark:

• Number of vertices: n = 300;

• Expected mean of in and out degree of a vertex: d = 6 or 15;

• Number of node labels: nl = 1 or 4;

• Number of arc labels: el = 1 or 4;

• Similarity parameter: q = 0.6, 0.7, 0.8, 0.9 or 1;

• (p1, p2) ∈ {(0, 0), (10, 20)};

• u = 0 for directed graphs;

From these parameters, we can get labeled (or not) medium sized directed graphs 6

with small to medium density. With our similarity levels, we target from slightly similar

graphs (q > 0.5) to isomorphic graphs (q = 1). The parameters p1 and p2, when chosen as

respectively 10 and 20%, introduce additional noise and result in graphs of different sizes.

We investigate all 80 combinations of the above parameter values and generate 10 instances

per each combination, ending up with 800 pairs of random graphs.

Additionally 7, we generate unlabeled and undirected graphs by setting the parameters

as follows: n = 300, d ∈ {6, 15}, nl = 1, el = 1, q ∈ {0.6, 0.7, 0.8, 0.9, 1}, (p1, p2) ∈

6Note that depending on the application field, those could be considered as large graphs.
7in order to conduct comparisons with the algorithm PATH

40

{(0, 0), (10, 20)}, and u = 1. This leads to 200 more pairs of graphs (20 combinations and 10

instances per combination). Overall, our core benchmark B0 is made of 1000 pairs of graphs

(100 parameter combinations and 10 instances per combination).

3.2.2.2 Additional Benchmarks

Our additional benchmarks explore more deeply the effects of size and density; small (n = 50)

and large (n = 3000) graphs are investigated along with denser graphs (n = 300, d = 60).

To test very small graphs, we re-used the same parameter values of the core benchmark,

except for the number of nodes, now set at 50. We thus obtain a benchmark B1 containing

1000 pairs of graphs (100 classes of graphs and 10 instances per class).

For larger or denser graphs, because of their more expensive computation time, we tar-

geted a much more reduced set of graphs. Restrictions were applied to the similarity level

(now reduced to the medium level q = 0.8) and to the number of instances per parameter

combination (now reduced to only one). Additionally, only one value of density is selected;

for the set of large graphs, we considered d = 6 while for the set of dense graphs, we used

d = 60.

In summary, the benchmark of large graphs B2 consists in 10 pairs of graphs generated

using n = 3000, d = 6, nl ∈ {1, 4}, el ∈ {1, 4}, q = 0.8, (p1, p2) ∈ {(0, 0), (10, 20)}, and

u ∈ {0, 1} while the benchmark of dense graphs B3 is made of 10 pairs of graphs built with the

parameter values n = 300, d = 60, nl ∈ {1, 4}, el ∈ {1, 4}, q = 0.8, (p1, p2) ∈ {(0, 0), (10, 20)},

and u ∈ {0, 1}.

3.3 Solving ETGM problems with a tabu search

Given that the ETGM problem is NP-hard (Bunke (1997)), the only algorithms able to guar-

antee optimal solutions have an exponential worst-case time complexity (if P 6= NP). For

this reason, large problem instances are likely to be intractable for exact algorithms. As

generic heuristics with demonstrated efficiency on NP-hard problems, meta-heuristics repre-

sent a good alternative when the goal is to get excellent solutions at reasonable computation

times.

We chose to address the ETGM problems with a robust local search technique: the tabu

search (Glover (1989)). There are a number of reasons motivating this choice but we will

not claim that we made the only rational choice. Rather, we would like to point to some

advantages of tabu search over alternatives such as genetic algorithms (Holland (1975)) and

simulated annealing (Kirkpatrick et al. (1983)).

Our first choice was that of a local search, which we believe is a more natural option for

41

graph matching: given two graphs to be matched, the most intuitive approach is to proceed

step by step, matching or unmatching nodes while trying to retrieve the best configura-

tion. Evolving a population of solutions using genetic operators could ensure that a larger

part of the search space is covered. However, from our perspective, in order to get decent

solutions, crossover and mutation operators would have to be specialized and we suspect

that such specializations could well resort to mechanisms close to those of local search. In

fact, memetic algorithms (genetic algorithms using local search) are very interesting options

which could address the limitations of both local search and genetic algorithms. Still, we

did not want to tackle directly the AGM problem with this additional level of complexity

and opted for an investigation of local search capabilities. In particular, we opted for tabu

search over alternatives such as simulated annealing, notably by considering to the difficulty

of setting appropriately the parameters (tabu list length for tabu search versus temperature

and decreasing coefficient for simulated annealing).

Starting from an initial configuration in the search space, a tabu algorithm moves itera-

tively from the current configuration to a neighboring one. On each iteration, the algorithm

chooses the best neighbor of the current configuration (the one with the smallest cost), while

avoiding to return toward configurations recently visited, by using a short-term diversification

structure named tabu list (Glover (1989)).

3.3.1 Our tabu search procedure

The search space of our tabu algorithm is the set of matchings. The evaluation function is

simply the objective function (as defined by the cost parameters). A move applied to the

current configuration S consists in (1) inserting a new node match into S, while respecting

the 1-to-1 constraint, or (2) removing a node match from S. An insertion move is denoted

by < +, (x1, x2) >, where (x1, x2) represents the node match inserted into the configuration.

Similarly, a removal move is denoted by < −, (x1, x2) >. Each move mv is evaluated by

its impact δ(mv) on the evaluation function f : δ(mv) = f(S ⊕mv) − f(S), where S ⊕mv

represents the configuration obtained by applying mv to configuration S.

Our tabu mechanism is two-fold: just inserted node matches are forbidden to leave the

current configuration for a given number of iterations (they are inserted into the so-called

tabu-out list). Similarly, just removed node matches are forbidden to re-enter the configura-

tion for a given number of iterations (they are inserted in the tabu-in list).

Our Tabu procedure has four parameters: S0 is the initial configuration transmitted to

the procedure; parameter max fail iter specifies the stopping criterion; parameters lgtl in

and lgtl out are used in order to set the tabu tenure. The pseudo-code of our Tabu procedure

is as follows.

42

Algorithm Tabu(S0)

Set S := S0;

do

mv := find the non-tabu move with a maximum value of δ(.);

If mv =< +, x1, x2 > (mv is an insertion move);

Insert (x1, x2) into S;

Insert (x1, x2) for lgtl out iterations into the tabu out list;

Else mv =< −, x1, x2 > (mv is a removal move);

Remove (x1, x2) from S;

Insert (x1, x2) for lgtl in iterations into the tabu in list;

Until the stop criterion is met;

Return the best matching found during the search.

The current configuration is denoted by S. The procedure is initialized by using config-

uration S0. Then, on each iteration, all potential moves (both insertion and removal moves)

are evaluated and the best non tabu move (the one with a maximum value of δ) is selected

(ties are broken randomly). After that, the selected move is applied to S and the tabu list

is updated. The algorithm stops when it has performed max fail iter iterations without im-

provement over the best solution found so far. It returns the best solution generated during

the search.

3.3.2 Considerations about local search and graph matching

Experiments conducted 8 show that the above described tabu algorithm, when initialized

with an empty solution, performs reasonably well but often fails to return solutions close to

the optimum. An analysis of the search profile of the unsuccessful runs suggests that most of

the poor results are due to bad initial choices of node matches that severely harm the chances

of getting near to an optimal solution. Problem is that wrong starts (bad initial choices) are

extremely likely. At the beginning of a search initialized with an empty solution and guided

only by the objective function, the improvements (to the optimization criterion) brought by

the possible node matches are about the same. This is especially true when node information

is not enough to distinguish, from the starting point, the good node matches - i.e. the ones

belonging to (near-)optimal solutions - from the others. The first choices are then close to

random and rarely place the search in a comfortable area. Knowing that, it was of interest to

see how well the search fares when it is initialized to a region known to contain near optimal

solutions. A fitting analogy could be made with pushing a stone near a cliff and then letting

8Details are provided in Section 3.6

43

it roll. We tested this intuition with a simple greedy algorithm and experiments showed that

excellent results could be obtained with as few as 5% of node matches taken from a known

near optimal solution. Those results suggest an interesting two-step alternative approach to

solving AGM using local search. First, one could try to guess the node matches that should

initialize the search, then apply a local search technique. How to guess those good node

matches is the object of the next section.

3.4 Node similarity measures for graph matching

Node similarity is certainly one of the most intuitive concepts used to predict the accuracy of

node matches. It has been widely used in graph matching techniques but mainly in settings

where the objective is to maximize the sum of the similarity values of node matches contained

in a solution. In our case, our goal is to use similarity measures as a way to initialize a search

for a solution.

Simply put, the notion of node similarity refers to the measurement of common features

between two given nodes. When the considered features refer to the direct neighborhood of

the nodes in presence, the similarity measure is said to be local. In our search for generic

proposals, we retained local similarity measures as the most robust option compared to

(i) application-specific measures which depend on node attributes possibly different from

one application to another, or (ii) global indexing measures which are unable to exploit

information on nodes or arcs and are not robust to distortions (a change on a single arc may

trigger an important re-ordering in the index).

Figure 3.3 introduce the ideas behind our proposal for similarity measures and the series

of choices (structural versus textual, then local versus global) from which they result. In

summary, our similarity measures have two components: a basic similarity measure derived

from the count of identical elements around nodes and a discrimination factor which role is

to make the most likely node matches stand out. We introduce in the following subsection

the key ideas in our proposal for efficient local node similarity measures.

3.4.1 Local Similarity for node matches

Informally, a local similarity measure for two nodes should indicate how similar they and

their immediate neighborhoods are. In the following, we present – and illustrate through

nodes e and ǫ from Figure 3.4 – which elements can be used to assess local similarity and the

different options in counting identical elements around nodes.

44

Figure 3.3 Devising enhanced node similarity measures for graph matching

45

Figure 3.4 Simple example of graph matching

46

3.4.1.1 Elements of local similarity

Given a pair of nodes (x1, x2) and their neighborhoods N1(x1) and N2(x2), we consider the

following elements:

• Labels of x1 and x2;

• Connectivity of x1 and x2 (in and out arcs along with their labels);

• Neighbors and their labels (elements of N1(x1) and N2(x2)).

For instance, the local similarity of nodes e and ǫ in Figure 3.4 will be assessed by considering

(i) the labels of e and ǫ, (ii) the labels of edges (ae), (eb), (ed), (ǫβ), (ǫδ), (δǫ), and (iii) the

labels of nodes a, b, d, β, δ.

Note that, for simplification purposes, arcs between the neighbors are not considered.

Moreover, while it may be useful to assign different weights for the above elements, we only

use the maximal number of identical elements (around the nodes to be matched) as a basis to

determine their similarity. We refer to this number as the potential of a node match because

it is an estimation of how many perfect node and arc matches one can eventually get from

matching the two nodes.

3.4.1.2 Counting the identical elements

We investigated three different ways of computing the potential of two nodes considered for

a match: an optimal way, an optimistic way and a conservative way.

The optimal way. It consists in counting the identical elements in the most accurate way

and is conceptually close to ideas proposed for BP in Riesen and Bunke (2009). Given a

node match (x1, x2), it involves finding a matching between the neighbors of x1 and x2 that

will maximize the number of identical elements. For instance, considering the pair e and

ǫ in Figure 3.4, the best matching for the neighbors of those nodes is b → β, d → δ and

it confers, along with the perfect match of e and ǫ labels, a potential of 5. In practice, the

optimal matching can be retrieved through the use of an exact method such as the Hungarian

algorithm but this can be time consuming, thus making the case for the exploration of other

options.

The optimistic way. The potential can be computed in a fast but permissive way if

neighbors and arcs are treated separately. Given two nodes, one can independently find the

maximum number of their identical neighbors, the maximum number of their identical in

(and out) arcs and sum those numbers to get an optimistic estimate of the potential. For

47

instance, considering the pair e and ǫ in Figure 3.4, at most we can have 2 identical neighbors,

1 identical in-arc and 2 identical out-arcs. The obtained sum is 5 to which we add 1 thanks

to e and ǫ sharing the same label. The optimistic potential here is then 6; it is actually

impossible to obtain because there is no matching able to perfectly match both arcs between

ǫ and δ. Note that we used the optimistic way in some of our previously published papers

(Kpodjedo et al. (2010b,a)); it also presents some commonalities with the signature vectors

of Jouili and Tabbone (2009), in particular in case of graphs with no labels on their nodes.

The conservative way. Here, the potential is computed in a (time-wise) efficient but re-

strictive way as neighbors of nodes to be matched are required to share all their labels (node,

in and out arcs) if they are to contribute to the potential. More specifically, given a node

x and one of its neighbors Ni, we denote the triplet (Ni, (x,Ni), (Ni, x)) as the interaction

between x and Ni. The potential then only accounts for perfectly identical interactions. Once

the identical interactions are retrieved, each component (node or real arc) of the interaction

increments the potential 9. For instance, considering the pair e and ǫ in Figure 3.4, the inter-

actions (b, (e, b), (b, e)) and (β, (β, ǫ), (ǫ, β)) are the only ones with identical labels (4, 3, #).

They add 2 to the potential whose final value is 3 (e and ǫ have the same label).

3.4.1.3 Formal definitions of the potential

Let (x1, x2) be a node match for two graphs G1 = (V1, LV 1, LE1) and G2 = (V2, LV 2, LE2),

and let y1 ∈ N1(x1) and y2 ∈ N2(x2). We formalize the increments in case of perfect

correspondence with the following functions:

• BV (n1, n2) = 1 if lV 1(n1) = LV 2(n2), 0 otherwise for any (n1, n2) ∈ V1 × V2;

• Bin[x1,x2](y1, y2) = 1 if LE1(y1, x1) = LE2(y2, x2) 6= null, 0 otherwise;

• Bout[x1,x2](y1, y2) = 1 if LE1(x1, y1) = LE2(x2, y2) 6= null, 0 otherwise.

In addition, for every pair of neighbors (y1, y2), we detect whether their interactions with x1

and x2 are identical by using the following function

Binteract[x1,x2](y1, y2) = 1 if LV 1(n1) = lV 2(n2) ∧ LE1(y1, x1) = LE2(y2, x2) ∧ LE1(x1, y1) =

LE2(x2, y2), 0 otherwise.

Given a matching of the neighbors of x1 (from G1) and x2 (from G2) µ[x1, x2] ⊆ N1(x1)×

N2(x2), simply referred to as µ, the potential is computed as follows 10

9Non-existing arcs are not counted
10For better readability, [x1, x2] is omitted in the formulas.

48

1. Optimal Potential

potential1(x1, x2) = BV (x1, x2)

+maxµ

∑

(y1,y2)∈µ[BV (y1, y2) + Bin(y1, y2) + Bout(y1, y2)];

2. Optimistic Potential

potential2(x1, x2) = BV (x1, x2)

+maxµ

∑

(y1,y2)∈µ BV (y1, y2)+maxµ

∑

(y1,y2)∈µ Bin(y1, y2)+maxµ

∑

(y1,y2)∈µ Bout(y1, y2);

3. Conservative Potential

potential3(x1, x2) = BV (x1, x2)

+maxµ

∑

(y1,y2)∈µ[(BV (y1, y2) + Bin(y1, y2) + Bout(y1, y2))×Binteract(y1, y2)].

3.4.1.4 Basic similarity measure

Once computed, the potential must be - in our view - normalized between 0 and 1 to qualify as

a similarity measure. The rationale is that two nodes sharing locally many identical elements

(yielding a high potential) are not necessarily similar. They may still have a majority of

non-identical elements in their neighborhoods. Thus, the potential of a node match must be

evaluated relatively to what would be the maximal number of identical elements, were the

two nodes perfectly similar. The basic similarity between two nodes x1 and x2 is computed

as follows

Si(x1, x2) = 2×potentiali(x1,x2)
(1+degree(x1)+‖N1(x1)‖)+(1+degree(x2)+‖N2(x2)‖)

with i representing the chosen option for the potential computation: (1) for the optimal

way, (2) for the optimistic way and (3) for the conservative way. The denominator is the

total number of elements from both nodes with 1 standing for a node label, degree() being

the degree of a node and N() the set of its neighbors.

3.4.2 Enhancing the local similarity measures

In AGM, Local Similarity Measures (LSM) can be used - directly or indirectly - in the selection

of good node matches. However, ambiguities (such as similar neighborhoods for many nodes)

and possible symmetries in the considered graphs can severely limit the usefulness of the LSM.

In the following, we propose ways for mitigating the negative effect when in such situations.

3.4.2.1 Using a discrimination factor

Given the limitations of local similarity measures and considering that only a small number of

good node matches are necessary to efficiently initialize a local search, we investigated simple

49

and fast ways to attach a confidence level to a basic similarity. Our propositions consist in

multiplying the basic similarity measures by a discrimination factor (normalized between 0

and 1).

Using the potential As previously explained, it is necessary to normalize the similarity

between 0 and 1 in order to capture whether two nodes are similar. However, one eventually

loses in the process the raw value of the potential. Thus, two node matches may share

the same similarity with very different potentials. Following the intuition that the more a

node match brings identical elements (the higher its potential), the more it is interesting, we

propose the following factor

D1(x1, x2) = potential(x1,x2)
maxPotential

where maxPotential = max(x1,x2)∈V1×V2potential(x1, x2).

Note that D1(x1, x2) is a real number between 0 and 1 for any given pair (x1, x2). When

this factor is applied to a basic similarity, it reduces the similarity value of node matches

with low potential.

Treating ambiguities There is another way to introduce a discrimination factor. Often,

for a given node x1 in a graph G1, there will be many nodes in the other graph G2 to which x1

will be highly similar. To treat this kind of situations, we propose the following correction.

Given a node match (x1, x2), and its similarity S(x1, x2), we compute contenders2 (resp.

contenders1) as the count of nodes in G2 (resp. in G1) having with x1 (resp. x2) a similarity

score greater or equal to S(x1, x2).

contenders1 = ‖n1 ∈ G1 − x1 : S(n1, x2) ≥ S(x1, x2)‖

contenders2 = ‖n2 ∈ G2 − x2 : S(x1, n2) ≥ S(x1, x2)‖

D2(x1, x2) =
1

1 + contenders1 + contenders2

For any pair (x1, x2), D2(x1, x2) is a real number between 0 and 1. The hereby proposed

factor has the advantage to be generic and independent from the similarity computation; it

could then be applied on any kind of node similarity.

3.4.2.2 Enhanced similarity measures

In the above, we proposed three different ways of computing local similarity measures and

two discrimination factors intended to enhance them. We then have six enhanced similarity

50

measures computed as follows: SiDj = Si ∗Dj
11 with i = 1 (optimal computation), 2 (opti-

mistic computation), 3 (pessimistic computation) and j = 1 (potential-based discrimination),

2 (ambiguity-based discrimination). Overall, our investigation generates 9 possible similarity

measures (3 basic, 6 enhanced) and we are interested in knowing which one is the most able

to predict good node matches.

3.4.3 Evaluation of the similarity measures.

To assess the performance of a similarity measure, we rank the possible node matches in

decreasing order of their similarity value and consider the x% top ranked similar pairs, x being

a real number between 0 and 100. As a measure of the efficiency of our similarity measures

in predicting good node matches, we use a precision metric defined as the percentage of node

matches from µ0 (the matching provided by our generator) present in the most similar pairs

of nodes.

Figure 3.5 presents the performance of the different similarity measures on all the 800

directed graphs from our core benchmark B0. In x axis, we consider the similarity classes

as defined by the values of the triplet (q, p1, p2)
12 while the y axis displays average precision

values in top 5% pairs of nodes.

The first round of comparisons involves the three basic similarity measures: S1 (optimal

estimate), S2 (optimistic estimate), S3 (conservative estimate). Looking at Figure 3.5, we

can see that the worst similarity measure on average is obviously S2. It is clearly inferior

to S1 on all categories of graphs, except when q = 1. S1 is itself outperformed by S3 on

most categories and reaches near equality with S3 only for the last three similarity classes.

Overall, out of the three raw similarity measures, the conservative estimate S3 appears to

be, in average, the best one and in a consistent way across all the different similarity classes.

The fact that S3 is better than S1 is to be highlighted and comes as very good news since the

computation of the similarity values when using S3 is on average, more than 40 times faster

than when using S1.

The second round of comparisons involves the two discrimination factors and their effect

on the raw similarity measures. The impact of the first discrimination factor D1 is almost

negative for S1, mostly marginal for S2 and mild for S3. The situation is entirely different

for D2 which always improve significantly the raw similarity measures: 3 to 10% for S1,

4 to 15% for S2. In particular, as one can see on Figure 3.5, applying D2 to S3 results in

improvements ranging from 7 to 16%. We also tested a combination of the two discrimination

11Note that since the discrimination factors are also real numbers between 0 and 1, the enhanced similarities
are also between 0 and 1.

12We remind the reader that q is the similarity level between the two graphs while p1 and p2 are the
percentages of additional nodes in respectively G1 and G2.

51

factors (D3 = D1 then D2) and found that in average, it slightly outperforms D2 for S2 and

S3 but is slightly worse for S1. Overall, and for the sake of simplicity, we retained S3D2 as

the similarity measure to use in our algorithms.

Apart from the graph similarity classes, the main parameters affecting the performance

of the similarity measures are the number of labels for arcs and nodes. Table 3.1 presents the

results (averages and standard deviations) of S3D2 per similarity class and label category.

For graphs labeled on their nodes and arcs (nl el=4 4), averages of precision on top 5%

node matches are excellent with the minimal value being of 70% and most values being at a

perfect 100%. When graphs are only labeled on their arcs (nl el=1 4), results are still very

good and well above 70%. The picture is a bit less bright when there are only labels on the

nodes (nl el=4 1) with values mostly above 60%. The serious drop in precision occurs when

graphs are unlabeled (nl el=1 1); with the notable exception of isomorphic graphs (89% on

average), the similarity measure does not appear to be good at guessing node matches of

µ0. In those cases, the enhanced similarity, though much better than the basic similarity

measures (which could not get average precision values above 10%, except a peak of 41% for

isomorphic graphs), does not completely succeed in treating the many ambiguities occurring

in unlabeled graphs. Finally, for undirected graphs, S3D2 - as well as all the other similarity

measures - gets very poor averages: all below 10%, except a peak of 28% for isomorphic

graphs. A likely reason is that for unlabeled and undirected pairs of graphs, the risks of

symmetry and ambiguity are much higher.

In conclusion, the similarity measure S3D2 is very efficient at retrieving good node matches

(defined as present in µ0) when the graphs in presence are labeled but seems less powerful for

unlabeled graphs 13. In any case, the above results support the integration of the proposed

measure in AGM algorithms.

13Note however that node matches absent from µ0 are not necessarily bad ones.

Table 3.1 Percentage of good node matches in top 5% similar (S3D2) node matches.

q=0.6 q=0.7 q=0.8 q=0.9 q=1
nl el 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0

4 4 70±11 89±08 98±03 100±00 100±00 100±00 100±00 100±00 100±00 100±00

4 1 12±09 21±13 30±15 45±13 63±14 83±10 97±08 100±00 100±00 100±00

1 4 19±10 35±14 43±16 72±12 79±10 97±05 98±04 100±01 100±01 100±00

1 1 03±04 4±06 4±05 11±07 7±05 24±10 15±07 46±13 33±07 89±07

52

Figure 3.5 Precision of prediction in top 5% candidates on all directed graphs

3.5 Solving ETGM with similarity-aware algorithms.

In this section, we present two different ways of using the local similarity measures presented

in Section 3.4. The first idea is to formulate a weighted bipartite graph matching problem

between the sets of vertices of the two graphs G1 and G2, and to suitably define a cost matrix

for this problem relying on the similarity values for possible node matches. The second is to

initialize the tabu search with a greedy procedure making use of the similarity values.

3.5.1 The Sim-H algorithm

For Sim-H, we first compute for each (x1, x2) ∈ V1×V2 the cost c(x1, x2) = 1−similarity(x1, x2).

Then we find a matching f : V1 → V2 (bijection) with the minimal total cost Σx1∈V1c(x1, f(x1)).

This problem can be solved by using a Hungarian algorithm (Munkres (1957) of complexity

O(n3)). Several heuristics proposed for graph matching are based on the same principle,

(Shokoufandeh and Dickinson (1999); Antoniol et al. (2001); Jouili and Tabbone (2009);

Riesen and Bunke (2009); Gori et al. (2005)), although with different similarity measures.

3.5.2 The SIM-T algorithm

SIM-T is a two-phase algorithm consisting in a greedy procedure GreedySim followed by

the tabu search procedure presented above. Figure 3.6 presents both the rationale and the

architecture of our proposal. In essence, following the observation that when using local

search, as few as 2-5% of an optimal solution can produce near-optimal matchings, a first

53

idea is to find a way to predict those 2-5% and then apply the search. However, this solution

is less efficient than the SIM-T algorithm for two reasons. First, as demonstrated in the above

section, the prediction can be quite noisy (precision is not 100%). A good way to mitigate this

is to actually combine the static information brought by the similarity values with dynamic

information (here, the number of perfect matches brought by a new node match). Second,

there are computational advantages in using an initialisation phase focused on the number

of perfect matches. It avoids spending computation times on possible structural errors; one

can thus consider matching two nodes only if those nodes are neighbors to two previously

matched nodes. SIM-T has an O(n2) complexity.

The GreedySim procedure builds step by step a matching by inserting iteratively a new

node match into the configuration. The choice of the node match to be inserted into the

configuration follows a greedy criterion based on similarity measures and an objective function

that is the number of perfect arc or node matches.

The procedure first computes the similarity for all pairs of nodes in V1 × V2. Then,

it performs a series of iterations. On each iteration, the greedy score gr(x1, x2) of each

legal move (x1, x2) is computed and the pair with the best greedy score is inserted into the

configuration (ties are broken randomly).

The greedy score is computed as follows:

gr(x1, x2) = δ0(x1, x2) + B × S(x1, x2)

where δ0(x1, x2) is the number of new perfect matches; B (B ≥ 1) is a real number used

to weigh the similarity of x1 and x2; and S(x1, x2) is the similarity value between x1 and x2.

At the beginning, the similarity is the more reliable information about the number of perfect

matches a considered node match might bring. Thus B is maximal but, as the solution is

being built, it should decrease to the point that δ0 becomes the main contributor to the

score. In our experiments, B is initially set at a parameter Bmax and decremented by 1 at

each iteration until it reaches 1 and from then, serves only to untie node matches with the

same δ0.

3.5.3 Tested algorithms and experimental plan

In order to truly evaluate the performance of our algorithms (Tabu, Sim-H and SIM-T),

we compare them with two state-of-the art algorithms: BP (Riesen and Bunke (2009)) and

PATH (Zaslavskiy et al. (2009)). AGM problems have many formulations and applications

and one would be hard pressed in identifying a single best algorithm. We surveyed journal

papers over the last decade (2000-2010) and conference papers from 2005 to 2010. Any

54

Figure 3.6 SIM-T: A similarity enhanced tabu search

55

publication addressing only very specific formulations of the AGM or treating only very small
14 or specific graphs was filtered out. We looked for publications (claiming excellent results)

we could replicate (and compare with) either by using their datasets and results, either by

using their technique. BP and PATH fulfilled all those conditions. They are both very recent

and claim better results than many well-known techniques. Also, although they use different

formulations of the AGM problem, they can address problems such as the MCPS. In the

following subsections, we present those two algorithms and some implementation details of

our own algorithms.

BP.

In Riesen and Bunke (2009) is proposed a technique for Graph Edit Distance (GED) based

on a reformulation in an assignment problem on which is applied a Munkres implementation

(Munkres (1957)) of the Hungarian algorithm (Kuhn (1955)). Given two graphs G1 and G2

with respectively n1 and n2 nodes, one has to build a cost matrix C which will serve as the

input to a Hungarian Algorithm. C is a (n1 + n2, n1 + n2) matrix composed of a (n1, n2)

matching matrix M, a (n1, n1) deletion matrix, a (n2, n2) insertion matrix and a (n2, n1) zero

matrix. Each entry Mij of M represents the minimal cost of matching a node i from G1 to

a node j from G2 and uses a Hungarian algorithm to get the optimal matching between the

neighbors of i and j.

PATH.

PATH is an algorithm proposed in Zaslavskiy et al. (2009) and based on convex-concave

relaxations on permutation matrices. First, a convex relaxation on the set of doubly stochastic

matrices is applied and results in a convex quadratic program that can be solved in polynomial

time. A projection back on the set of permutation matrices can be made (via techniques such

as the Hungarian) but it may give poor results. In order to better take into account the cost

function in the projection, PATH proposes a relaxation of the GM problem into a concave

minimization problem with the same solution as the initial GM problem but no polynomial

optimization algorithm. The expectation is that the global minimum of the concave quadratic

function (which is also the global minimum for the initial GM problem) can be found by

following the path of its local minima connected to the unique global minimum of the convex

function. Operationally, the algorithm starts from the optimal solution obtained from the

convex relaxation and then compute a series of local optima for the concave problem found

by slowly giving bigger weights to the concave quadratic function.

The algorithm was tested on a synthetic benchmark completed with QAP (Quadratic

Assignment Problem) and image processing benchmarks. Our experiments with PATH only

consider random undirected and unlabeled graphs that constitute its above mentioned syn-

14Most papers from image recognition community fall in that category.

56

thetic benchmark. On that class of graphs, PATH was proved superior to very well-known

techniques such as Umeyama’s algorithm (Umeyama (1988)) and the linear programming

approach of Almohamad and Duffuaa (1993).

Experimental Plan

Table 3.2 presents our experiments and details parameter settings of the different algo-

rithms. In particular, for the greedy phase of SIM-T, we chose to give predominance for

similarity values on the first 5% inserted node matches. Regarding PATH, we considered

only graphs representative of the synthetic benchmark used in Zaslavskiy et al. (2009): undi-

rected and unlabeled. The package graphm 16 is used as is, with its default parameters. The

score and computation time of PATH on our datasets are directly taken from the package

outputs (variables Gdist 17 and Time). Note that the series SS i represent engineered greedy

algorithms which are initialized with i% node matches from µ0.

Except for BP, PATH and SIM-H which are deterministic algorithms, all the other al-

gorithms are run 10 times on each instance of the generated pairs of graphs and only the

best result per instance is kept. As a result, all the averages and standard deviations in the

following tables and figures are aggregations on different problem instances.

All the algorithms are coded in C++, compiled with g++ and run on a Linux Dual

Processor Opteron 64-bit with 16 Gb RAM running Redhat Advanced Server version 4.

3.6 Algorithms Evaluation on MCPS

In this section, we present results on the MCPS problem. As a known excellent solution, the

initial matching µ0 used for generating problem instances, serves as a reference and the main

performance index is the percentage of the score of µ0 attained by an algorithm run. Note

that when graphs are labeled on nodes, µ0 is not a complete matching (nodes with different

labels cannot be matched) and this results in a less good score of µ0, easier to top for efficient

algorithms. In our tables, this gives scores exceeding 100%. The same can be observed when

the similarity is moderately high (q = 0.6 or 0.7) and/or additional nodes are introduced

16http://cbio.ensmp.fr/graphm/, from the PATH authors
17For undirected and unlabeled graphs, Gdist gives the number of non perfectly matched edges and can

thus be used to retrieve the MCES score.

Table 3.2 Overview of our experiments and algorithms parameters

Algorithm Formulation Tested on benchmarks Parameter settings
TABU MCPS B0 max iter fail = min(|V1|, |V2|), lgtl in = 10, lgtl out = 5
SIM-H MCPS B0

SIM-T MCPS, f1,1 B0, B1, B2, B3 GreedySim: B = min(|V1|, |V2|) × 0.05 + TABU

PATH MCPS undirected B0, B1, B2, B3, default parameters of the package graphm 15

BP MCPS, f1,1 B0, B1, B2, B3 reimplemented, no parameters needed
SS i MCPS B0 i is the percentage of µ0 used to initialize the greedy SSi

57

because there may be alternative better solutions to µ0.

Similarity between the graphs to be matched is the main axis of analysis of the results.

Thus, we present and analyze results using the similarity classes defined by q, p1 and p2.

Additionally, the algorithms’ performances will be assessed considering whether the graphs

are labeled/directed or not.

3.6.1 Algorithms’ results on directed graphs

In order to have a quick overview of the algorithms’ results, we display on Figure 3.7 the

averages reached by the different algorithms on all the directed graphs of the core benchmark.

On average, the classic Tabu is around 60% of the µ0 score and, except for perfectly isomorphic

graphs, it is consistently superior to BP. The latter algorithm provides very poor results when

the graphs are not similar but eventually close the gap with Tabu when the graphs are nearly

isomorphic. Sim-H follows a similar pattern but appears to be consistently better than

BP. Given that both algorithms use a Hungarian technique, the difference in performance is

probably because the similarity measure used for Sim-H is S3D2 while the matching matrix

used in BP uses a close variant of S1.

Looking at the figure, one can notice that initializing a greedy algorithm with as few

as 1% (SS 01, initialised with 3 nodes given that n = 300) of the node matches of µ0

provides, on average, much better results than Tabu, BP and SIM-H. Results are better with

2% (SS 02) which appears on par with SIM-T for very similar graphs. Out of the real

algorithms 18, SIM-T is undoubtedly the best with values mostly above 80% and a perfect

100% on isomorphic graphs. However, on average, initializing a greedy algorithm with 5% of

node matches taken from µ0 gives fairly higher results. Unsurprisingly, even better are SS 10

and SS 20.

As previously done for the prediction power of the similarity measures, it is worth analyz-

ing the algorithms’ performances w.r.t. the number of labels on nodes and edges. Tables 3.3,

3.4, 3.5, and 3.6 present detailed results (the scores represent percentages of µ0 and have to

be maximised) for different labeling categories on the directed graphs. For these tables, and

throughout this section, we apply a light grey background whenever an algorithm obtains an

average between 50 and 74%, and a dark grey background if the average is at least of 75%.

Also, the best average per category is bold-faced.

Table 3.3 presents results for our graphs labeled on nodes and arcs. Here the Tabu is on

average around 80% of the µ0 score and its standard deviations are relatively high (up to

22%). Compared with BP, Tabu is mostly largely superior, except for very similar graphs

(starting from q = 0.9). From very low values for least similar graphs, BP eventually gets

18we remind the viewer that the SSi are based on information one does not normally have

58

Figure 3.7 Results on all directed graphs (Average score in percentage of the µ0 score)

very high averages for the most similar graphs, culminating at 100% for q = 1. Again, Sim-H

follows a similar pattern but appears to be consistently superior to BP and gets the upper

hand on the classic Tabu starting from q = 0.8. The clear winner here is SIM-T with all its

averages above 100% of the µ0 score and very low standard deviations, all factors making it

clearly better than even the engineered algorithm SS 05.

Table 3.4 presents results for our graphs labeled on nodes but not on arcs. Here, Tabu

gets averages from 50 to 80% and standard deviations ranging from 4 to 26%. Again, it is

mostly largely superior to the BP but this time BP gets better only for graphs generated

using q = 1. Sim-H while still superior to BP, now only beats the classic Tabu on nearly

isomorphic graphs. The enhanced tabu SIM-T with averages above 90% is again the best

algorithm even when considering SS 05.

Table 3.3 MCPS results on directed graphs with labels on both edges and nodes (score in
percentage of the µ0 score)

q=0.6 q=0.7 q=0.8 q=0.9 q=1
p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2

ALGO 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0

TABU 74±18 71±22 81±17 73±21 83±18 88±09 85±10 87±11 83±13 93±08

SIM-H 24±04 33±04 52±07 69±07 87±06 96±04 99±01 100±00 100±00 100±00

BP 12±02 13±02 20±04 31±05 51±07 73±08 87±05 98±02 100±01 100±00

SIM-T 114±02 110±02 108±01 104±01 104±01 102±00 102±00 100±00 101±00 100±00

SS 05 91±21 87±21 101±06 98±07 102±02 100±02 101±01 100±00 101±00 100±00

59

Table 3.4 MCPS results on directed graphs with labels on nodes (score in percentage of the
µ0 score)

q=0.6 q=0.7 q=0.8 q=0.9 q=1
p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2

ALGO 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0

TABU 75±06 65±04 55±12 50±12 59±24 66±25 76±18 62±26 75±19 80±19

SIM-H 20±05 18±04 16±04 16±02 20±04 30±05 46±06 76±08 95±03 100±00

BP 18±05 18±04 14±04 14±03 15±03 19±03 29±04 55±07 82±05 100±00

SIM-T 92±18 94±21 99±19 104±06 106±02 103±02 103±01 101±00 101±00 100±00

SS 05 91±25 83±25 97±20 94±18 103±05 100±04 103±01 100±01 101±00 100±00

Table 3.5 presents results for our graphs labeled on arcs but not on nodes. Here, Tabu

gets averages from 35 to 53% and high standard deviations ranging from 21 to 34%. Once

again, it is mostly largely superior to BP, except this time for perfectly isomorphic graphs

(q = 1, p1 = 0, p2 = 0). Sim-H is consistently superior to BP but both algorithms get mostly

very poor averages (and low standard deviations) except for perfectly isomorphic graphs

where they both always attain perfect scores. The enhanced tabu SIM-T, with averages

mostly above 90%, is again the best algorithm but only catches up to SS 05 starting from

q=0.8.

Table 3.6 presents results for our unlabeled graphs. The classic Tabu gets averages from

31 to 49% and mostly low standard deviations. Results look better for least similar graphs

but it could be because the score of µ0 is not a particularly good one on those graphs. Both

BP and Sim-H get abysmal averages and are not competitive with the classic Tabu except

for perfectly isomorphic graphs when they both manage to attain an average of 40% with

a standard deviation of 20%. As for SIM-T, it seems only slightly superior to the classic

Tabu for the least similar graphs but starting from q = 0.8, the gap between those algorithms

widens significantly and averages of SIM-T get higher, eventually culminating at a perfect

Table 3.5 MCPS results on directed graphs with labels on edges (score in percentage of the
µ0 score)

q=0.6 q=0.7 q=0.8 q=0.9 q=1
p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2

ALGO 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0

TABU 40±22 35±21 36±20 37±28 36±25 47±33 44±28 41±32 52±34 53±29

SIM-H 4±01 5±01 6±02 12±03 15±05 35±06 41±07 83±07 84±07 100±00

BP 3±01 3±01 3±01 5±01 6±01 15±02 17±02 49±06 50±04 100±00

SIM-T 86±24 93±17 97±12 99±01 101±01 100±01 101±00 100±00 101±00 100±00

SS 05 91±16 92±13 99±03 99±02 101±01 100±01 101±00 100±00 101±00 100±00

60

100% score for perfectly isomorphic graphs. However, the performance of SIM-T is not

nearly as good as that of SS 05 which maintains averages mostly above 90%.

3.6.2 Algorithms’ results on undirected graphs

As seen above, the less labels on nodes and arcs, the worse the results for algorithms, especially

those based on some kind of similarity (Sim-H, SIM-T, BP). This is because there are more

ambiguities and similarity values are less precise. As said above, the comparison with PATH

requires undirected graphs and, following the experiments in Zaslavskiy et al. (2009), we chose

undirected and unlabeled graphs as the relevant benchmark for PATH ; hence testing our

algorithms on the class of graphs which are the most challenging for our similarity measure.

Looking at Table 3.7, one can notice that the averages of algorithms, such as Tabu, seem

to worsen as the similarity between the graphs increases but it should be noted that this could

be because the referential score is closer to the optimal for most similar graphs. Averages of

BP with values below 10% are extremely poor and even for isomorphic graphs, are only about

5%. Sim-H only differs in that for isomorphic graphs, its average is 40% (with a standard

deviation of 20%). The enhanced tabu SIM-T consistently outperforms the classic Tabu and

maintains averages above 50% with a peak of 99 % for perfectly isomorphic graphs.

The PATH algorithm gets averages between 38 % (for q = 0, p1 = 0, p2 = 0) and 69%

(for q = 0, p1 = 10, p2 = 20) with no real trend depending on the similarity of the graphs.

The fact that the algorithm gets its best and worst average for q = 1 is surprising and may

require advanced knowledge of the functioning of the algorithm. Judging from the averages

and standard deviations of PATH and SIM-T, one can observe that SIM-T consistently

does better than PATH when there are additional noise (p1 = 10, p2 = 20). Considering

comments in Zaslavskiy et al. (2009), it may also be because the graphs have different sizes

in this configuration. When p1 = 0, SIM-T and PATH appear to be on par, with a slight

advantage for PATH when q ≤ 0.7. For q = 0.8, SIM-T has a slightly better average

but with a bigger standard deviation. Starting from q = 0.9, SIM-T clearly and massively

Table 3.6 MCPS results on Directed, Unlabeled graphs (score in percentage of the µ0 score)

q=0.6 q=0.7 q=0.8 q=0.9 q=1
p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2

ALGO 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0

TABU 49±05 42±04 42±04 36±03 37±03 35±13 33±03 39±25 31±07 31±17

SIM-H 7±03 7±03 7±02 6±02 6±02 5±02 5±02 6±02 6±02 40±20

BP 8±03 7±02 7±02 6±02 6±02 5±02 5±02 5±02 5±02 40±20

SIM-T 53±13 43±04 45±14 62±29 53±26 68±32 72±34 96±16 94±23 100±00

SS 05 69±29 71±29 88±15 91±11 97±06 98±03 101±02 99±01 102±01 100±00

61

Table 3.7 MCPS results on Undirected, Unlabeled graphs (score in percentage of the µ0 score)

q=0.6 q=0.7 q=0.8 q=0.9 q=1
p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2

ALGO 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0

TABU 63±05 58±04 55±04 50±04 48±04 44±03 43±03 39±03 39±03 36±02

SIM-H 7±03 7±03 7±02 6±02 6±02 5±02 5±02 6±02 6±02 40±20

BP 6±02 7±02 2±02 6±02 5±02 5±02 4±02 4±02 4±01 5±2

SIM-T 65±06 60±05 56±06 52±04 51±08 49±13 54±20 58±26 77±22 99±03

PATH 57±06 62±06 49±05 53±05 43±05 47±04 39±04 42±04 69±32 38±03

SS 05 86±13 84±15 93±10 95±06 99±02 99±01 100±00 100±00 100±00 100±00

outperforms PATH - in particular for perfectly isomorphic graphs, the gap is of more than

60%. Note that, on our datasets, PATH is far superior to many standard algorithms of the

literature such as Umeyama (1988); Almohamad and Duffuaa (1993) 19. Thus the fact that

our algorithm is in most cases clearly superior to PATH also points to its superiority over

those algorithms.

3.6.3 Computation times

Looking at Table 3.8, we can see that for p1 = 10 and p2 = 20, the algorithms are slower;

this is obviously because we then have more nodes in the two graphs (n1 = 330 and n2 =

360). Also, in general, having labels on the nodes grants faster run-times and this is easily

explained considering the strict node correspondence, which reduces the number of possible

node matches. As expected but with a few exceptions, the more numerous the arcs, the

slower the computation times.

For directed graphs, the fastest algorithm is SIM-T with averages from 3 to 21s and

most values below 10s. Sim-H comes second with averages mostly below 20s. Although the

BP algorithm also uses a Munkres implementation of the Hungarian algorithm, its search

for optimal costs for each possible node match (instead of the conservative estimates used

in our similarity measure) generates much bigger run-times with averages from 45 to 1279s.

Note that the classic Tabu is much slower than the enhanced version SIM-T; this is mainly

because the greedy procedure of SIM-T makes use of specific data structures and update

mechanisms permitted by its sole dedication to the MCPS problem.

For undirected graphs, the fastest algorithm is SIM-H with averages peaking at 12s.

SIM-T comes second with its highest average at 45s. BP is third with values between 17

and 215s. The classic Tabu is the one but last algorithm with values ranging from 213 to 442s

19The package graphm also contains implementations of those algorithms

62

Table 3.8 Computation Times (in seconds)

Tabu BP SIM-H SIM-T PATH

Graph Type 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0

nl=1, el=1
d=6 365 212 165 70 18 8 6 4 - -

d=15 381 219 1279 729 25 9 21 13 - -

nl=1, el=4
d=6 463 266 159 68 17 8 7 5 - -

d=15 378 218 1246 722 19 9 19 12 - -

nl=4, el=1
d=6 27 17 106 45 13 6 4 3 - -

d=15 28 17 217 103 14 6 6 4 - -

nl=4, el=4
d=6 29 18 196 91 9 4 4 3 - -

d=15 29 19 317 159 11 5 6 4 - -

undirected
d=6 442 256 92 17 11 5 28 3 628 397

d=15 377 213 215 112 12 5 45 7 579 457

20. The slowest algorithm is without doubt PATH with averages from 397 to 628s, making

it from 13 to 132 times slower than SIM-T. Those times are consistent with claims of the

authors of PATH who conceded that ”graphs with 1000 vertices may be matched in one and

half hour on a modern computer (3 GHz, 1Gb)” 21.

Overall, on the core benchmark, the enhanced tabu SIM-T is clearly much faster than

either BP or PATH.

3.7 Complementary experiments

In this section, we explore other benchmarks and cost functions: what happens for MCPS

on smaller, larger, or denser graphs? what kind of performance is to be expected when using

a cost function other than MCPS?

3.7.1 Other types of graphs

In the following, we consider the MCPS problem for other types of graphs not included in

our core benchmark.

3.7.1.1 Assessing the effect of graph size

One of the very first parameters we want to consider is the graph size. It is of interest to

assess the performance of SIM-T on small and very large graphs, with respect to its results

20Note that this is one of the very few occurrences where d=15 is faster than d=6.
21http://cbio.ensmp.fr/graphm/

63

on medium graphs as well as the results of the other algorithms (PATH, BP).

Small graphs Table 3.9 presents the results for the 800 directed graphs of B1 while Table

3.10 presents the results for its 200 undirected graphs. For all the algorithms, the results

are much better than with graphs of 300 nodes, especially for least similar pairs of graphs.

SIM-T still largely outperforms BP but on undirected graphs, our algorithm is no longer

the best one. Except for perfectly isomorphic graphs, PATH is now consistently better than

SIM-T, with differences in the averages ranging from 4 to 18%. Looking at the data, the

explanation for this turnaround is not that SIM-T gets worse results for smaller graphs; it is

just that the improvement of PATH performance on small graphs is much more important.

Large Graphs Table 3.11 presents the results for all the 10 large graphs of the benchmark

B2 ((n=3000, d=6, q=0.8); note that the headers (in light gray) now categorize graphs on

whether they are directed or labeled. Again, SIM-T is the best algorithm but it displays a

remarkably poor performance for graphs which are directed, unlabeled and with additional

noise (p1 = 10, p2 = 20). This is consistent with the poor prediction power on those classes of

graphs but a bit worse than expected. Nevertheless, on undirected graphs, SIM-T is better

than PATH, by 5 % for (p1, p2) = (10, 20) and 1 % for (p1, p2) = (0, 0). As for BP, it either

takes more than 48 hours or produces results of less than 1% of the µ0 score.

Impact of the size Overall, the smaller the graphs, the better the results in general but

for SIM-T, results were still very good for graphs as large as 3000 nodes. Data on the

computation times show that for smaller graphs, SIM-T consumes on average less than 1 s

(about 200 ms) while BP takes about 6s and PATH 3s. For the large graphs, our algorithm

takes on average 2000s while PATH needs around 85000s for worse or near identical results.

3.7.1.2 Denser graphs

Table 3.12 presents the results on the 10 pairs of dense graphs of the benchmark B3 (n=300,

d=60, q=0.8). SIM-T still largely outperforms BP but is tied with PATH - with only 1

Table 3.9 MCPS results on Small, Directed graphs (score and computation time)

q=0.6 q=0.7 q=0.8 q=0.9 q=1
p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2

ALGO 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0

BP 64±27 64±26 61±21 69±25 65±24 78±26 77±25 85±25 84±25 99±05
(7s) (5s) (7s) (5s) (7s) (5s) (7s) (5s) (7s) (5s)

SIM-T 105±21 99±21 99±19 95±21 99±18 98±14 99±14 100±05 102±02 100±00
(<1s) (<1s) (<1s) (<1s) (<1s) (<1s) (<1s) (<1s) (<1s) (<1s)

64

Table 3.10 MCPS results on Small, Undirected graphs (score and computation time)

q=0.6 q=0.7 q=0.8 q=0.9 q=1
p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2

ALGO 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0

BP 53±06 55±06 47±06 51±05 42±05 45±06 39±03 41±05 37±02 41±06
(3s) (2s) (3s) (2s) (3s) (2s) (3s) (2s) (3s) (2s)

SIM-T 90±05 83±05 80±03 76±06 73±02 71±08 72±10 72±13 85±16 100±00
(<1s) (<1s) (<1s) (<1s) (<1s) (<1s) (<1s) (<1s) (<1s) (<1s)

PATH 94±06 89±06 86±07 85±10 94±11 96±09 101±00 100±00 100±00 100±00
(6s) (3s) (6s) (3s) (4s) (1s) (3s) (2s) (3s) (1s)

Table 3.11 MCPS results on large graphs (n=3000, d=6, q=0.8)

dir, nl/el=4/4 dir, nl/el=4/1 dir, nl/el=1/4 dir, nl/el=1/1 undirected
p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2

AlGO 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0

SIM-T 104 102 104 101 100 99 27 99 44 41

(2101s) (1399s) (2084s) (1408s) (2604s) (1761s) (2679s) (1605s) (2341s) (1571s)

PATH - - - - - - - - 39 40
(115630s) (54166s)

point of difference for (p1, p2) = (10, 20). In general, on our data, the performances of the

algorithms seem to be at their highest for d = 6, with d = 60 coming as a close second and

d = 15 giving the least good results. From our experiments, apart from the computing times,

neither SIM-T nor the other algorithms are significantly influenced by the density.

3.7.2 Results on a less tolerant cost function: the f1,1

The f1,1 cost function (in which perfect matches are rewarded by a gain of 1 and errors

penalized by a loss of 1) cannot be modeled by a WGM formulation. Thus, only SIM-T

and BP have been tested. Also, for least similar graphs, it is not rare, given the penalties, to

have negative values as scores of the referential matching µ0. Thus, we limit the experiments

on pairs of graphs with a similarity level(q) of at least 0.8. Applying this restriction to the

core benchmark B0 provides 600 relevant graphs.

Table 3.13 presents the results obtained on directed graphs. Our algorithm SIM-T gets

Table 3.12 MCPS results on dense graphs (n=300, d=60, q=0.8)

dir, nl/el=4/4 dir, nl/el=4/1 dir, nl/el=1/4 dir, nl/el=1/1 undirected
p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2

AlGO 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0 10/20 0/0

BP 66 89 43 48 20 36 30 30 24 34
(10255s) (5270s) (11239s) (5833s) (68324s) (37307s) (74063s) (40580s) (5552s) (4193s)

SIM-T 106 103 116 110 102 100 43 100 47 45

(23s) (17s) (31s) (21s) (343s) (183s) (631s) (328s) (220s) (167s)

PATH - - - - - - - - 46 45

(1747s) (763s)

65

even better results than for MCPS, with most of its averages above 90%. Two factors may

explain that: (i) scores of µ0 are less likely to be the optimal scores since the penalties improve

the chances to get better scores from subsets of µ0; (ii) the search landscape offered by the

cost function f1,1 may be better for search algorithms, given that there are now explicit losses

for errors. BP, on the other hand, gets very poor results and often returns matchings that are

actually worse than an empty matching (which provides a 0 score). In those cases, we assign

as the relevant result the obvious zero score rather than the negative score obtained by the

algorithm. Negative scores for BP are hardly a surprise when one considers the poor averages

it gets for MCPS. An interesting feature of the f1,1 function is that it clearly indicates (even

without a referential matching) cases when a matching is really poor.

Note that the high standard deviations in the table do not reveal a higher intrinsic variance

for the f1,1 function on different graphs, but rather reflects that displayed results do not

separate labeled graphs from unlabeled ones. For SIM-T, computation times are higher

than for MCPS (due to more iterations of the tabu search before stagnation) but are on

average under one minute. This is still much faster than BP whose averages are between 600

and 1000s.

For undirected graphs, BP fails to return solutions better than the empty matching.

SIM-T gets significantly less good results with averages at 34% for q = 0.8, 47% for q =

0.9, (p1, p2) = (10, 20) and 87% for q = 0.9, (p1, p2) = (0, 0). Fortunately, on perfectly

isomorphic graphs, SIM-T has a perfect score of 100% with 0 deviation.

3.8 Discussion

In the previous sections, we presented and briefly analyzed results of our algorithms (Tabu,

Sim-H and SIM-T) which we compared against two other taken from the literature: BP and

PATH. We found that with respect to BP, Tabu is competitive, except for very similar graphs

while Sim-H appears consistently better and faster. As for PATH, the algorithm obtained

the best results on small undirected unlabeled graphs but otherwise is outperformed by

our algorithm SIM-T. In the following, we provide a more general discussion based on our

Table 3.13 f1,1 results on Directed graphs (score and computation time)

q=0.8 q=0.9 q=1
p1/p2 p1/p2 p1/p2 p1/p2 p1/p2 p1/p2

ALGO 10/20 0/0 10/20 0/0 10/20 0/0

BP 0±00 0±00 0±00 35±40 10±10 57±50
(1051s) (618s) (1072s) (630s) (1065s) (622s)

SIM-T 88±30 94±30 91±30 99±10 98±20 100±00
(56s) (25s) (43s) (12s) (24s) (8s)

66

experiments and results.

First, we want to provide insights into the variance of the results within the ten runs

used on each problem instance for Tabu and SIM-T. Considering Tabu, on average, the best

result is superior by 17% to the worst result and by 14% to the mean of the ten results. An

interesting feature of SIM-T is that such large deviations rarely occur. In fact, considering

SIM-T, the best result is superior by only 3 % to the worst and by 2% to the average.

Moreover, whenever there are labels on the nodes or arcs, worst and best results are almost

indistinguishable (around 0.1% of difference).

Regarding BP, a reason for its relatively poor results could be that the technique expects

more differencing information on the nodes. If the graphs to be matched have enough specific

information on their nodes, the costs attached to the possible node matches will be more

discriminative. Furthermore, if the node information are given a bigger weight than the

structural information, a Hungarian algorithm will be less vulnerable to interactions between

node matches. Our benchmark of unlabeled or mildly labeled graphs may not represent the

typical graphs targeted by BP. In Riesen and Bunke (2009), BP was tested only on graphs

up to 130 nodes and, as many other GM algorithms, was primarily used for recognition tasks

performed on the kind of small graphs typical of image and molecule benchmarks. In that

context, BP was proved more efficient than algorithms such as A* or BEAM. Indeed, on our

own experiments, the more similar the graphs, the better the results of BP. Moreover, if we

consider our benchmark of small, directed graphs, BP - though still less good than SIM-T -

reaches for the most similar graphs, high averages (around 80% of the µ0 score) which could

result in excellent outcomes if the goal is to recognize a slightly distorted version of a given

graph.

PATH is different from BP on many aspects. It was actually tested not only on specific

benchmarks but also on synthetic graphs. Furthermore, while the graphs used in the paper

were small (100 nodes), the on-line documentation explicitly mentions graphs of 1000 nodes,

thus indicating a concern for scalability. Although relatively slow (and actually the slowest

on the core benchmark), PATH is faster than BP on denser and larger graphs. On a limited

class of graphs (small undirected, unlabeled), PATH is the best of the tested algorithms.

It should be however noted that (i) PATH is only applicable to undirected graphs and (ii)

undirected, unlabeled graphs are the worst case scenario for our algorithm SIM-T which

nonetheless got the upper hand on medium and large graphs.

Finally, we want to add some remarks about the optimization criteria used in our experi-

ments. The AGM variant featured prominently in our experiments is the MCPS problem. It

is a simple formulation of AGM that can be used to build initial solutions for more sophis-

ticated AGM problems. One could argue that, especially in presence of very similar graphs,

67

optimal solutions to the MCPS should be close to optimal solutions of most common AGM

problems. This was verified in our experiments as good solutions for the MCPS problem gen-

erally make great initializations for the alternative function f1,1. Conversely, another point

worth mentioning is that the local search for MCPS solutions may benefit from the use of

alternative cost functions such as f1,1 which can assign explicit penalties when matches are

not perfect.

Limitations of our approach.

There are some limitations of our approach related to our core assumption (the two graphs

to be matched share many common and identical parts). We assume, like Raymond et al.

(2002), that a matching process is only relevant if the two graphs to be treated are similar

enough. In particular, we target graph matching problems in which an MCPS of two graphs

is a decent solution, or at least a good initialization. This is a very reasonable assumption

in case of graphs with symbolic labels (on their nodes and edges) but does not hold for all

WGM problem instances. A key issue is that we consider only perfect matches (both for

our similarity measures and for greedy initialization) while, especially on weighted graphs,

there may be near perfect matches: for instance, two weights 18 and 19 may be considered

almost identical. As a result, our algorithm SIM-T, as is, cannot treat adequately all WGM

problem instances, unlike BP and PATH 22 Nevertheless, our ideas can be adapted to address

these situations; in particular, we plan to investigate the proposal of ”almost identical” labels

in our future work.

3.9 Conclusion

Approximate Graph Matching is a problem with a relatively high number of different for-

mulations and solving techniques. A possible cause is the fact that graphs are very powerful

representations used in various scientific areas and thus, matching graphs is an interesting

problem for researchers and practitioners from different backgrounds. An extensive review of

literature shows that the problem is rarely tackled from a generic perspective but often with

the specificities of the communities involved. Researchers from computer vision field repre-

sent images as special graphs and address derived problems such as elastic graph matching

while people from bio-informatics will focus on the kind of undirected graphs they use to

represent molecules and proteins. This matter of fact does not serve researchers from other

fields when they encounter their own specific graph matching problem. Were there more work

on the generic graph matching problem, it would be easier for them to treat their specific

problem. They often resort to reformulate their graph matching problem as an assignment

22Note however that WGM formulations are also quite limited, as demonstrated by the impossibility to
use PATH on the cost function f1,1.

68

problem - using similarity of possible matches - and then apply exact algorithms such as the

Hungarian. However, an optimal solution obtained from the reformulation as an assignment

problem can be a very poor one for the initial graph matching problem.

In this chapter, we propose, by means of local node similarity measures, an enhancement

of local search techniques for the Approximate Graph Matching (AGM) problem. Our ap-

proach stems from two observations: (i) a classic tabu search can get poor results if the initial

matching choices are uninformed (ii) initializing even a less powerful technique (such as a

greedy or a hill-climbing) with a few right node matches is enough to get excellent results.

In order to retrieve those good pairs of nodes, we resort to the concept of local node sim-

ilarity. Our approach consists in assessing, by analyzing their neighborhoods, how likely it

is to have a pair of nodes included in a good matching. After proposing and investigating

several similarity measures, we determined that conservative estimates of a similarity value

are usually more helpful. Moreover, from the intuition that the similarity measure for any

given pair of nodes should be put in context (and examined with respect to other pairs of

nodes), we introduced and empirically proved the benefits of using discrimination factors as

generic ways to improve the efficiency (in a matching context) of any similarity measure.

Once the similarity measures computed, there are several ways of using it. Out of the two

options that we pursued (Hungarian or Tabu), the best one is an enhanced Tabu initialized by

a greedy procedure based on our similarity measure. In the greedy procedure, the similarity

measures are combined with an objective function and used intensively in the early stages of

the matching process in order to get the search in a good area.

The SIM-T algorithm is the result of our investigations. We tested it against two recent

state-of-the-art algorithms (BP Riesen and Bunke (2009) and PATH Zaslavskiy et al. (2009))

on two different cost functions: one corresponding to the MCPS and another one (f1,1)

(Kpodjedo et al. (2010a)) used to generalization ends.

Our benchmark consisted in a large number (2020) of pairs of random graphs of various

sizes and densities (up to 3300 vertices and 22000 arcs in each graph) available online along

with our detailed results 23. The performance of the algorithms is evaluated by using a

referential score provided by the matching obtained from the generation of the pairs of graphs.

Our SIM-T algorithm provides consistently good results; it outperforms BP (always) and

PATH (mostly, with the exception of very small, undirected, unlabeled graphs) and is much

faster (in some cases more than one hundred fold) than BP or PATH.

23http://web.soccerlab.polymtl.ca/ sekpo/

69

CHAPTER 4

MATCHING SOFTWARE DIAGRAMS

In this chapter, we present our ETGM approach for the matching of software diagrams.

Matching (or differencing) tasks involving diagrams are formulated as ETGM problems in

which differences between software artifacts (modeled as diagrams) are modeled as edit op-

erations. The resulting optimization problem (find the cheapest edition between the two

diagrams) is subsequently solved using a tabu search.

With regard to Chapter 3, there are a number of new contributions that can be high-

lighted. First, to better tackle differencing problems in software engineering, we extend our

approach to the consideration of many-to-many matching: one vertex or group of vertices

may be matched to another vertex or group of vertices. Second, our approach now fully inte-

grates textual information and proposes concepts such as termal footprint 1 and semilarity 2

which combine lexical information and graph structure. Finally, we demonstrate the applica-

bility of our approach on different categories of diagrams (class diagrams, sequence diagrams

and labeled transition systems) and propose comparisons with state-of-the art techniques.

This chapter is organized as follows. Section 4.1 details the diagram matching problem

and its formulation within an ETGM framework. Section 4.2 then presents our tabu search

algorithm as well as new ideas extending the work presented in Chapter 3. Section 4.3

describes the context and research questions of our empirical evaluation of the algorithm.

Section 4.4 reports and discusses the results of the evaluation. Section 4.5 provides qualitative

analysis and threats to the validity of our evaluation. Finally, Section 4.6 concludes and

outlines future work.

4.1 Modeling Diagram Matching as a many-to-many ETGM problem

Our generic approach to diagram matching is based on the Error Tolerant Graph Matching

framework presented in Chapter 3. In the following, we first propose a simple meta-model

whose goal is to capture essential information contained in software diagrams. We then

present our modeling of diagram matching as an ETGM problem extended to many-to-many

matching, and detail considerations about cost parameters inherent to an ETGM model. To

better illustrate the presentation of our approach, a running example presented in Figure 4.1

1This is a neologism coined from thermal footprint.
2a neologism standing for semantic similarity)

70

will be used throughout this chapter.

4.1.1 Running Example

Figure 4.1 presents two class diagrams D1 and D2 of a given system. A correct matching

between D1 and D2 represents the actual evolution of the first diagram and corresponds to

the following solution: the class Instance and the attribute freeTickets were deleted ; a new

class TicketLaw and a new attribute running were created (inserted); the class TheClient is

renamed into Client ; the class Ticket was split into MyTicket and Ticket ; and the method

newLottery was moved from the class Client to the class Lottery.

To retrieve this solution, we formulate the inherent diagram matching problem as an

optimization problem: the differences between the two diagrams stem from edit operations

with assigned costs accounting for both textual and structural differences. Given the cost

parameter values, an algorithm would try to solve that optimization problem by searching

for a solution with a minimal cost.

4.1.2 Minimalist Model for Diagram Representation

Prior to the proposal of a generic algorithm for diagram matching, one must address the

question of a generic representation of diagrams. In terms of representations, graphs are one

of the most generic ways to represent structured objects. An algorithm able to efficiently

treat graphs should then be able to treat diagrams. However, diagrams are usually richer (in

terms of information) than elementary graphs and necessitate more complex models. Even

though some meta-models are already available, notably for UML diagrams, our goal is to

keep our model the simpler and more generic possible. Our choice is then an attributed

directed multi-graph with an embedded containment tree (introduced by the use of a special

arc relation). Figure 4.2 presents the proposed meta-model.

Entities possess attributes such as a Num (a number assigned by default), a Name (e.g.

class name or instance name), and a Type (e.g. class or package). Additionally, depending

on the type of diagram and entity considered, they may also possess specific features (specs).

Figure 4.1 Example of class diagrams to be matched

71

Figure 4.2 Simple Meta-Model for software diagrams

In our model, this special attribute, specs is typically a string obtained by the concatenation

of possible additional attributes. As for the arcs between entities, they are more constrained

and only possess a Type. A special type of arc contains is introduced in order to express the

containment hierarchy found in many diagrams.

Figure 4.3 presents the modeling of the class diagrams displayed in Figure 4.1. In essence,

the resultant graphs contain the entities, the relations between them and a containment tree

that is the partial subgraph obtained when taking into account only containment relations

(type 9 and boldfaced in the figure).

In Figure 4.3, different colors represent the different types of entities: green for packages,

yellow for classes, blue for methods, and light red for attributes. For better readability,

specifics (specs) are not displayed. Examples of such specific information are public@boolean

for the entity (attribute) running and public@void for the entity (method) restart(). Those

strings use the symbol @ as a separator and contain information about the visibility and

types (data type, input or return type) of those entities.

Arcs specify relations between the entities. Relations 1 to 3 express standard relations

in class diagrams. Relations 4 and 5 coming out of a given method inform about its call

dependencies (with another method of the class diagram) and its interactions with a class’

attributes 3. Relations 6, 7 and 8 inform respectively about an attribute type, a method’s

return type or input types. Finally, relations of type 9 refer to containment : a package

3Note that relations 4 and 5 can be recovered from source code or binaries but not from class diagrams.

72

Figure 4.3 Modeling of the running example

contains classes which may contain attributes and/or methods.

For instance, in the first diagram, the entity BuyLottery is a method contained (relation

type 9) in the class TheClient (itself contained in the root package). It takes as input an

instance of the class Lottery (relation type 8) and returns (relation type 7) an instance of

the type Ticket. Additionally, source code or executable reveal that BuyLottery may call

(relation type 4) the method youWon and use the attribute Tickets (from the same class

TheClient).

4.1.3 Diagram matching within an ETGM framework

Differently from the random graphs considered in Chapter 3, software diagrams possess much

richer lexical information, which has to be leveraged for accurate matchings. Moreover,

accurate matching of such structures can require that one entity is to be matched with

several others, given that merges or splitting of entities do occur in software diagrams.

4.1.3.1 Integrating lexical information

First, one should take advantage of the fact that entities (unlike nodes in the random graphs

generated in Chapter 3) have in most cases a name. While there can also be some degree of

ambiguity (e.g. methods in a class may share the same name4), this considerably reduce the

need of sophisticated initialisation techniques. Here, in most problem instances, there will

be a sizable number of entities sharing the same detailed information (name, specifics, etc.)

4Note however that their signatures will enable their distinction.

73

and a local search can certainly be initialised using those matches to which we will refer as

trivial or obvious matches.

However, with additional information, comes the need to define more precisely some edit

operations. For instance, the matching of two nodes should now take into account all the

lexical information attached to the considered entities. In particular, the cost of this operation

should depend on the distance between names, types and specifics of the entities. There is

thus the need to explore textual similarity measures and our cost model now has to integrate

both lexical and structural information.

4.1.3.2 From one-to-one to many-to-many matching

ETGM problems are defined on the basis of a one-to-one constraint; meaning a node is

matched to at most one node. To better accommodate the reality of diagram comparison,

we weaken that limitation by allowing the matching of sets of nodes through the definition

of merge operations between nodes of the same graph.

Formally, a matching between two graphs G1 = (V1, A1) and G2 = (V2, A2) is now any

relation µ ⊆ P (V1)× P (V2) where P (X) represents the power set of a set X (i.e. the set of

all subsets of X) with the constraint that each subset is matched to at most one subset in

the other graph and for each graph, the intersection of its matched subsets is empty. In fact,

our conception of many-to-many matching can be viewed as a one-to-one matching extended

to groups of nodes.

Using merge operations, two or more nodes can now be merged and replaced by a new

multi-entity node, which can be eventually matched to another node. There are two main

points to address when defining the modalities of a merge operation: (i) how is treated

structural information and (ii) how are merged names and specific information.

A very simple way to address the first point is to map all the structural information of the

merged nodes to the group representing them. Every existing arc between given entities e

and f will be interpreted as an arc between the group of e and the group of f . In particular,

if e and f are merged together inside a group g, there will be a loop linking g to itself. An

illustration is provided in Figure 4.4.

Treating the second point is more complicated. The name and specifics of entities are

strings but concatenation, which would be the most natural option, is not entirely satisfactory.

A problem of order may arise. For instance, the merge of two nodes n1 (with name l1) and

n2 (with name l2) can give strings l1.l2 or l2.l1. This can generate problems when it comes

to computing similarity between names or specifications and motivates our use of identifier

splitting techniques (Binkley et al. (2009)); details are provided in section 4.2.2.

74

Figure 4.4 Merges

4.1.4 Assigning costs to edit operations.

In our approach, an instance of a diagram matching problem is represented by two diagrams

and the costs assigned to the different edit operations defined. The choice of those costs is

then a very important step which needs to be taken carefully.

4.1.4.1 Basic cost parameters

Cost are assigned to basic edit operations such as node matches, arc matches, node deletions

and insertions (corresponding to unmatched nodes), arc deletions and insertions (correspond-

ing to unmatched arcs).

Node match A node match occurs when a node n1 in G1 is matched to a node n2 in

G2 and is designed by m(n1) = n2, with m the considered solution. A cost must be paid

for this match if the textual information of n1 and n2 are different. With respect to our

ETGM model, the node textual information (label) is composed of the entity’s name and

specific features. As a result, the assigned cost depends on the dissimilarity between entities’

names and specific features. We first compute similarity values (normalised between 0 and

1) of names (nameSim) and specific features (specSim) using textual similarity detailed

in section 4.2.5. Information from entity name and specifics are combined using 2 weights:

nw (for name), sw (for specific information), which are two real values in [0, 1], such that

nw + sw = 1.

75

nodeSim(n1, n2) = nw × nameSim(n1, n2) + sw × specSim(n1, n2)

The dissimilarity value (1 − nodeSim) is normalized between zero (when n1 and n2 are

identical) and one (when the two entities have nothing in common). Overall, a node match

between n1 and n2 costs cnm × dissimilarity(n1, n2), where cnm is the maximal cost for a

node match and the dissimilarity between two nodes n1 and n2 is function of the entities’

names and specific information.

Arc match An arc match occurs when relations in the first diagram are matched to their

counterparts in the second diagram: every couple of matched nodes (c1, s1) from the first

diagram is considered matched to (c2, s2), with c2 the node matched to c1 and s2 the node

matched to s1. Each couple of matched nodes (c, s) is assigned a string l(c, s) obtained from

the concatenation of the types of relations linking c to s. For instance, in class diagrams,

an arc label l(A,B) = 13 linking a class A to another class B means that A both extends

(inherits from) and uses B. A special value 0 is considered when there are no arcs between

the two nodes. Given l(c1, s1) = w1 and l(m(c1),m(s1)) = w2, we call φ(w1, w2) the cost of

the arc match and we distinguish four cases depending on the labels (types) of the arcs:

1. φ(w,w) = 0 when w1 = w2 = w;

2. φ(w1, λ) = length(w1)× camd when w1 6= λ and w2 = λ;

3. φ(λ,w2) = length(w2)× cami when w1 = λ and w2 6= λ;

4. φ(w1, w2) = (length(w1)− length(w))× camd + (length(w2)− length(w))× cami when

w1 6= λ,w2 6= λ, w1 6= w2 and where w the common part between w1 and w2.

When the two arc labels are identical (Case 1), no cost is required. Cases 2 and 3

correspond to structural errors as defined in Chapter 3. A cost camd is paid for each relation

removal (i.e. relations present in the first diagram but missing in the second) and a cami

for each relation addition (i.e. relations present in the second diagram but missing in the

first). Case 4 corresponds to a label error and it can be viewed as a two-phase operation:

(1) remove relations (from the first diagram) missing in the second diagram and (2) add the

relations (of the second diagram) missing in the first diagram: Case 2 plus Case 3. This case

is consistent with the reality of artifact evolution and spares us the need to specifically assign

a cost to every combination of label error.

Unmatched Elements Two other cost parameter values, cnd and cni, are assigned to node

deletions and insertions. Unmatched relations (adjacent to deleted nodes) of the first diagram

76

are deleted and generate, each, a cost caud while unmatched relations (adjacent to inserted

nodes) of the second diagram are inserted and generate, each, a cost caui.

Consequently, each potential matching m is assigned a cost f(m). This cost is the sum:

f(m) = fnode err(m) + fnode unmatched(m) + farc err(m) + farc unmatched(m)

where fnode err(m) corresponds to penalties for node textual dissimilarity; fnode unmatched(m)

corresponds to node deletions and insertions; farc err(m) corresponds to penalties for dif-

ferences between matched arcs; and finally, farc unmatched corresponds to arc deletions or

insertions. These terms are computed as follows:

• fnode err(m) = cnm × Σxc∈V̂1
dissimilarity(c,m(c));

• fnode unmatched(m) = cnd × |V1 − V̂1|+ cni × |V2 − V̂2|;

• farc err(m) = Σ(x,y)∈V̂1×V̂1
φ(l(x, y), l(m(x),m(y)));

• farc unmatched(m) = caud × |{(x, y) ∈ V1 × V1 − V̂1 × V̂1 : l(x, y) 6= λ}|+ caui × |{(x, y) ∈

V2 × V2 − V̂2 × V̂2 : l(x, y) 6= λ}|.

where V1 (respectively, V2) is the set of nodes from the first diagram (respectively, the second

diagram), V̂1 is the matched subset of V1 and V̂2 is the matched subset of V2.

Thus, nine cost parameters, nw, sw, cnm, cnd, cni, camd, cami, caud, and caui – see Table 4.1)

– are used in the cost model of the ETGM algorithm when addressing diagram matching

problems.

4.1.4.2 Assigning costs to merge operations

In our proposal, costs assigned to merge operations (see) are derived from those assigned to

the previously defined basic edit operations. We opted for a very simple mechanism in which

Table 4.1 ETGM cost parameters

Parameters Description

cnm Maximum cost of a match between two nodes

nw nw, sw are real numbers between 0 and 1 such as nw + sw = 1;
sw they weight respectively information about entity name and specific features

cnd cost of deleting a node present in V1 but missing from V2

cni cost of adding a node present in V2 but missing from V1

camd cost of deleting a relation linking two nodes of V1, both present in V2

cami cost of adding a relation linking two nodes of V1, both present in V2

caud deleting a relation linking two nodes of V1, of which at least one is missing from V2

caui adding a relation linking two nodes in V2, of which at least one is missing from V1

77

each of the basic cost is multiplied by a number indicating how many entities are involved in

the considered operation. For a given node n, |n| indicates its number of entities and we use

the following formulas to value edit operations involving merges.

• cnm(n1, n2) = cnm × (|n1| × |n2|),

• caud(a1) = caud × (|n1| × |m1|), with a1 linking n1 and m1

• caui(a2) = caui × (|n2| × |m2|), with a2 linking n2 and m2

• camd(a1) = camd × (|n1| × |m1|), with a1 linking n1 and m1

• cami(a2) = cami × (|n2| × |m2|), with a2 linking n2 and m2

As a result, edit operations involving multi-entity nodes are more penalized; there is less

tolerance for merge operations and they will be in most cases, more expensive than the pairing

of two entities. With such handicap, it is expected that only the most convincing merges (far

cheaper than any other alternative) will be kept in the solution.

4.1.4.3 Tuning the ETGM Cost Model

A multiplication of all the cost parameters by a constant do not affect the results. Indeed,

cost parameters do not influence the optimal matching as absolute values but as ratios. These

ratios lead to more or less tolerance to errors from the ETGM algorithm and–or more or less

importance to different kinds of information.

In essence, a developer can decide what is important for her in the result set: if she favors

matching based on the structure or the textual information (entity name and specifics), if

renaming of entities should be admissible, and so on.

We define five aggregate parameters – see Table 4.2 – that specify the kind of match-

ing to be expected: dropWeightNode and dropWeightEdge to calibrate error tolerance,

edgeWeight and nameWeight to calibrate the importance of different sources of informa-

tion, and asymmetry to take into account the direction of the matching.

Calibrating Error Tolerance. When two nodes n1 from g1 and n2 from g2 are matched,

a cost expressing their dissimilarity (cnm × dissimilarity(n1, n2)) must be paid; otherwise,

a cost for deleting n1 and inserting n2 (cnd + cni) is paid. The dropWeightNode parameter

calibrates the level of tolerance to dissimilarity between two nodes. It defines a threshold of

dissimilarity beyond which the cost paid in case of a match is higher to the cost paid when

the nodes are not matched.

78

Table 4.2 ETGM Aggregate parameters

Parameters Description

dropWeightNode Role considering only textual changes, drop or match?

(dwn)
Formula dwn = cnd+cni

cnm

Range Min=0: zero-tolerance on internal changes;
Max=1: no penalty for node dissimilarity

Void if edgeWeight →∞

dropWeightEdge Role considering only structural changes, drop or match?

(dwe)
Formula dwe = caud+caui

camd+cami

Range Min=0: zero-tolerance on structural changes;
Max=1: no penalty for relational changes

Void if edgeWeight→ 0

edgeWeight Role structural information over textual information?

(ew)
Formula ew = camd+cami

cnm

Range Min=0: structural information is not considered;
Max →∞: only structural information is considered

asymmetry Role additions over deletions?

(asy)
Formula asy = cni

cnd
= caui

caud
= cami

camd

Range Min=0: additions are penalty-free;
Max →∞: deletions are penalty-free

nameWeight Role node name over specific information?

(nw)
Formula nw = 1− sw

Range Min=0: names are irrelevant;
Max=1: Specific information is irrelevant

Void if edgeWeight→∞

79

Similarly to the dropWeightNode, we define dropWeightEdge to compare two alterna-

tives: matching two edges or excluding them from the solution. Perfect arc matches always

yield a zero cost but when we have differences between matched edges, this aggregate pa-

rameter informs about how much more we must pay.

The higher the values of dropWeightNode or dropWeightEdge, the higher the tolerance

to errors in the solution. When those parameters have a value of 1 or higher, our ETGM

algorithm becomes error-friendly, i.e. the worst matches are equal or better than any set

of deletion and insertion. Values of 0 lead to an error-free configuration, which allows only

perfect matches.

Calibrating the Importance of Different Sources of Information. The edgeWeight

parameter indicates the importance of structural information over textual information in the

solution. The higher this parameter value, the higher the importance of structural informa-

tion in the solution. A value 0 means that the structural information is dismissed while a

very high value (near ∞) means that textual information is irrelevant. The nameWeight

parameter allows ignoring either specific information (nameWeight = 1) or name informa-

tion(nameWeight=0), or finely tuning their contribution in the matching.

Taking into Account the Direction of Matching. One can assume that a matching

from G1 to G2 or from G2 to G1 makes use of the same cost model. However, because

software systems evolve in the direction of time (additions are more likely operations from a

version to its successor), we also define the asymmetry parameter which takes into account

the direction of a matching. Asymmetry means that edit operations in one direction may

cost more than the same operations in the other direction. An asymmetry value of (i) 0

means that additions do not count, (ii) 1 that additions have the same weight as deletions,

(iii) ∞ that deletions do not count.

4.2 MADMatch: A search based Many-to-many Approximate Diagram Match-

ing approach

In order to address diagram matching problems modeled as many-to-many ETGM problems,

we propose MADMatch, a Many-to-many Approximate Diagram Matching approach based

on a tabu search initialized using original similarity concepts combining textual and structural

information.

The block diagram of MADMatch is presented in Figure 4.5, from the loading of the dia-

grams to the return of the best matching found, along with run-time complexity information

which overall is O(n2), with n being the number of entities.

80

In summary, once the two diagrams loaded, we retrieve an initial solution constituted by

trivial entity matches (entities with the exact same information in both diagrams), then filter

out (see 4.2.1) matched parts with no influence on future optimization. After which, based

on the terms composing the entities’ names (see 4.2.2), we build entity-term matrices for

both diagrams (see 4.2.3) and use them to derive measures used to filter out entity matches

deemed very unlikely (see 4.2.4). The valid entity pairs coming out of this step define the

search space on which is applied a tabu search (see 4.2.6). The tabu search proceeds by

iterative improvement on a given solution and stops when the search stagnates (no longer

improves the cost) for a given number of iterations. The best solution found is thus returned

and defines the matching between the two input diagrams.

Differences between MADMatch and the algorithm Sim-T presented in Chapter 3 stem

essentially from the integration of textual information and the extension to many-to-many

matching. We detail in the following each of the steps presented in Figure 4.5, with a focus

on the new ingredients (some well-known, others being original contributions) proposed to

address the new requirements.

4.2.1 Obvious matches and Filter I

Given two diagrams, every pair of nodes (one from the first diagram and another from the

second) could be considered as a possible match. However, a very reasonable assumption

is that entities of different types should be considered as impossible matches: for instance,

in a class diagram, it would hardly make sense trying to match an attribute to a package.

Moreover, very often and especially in a software evolution context, one can take advantage

of the fact that there are many obvious (trivial) node matches between the two considered

diagrams. Entities with the same ascendancy (e.g. path in a class diagram), name and

specifics can be considered matched from the start. When such matched entities also have

identical neighborhoods (all the neighbors of the first node are perfectly matched to all the

neighbors of the second node), we consider those entity matches as firm and definitive. Those

entities are deemed irrelevant for the matching process given that they interact only with

entities already perfectly matched and can no longer influence the matching of other entities.

In our example, the entities Ticket, Lottery and restart of the first diagram will be matched

to their counterparts (the nodes sharing the same ascendancy and name) in the second

diagram. Furthermore, the entities restart will be considered definitively matched given that

their neighborhood is also perfectly matched (Lottery matched to Lottery). Consequently,

no other entity will be considered as a possible match for either of the entities restart, thus

reducing the search space.

The output of the filter I generated many sets: (i) a set of definitive node matches involving

81

Figure 4.5 Block diagram of the MADMatch algorithm

82

entities considered irrelevant for the matching process, (ii) a set of node matches (with non-

perfect neighborhood matches) which can effectively inform and impact the matching process,

and (iii) the sets of unmatched entities from both diagrams.

4.2.2 Getting the terms composing entities’ names

One of the main challenges in the matching of diagrams is the renaming of entities. An

important observation is that entities’ names are often composite strings obtained by the

concatenation of basic terms which can be words (from a given language), acronyms, abbre-

viations etc. In most cases, the renaming of an entity operates at the level of those terms,

which can be replaced, altered, etc. Consistent with this reality, our handling of textual

information is also based on the use of those basic units of text, which we recover through

identifier splitting techniques.

Identifier splitting is a well-known technique in program comprehension which consists

in splitting identifiers encountered in source code in many (possibly) meaningful terms. The

fastest and most widely used identifier splitting algorithm is the Camel Case split (Binkley

et al. (2009)) which has been previously applied for traceability link recovery and operates

as follows. First, special symbols (such as underscore, pointer access, etc.) are replaced with

the space character. Second, identifiers are split where terms are separated using the Camel

Case convention. For instance, ”studentName” is split into ”student” and ”Name”. Third,

when two or more upper case characters are followed by one or more lower case characters,

the identifier is split at the last-but-one upper-case character. For instance, ”MADMatch” is

split into ”MAD” and ”Match”.

The technique cannot split effectively same-case composite words (such as ”MADMatch”

or ”MADMatch”) and cannot automatically recover whether the split terms are variations

of a same word (e.g. ”identify” and ”identified”). There are more sophisticated techniques

(Enslen et al. (2009); Madani et al. (2010)) but we believe that in our diagram matching

context, Camel Case Split can be effectively applied.

For our purpose, case is not important. Thus, once the terms retrieved, their characters

are put in lower case. Applied to our running example of Figure 4.3, each entity name is split

in terms (e.g. newLottery → {new, lottery}) and we can collect the set of terms contained

in the relevant entities of each diagram 4.2.2 5.

5Note that the term restart is missing from the table given that the only entity containing it has been
definitively matched.

83

Table 4.3 Terms in the example – number of occurrences are in brackets

Diagram Terms

Diagram 1 buy(1), client(1), free(1), instance(1), lottery(2), new(1), the(1), ticket(2),
tickets(2), won(1), you(1)

Diagram 2 buy(1), client(1), law(1), lottery(2), my(1), new(1), running(1), ticket(2),
tickets(2), won(1), you(1)

4.2.3 ”Termal footprint” and Entity-Term Matrix (ETM)

Our first direct exploitation of the splitting of entities’ names into terms is the proposal of a

termal footprint for an entity, which informs about its related terms.

Unlike the standard approach in software traceability (Lucia et al. (2011)) where a doc-

ument is defined only by the terms it contains, we also include in the termal footprint of a

given entity e, the terms contained in the neighbors of e (i.e. the entities with arcs coming

to or from e). Robustness to renaming is the main goal of our termal footprint. For a given

entity, a renaming can occur but it may not affect all the terms contained in the entity name.

The same goes for the neighbors of that entity. Given two entities which correspond to a

correct match, the chances that their termal footprints appear completely unrelated are very

slim.

More formally, a relation between an entity ent and a term trm is defined by a triplet

(i, f, t) where i is the number of occurrences of trm in the entity name, f is the number of

occurrences of trm in entities with an arc going to ent (in-neighbors), t is the number of

occurrences of trm in entities with an arc coming from ent (out-neighbors). A single variable

S (defined as the sum of i, f and t) can be used to capture the size of the relation between

an entity and a term. The termal footprint of an entity is the collection of its relations with

all the terms which are related to it. Its size is the sum of the sizes of those relations.

The relation of an entity with a given term can be further refined if the type of the

neighbors is taken into account 6. Figure 4.6 presents an example of such a relation, using

the entity TheClient and the term lottery. The relation between the entity TheClient and

the term lottery is featured at the center of the figure. The entity (class) TheClient has

both an out-relation and an in-relation with the entity (class) Lottery. Plus, it contains the

entity (method) newLottery. Thus, the footprint of TheClient relatively to the term lottery

is represented by the triplet (0, 1, 2), meaning that the entity name does not contain the

term, but has one (1) in-neighbor which name contains lottery (the class Lottery) and two

out-neighbors which names contain lottery (the class Lottery and the method newLottery).

6Another option could be to consider the types of the arcs linking the entities but the type of an entity
constitutes much more stable information.

84

Figure 4.6 Samples from the entity-term matrices of the running example

Similarly to a common practice in software traceability where researchers define a document-

term matrix from which they can infer similarity between documents, we also propose an

entity-term matrix (ETM) which considers terms contained in entities’ names. Figure 4.7

illustrates the ETM concept by presenting a sample of such matrices for the two diagrams

of the running example. Each line represents an entity while columns represent the terms.

Columns with a dark gray background represent terms completely absent from a diagram

while red cells represent the absence of interaction between an entity (line) and a term (col-

umn).

In definitive, a 3-dimension matrix can be used to represent the relation of entities to

terms: the first dimension representing the entities, the second dimension the terms and

the third the different counters expressing occurrences of the terms within the names of the

entity itself or its neighbors. For a given entity-term matrix ETM , ETM [e][t][c] represents

the number of occurrences of a term t relatively to an entity e and a variable c (expressing

either i, f , or t). In particular, ETM [e][t][0] is the number of occurrences of the term t in

the name of the entity e.

85

Figure 4.7 Samples from the entity-term matrices of the running example

4.2.4 Entity ”Semilarity” and Filter II

The search space for a diagram matching problem instance can be very large, especially when

one considers multiple matches (one-to-many, many-to-one or many-to-many). To prevent

scalability issues, we propose the concept of semilarity which is built upon the notion of

termal footprint and improves run-time efficiency by reducing in an efficient way the search

space. The semilarity between two entities provides a quick and informed comparison of two

entities using terms to which they are related and is computed given the termal footprints of

two entities.

The entity-term matrices of the two diagrams to be matched are used to compute the

semilarity between entities. Given two entities e1 and e2, their semilarity (which is simply a

measure of the intersection of the terms linked to the two entities) is computed as follows.

Semil(e1, e2) =
∑

t∈T1∩T2

∑

i=0..k

min(ETM1[e1][t][i], ETM2[e2][t][i]) (4.1)

with T1 and T2 the sets of terms recovered from the first and second diagrams, and k the

number of term counters.

The number of commonalities between two entities is determined by summing the mini-

mum number of occurrences for each term and counter. This generates a semilarity number

which can be evaluated against the size of the termal footprint of each entity. For instance,

86

as observable of Figure 4.7 the semilarity value between the entity Ticket of the first diagram

(termal footprint of size 8) and the entity Ticket of the second diagram (termal footprint of

size 3) is 3.

A relative semilarity is used to filter out pairs of entities which are below a given threshold.

Given that we are considering many to many matching, a node from one graph may contain a

node from the other graph. We thus assess the semilarity in an asymmetrical way: considering

two entities e1 and e2, how much of the termal footprint of e1 can be retrieved in that of e2

and vice versa? The relative semilarity of e1 with regard to e2 (rSemil1) is the ratio of the

semilarity by the size of the termal footprint of e1.

rSemil1 = Semil(e1,e2)
‖TF1‖

rSemil2 = Semil(e1,e2)
‖TF2‖

Whenever both relative semilarities fail to meet a certain threshold, the pair of nodes is

discarded from the set of possible node matches.

Table 4.4 presents the outcome of the Filter II on our running example when a threshold

of 0.5 is applied. This means all pairs of entities (e1, e2) such that rSemil(e1, e2) < 0.5 and

rSemil(e2, e1) < 0.5 are filtered out; two entities are considered for a node match only if at

least one of them includes half of the termal footprint of the other.

Considering the entity Ticket (termal footprint of size 8) of the first diagram, there

are three possible matches in the second diagram : MyTicket (termal footprint of size 7),

Ticket(termal footprint of size 3), and TicketLaw (termal footprint of size 4) with which it

shares respectively 6, 3, and 3 terms. The termal footprint of Ticket in the second diagram is

of only 3 and much smaller than that of Ticket in the first diagram but those entities will be

considered for a match given that one (Ticket in first diagram) includes the termal footprint

of the other (Ticket in second diagram).

4.2.5 Entity similarity

The node pairs coming through the Filter II are the ones used in the tabu search. They

constitute options which are assessed and valued in both textual and structural perspectives.

The similarity between two entities is computed using textual similarity between their names

and specifications. There exist many techniques able to compute similarity or distance be-

tween two strings. For instance, given two strings the Levenshtein distance (also called string

edit distance) will return the number of string operations (addition, deletion, substitution

of characters) needed to transform one string into the other. Another interesting option is

the Longest Common Substring (LCS) which, given two strings, returns the longest string

that is a substring of both strings. However useful in many contexts, both techniques would

87

Table 4.4 Valid pairs of the running example after Filter II

Entity1 Entity2 ‖TF1‖ ‖TF2‖ Semil rSemil1 rSemil2
. . 6 8 4
TheClient Client 15 11 10 0.67 0.91

TheClient Ticket 15 3 2 0.13 0.67

Ticket MyTicket 8 7 6 0.75 0.86

Ticket Ticket 8 3 3 0.38 1

Ticket TicketLaw 8 4 3 0.38 0.75

Lottery MyTicket 10 7 4 0.4 0.57

Lottery Lottery 10 12 7 0.7 0.58

Instance Client 3 11 2 0.67 0.18
TheClient.newLottery Lottery.newLottery 4 3 2 0.5 0.67

TheClient.youWon Client.YouWon 6 5 5 0.83 1

TheClient.Tickets Client.Tickets 6 6 5 0.83 0.83

TheClient.BuyTicket Client.buyTicket 9 9 8 0.89 0.89

somehow fail if directly applied on the strings verticalLabel and labelDrawnVertical 7. The

added value of term splitting is obvious in this example: instead of trying to compute a

comparison value on the concatenated terms, the string distances could be applied for the

sets of terms {vertical, label} and {label, drawn, vertical}.

In our context, using Camel Case Split, we can generate for a given entity, a set of terms

from its name (nameSet) and another set of terms from its specifics (specSet). Given two

entities, those sets of terms can be compared in order to produce similarity values for names

(or specifications). The comparison between two terms can be binary (are the terms equal?)

or quantitative (how similar are the terms?).

The first option could be used to retrieve the cardinality of the intersection between the

two sets of terms. For instance, once the term splitting done on verticalLabel and labelDrawn-

Vertical, one would easily, and in a fast way, compute that those two identifiers share two

terms, and that labelDrawnVertical actually includes all the terms contained in verticalLabel.

A first similarity measure based on this option could be

textSim1(string1, string2) =
2× ‖splits(string1) ∩ splits(string2)‖

‖splits(string1)‖+ ‖splits(string2)‖
(4.2)

where splits(X) represent the set of terms obtained from a string X.

However, this option would not be robust to variations. Considering that split terms

can be variants of a same word (identify versus identifier) or subject to typos, it could be

too restrictive to take only into account term equality. For a higher accuracy of the text

7a renaming observed in JFreeChart (from 0.7.3 to 0.7.4)

88

similarity, a quantitative option is more indicated and we selected the Longest Common

Substring (LCS) primarily out of speed considerations. Indeed, we envisage the comparison

of the sets of terms as the result of pairwise comparisons between all the terms of the first

string and all the terms of the second string. The occurrences of term comparison are thus

expected to be relatively frequent and we deemed that the choice of a technique such as the

Levenshtein distance, even if possibly more accurate in some circumstances, would not be as

scalable as wanted.

Table 4.5 illustrates the proposal with the strings drawVerticalLabel and setLabelDrawn-

Verticla (assuming a typo in Vertical). In the example

‖LCS(label, label)‖ = 5 and ‖LCS(verticla, vertical)‖ = 6 (vertic is the LCS). Note

that even if the terms verticla and label are not related at all, the string la is their LCS and

‖LCS(verticla, label)‖ = 2 8.

Ultimately, the similarity value of two sets equates to finding the best matching between

terms from the different sets, i.e. the one that will maximize the text similarity of the two

original strings. This can be modeled as an assignment problem and optimally solved by

the Hungarian algorithm (Kuhn (1955)). On the example displayed in 4.5, the result of the

application of the Hungarian algorithm would be label↔ label and verticla↔ vertical which

means that ”verticalLabel”(13 characters) and ”labelDrawnVerticla”(18 characters) share 11

characters.

A second textual similarity measure is computed as follows:

textSim2(string1, string2) =
2× length(optimal term match)

length(string1) + length(string2)
(4.3)

where length(X) is the number of characters of the string X and optimal term match is

based on the output of the underlying assignment problem.

To determine the dissimilarity of an entity, we use both text similarity measures defined

above. For specifics of an entity, we opted for the first similarity measure textSim1. Specifics

8Additional refinement could be applied to prevent this kind of oddities but we tried to keep things simple.

Table 4.5 LCS between terms of setLabelDrawnVerticla and drawVerticalLabel

‖LCS‖ draw vertical label

set 0 1 1
label 1 1 5
drawn 4 1 1
verticla 1 6 2

89

are expected to contain more information and we estimated that the additional level of

accuracy brought by textSim2 for term comparison besides being time-consuming was not

an absolute necessity. The set of terms from the specifics are extracted using Camel Case

split. The terms are prefixed with a number expressing their position (meaning) 9 in the

specifics.

specSim(specs1, specs2) = textSim2(specs1, specs2) (4.4)

In contrast, the name of an entity not only contains significant information but generally

consists of a few terms. The use of textSim2 is then both indicated and viable. Moreover,

in order to mitigate the fact that terms can have different lengths, we also use textSim1 to

avoid situations in which the length of some terms completely bias the computed similarity.

For instance, when one considers the names supremeFarOut and extraordinaryFarOut both

supreme and extraordinary contain more characters than the two terms far and out and could

significantly lower the similarity between supremeFarOut and extraordinaryFarOut. The text

similarity is thus defined as follows

nameSim(name1, name2) = max(textSim1(name1, name2), textSim2(name1, name2))

(4.5)

To illustrate this, let us consider two methods m1 and m2 which signatures are respectively

m1 : public boolean drawV erticalLabel(Object, double, int)

→ name1 = drawV erticalLabel, specs1 = public@boolean@Object, double, int

m2 : public boolean setLabelDrawnV erticla(TypedObject, double, int)

→ name2 = setLabelDrawnV erticla, specs2 = public@boolean@TypedObject, double, int

Names will generate the following sets of terms name1 → draw, label, vertical and name2 →

drawn, label, verticla, set. As for the specifics, extracted terms are prefixed with numbers

to avoid in a simple way the mix of terms used in different contexts. Our example gives

specs1 → {1-public,2-boolean,3-object,3-double,3-int} and specs2 → {1-public,2-boolean,3-

typed,3-object,3-double,3-int}.

textSim1(name1, name2) = 2×1
3+4

= 0.29

textSim2(name1, name2) = 2×15
17+21

= 0.79

nameSim(name1, name2) = max(0.29, 0.79) = 0.79

specSim(specs1, specs2) = textSim2(specs1, specs2) = 2×5
5+6

= 0.91

9An example is provided below.

90

nodeSim(m1,m2) = nw × nameSim(name1, name2) + sw × specSim(specs1, specs2)

nw = 0.5, sw = 0.5→ nodeSim(m1,m2) = 0.85

Note that textual similarity between merged nodes is easily addressed using the union of

the sets of terms generated by the names or specifics.

4.2.6 Tabu Search

Due to the introduction of many-to-many matching, there are a number of differences with

the mechanisms introduced in Chapter 3. In MADMatch, a move applied to a current solution

consists in

(a) adding a new pair of single-entity nodes (both previously unmatched)

(b) removing a pair of matched single-entity nodes

(c) merging an unmatched single-entity node to a matched node

(d) removing a matched single-entity node from a multi-entity node

(e) removing a pair of matched nodes involving at least one multi-entity node

Figure 4.8 illustrates each one of those different cases: green shapes represent the nodes

considered in the move; and the letters (consistent with the above enumeration) indicate

which move is applied. Moves (a) and (b) represent what we did in Chapter 3 to handle one-to-

one matching: two previously unmatched (single-entity) nodes are matched or two previously

matched (single-entity) nodes are unmatched. Many-to-many matching is introduced through

moves (c), (d), and (e). A move (c) represent the merge of a (single-entity) node with another

node while a move (d) is the expulsion of a single-entity node from a multi-entity node.

Finally, a move (e) provokes the implosion of all multi-entity nodes involved. An illustrative

example is presented below.

Let us suppose {(n1, n2), (k1, k2), (n1,m2), (m1, n2), (m1,m2)} a subset of the valid pairs.

With all the entities initially unmatched, possible moves are illustrated below.

1. (n1, n2) [move (a)].

2. (k1, k2) [move (a)].

3. (m1, n2)→ (E1, n2) with E1 = {n1,m1} [move (c)] .

4. (E1,m2)→ (E1, E2) with E2 = {n2,m2} [move (c)].

5. (n1, E2)→ (m1, E2) [move (d)].

91

Figure 4.8 Possible Moves

6. (m1, E2)→ m1, n2,m2 [move (e)].

7. (k1, k2)→ k1, k2 [move (b)].

The definition of the new moves also impacts the tabu mechanisms. Our tabu list forbids

recently inserted node matches to leave the solution for a given number of iterations and

recently removed node matches to re-enter the solution for a given number of iterations.

Given the merge operations, the enforcement of those mechanisms is slightly more complex.

For instance, considering the example above, the move (n1, E2) actually unmatches n1 and

n2 and should be forbidden if (n1, n2) is still a tabu move.

4.2.7 Application on the running example

When MADMatch is applied 10 to the class diagrams displayed in Figures 4.1 and 4.3, the

matching cost of an empty solution (delete all in the first diagram, insert all in the second

diagram) is f(S) = 1131. After the obvious matches (root ←→ root, Ticket ←→ Ticket,

Lottery ←→ Lottery, Lottery.restart() ←→ Lottery.restart()) the cost goes down to 783.

Then, the tabu search starts and proceeds as follows, iteration per iteration.

1. TheClient ←→ Client : a cost decrease of 86 (f(S) = 697)

2. TheClient.BuyTicket() ←→ Client.buyTicket(): a cost decrease of 86 (f(S) = 611)

10with the same cost parameters used in our case study

92

3. TheClient.youWon() ←→ Client.YouWon(): a cost decrease of 104 (f(S) = 507)

4. TheClient.Tickets ←→ Client.Tickets : a cost decrease of 87 (f(S) = 420)

5. TheClient.newLottery() ←→ Lottery.newLottery(): a cost decrease of 67 (f(S) = 353)

6. Ticket ←→ MyTicket : a cost decrease of 48 (f(S) = 305) and the merge of Ticket and

MyTicket in the second diagram

7. TheClient ←→ TicketLaw : a cost increase of 56 (f(S) = 361) and the merge of

Client and TicketLaw

8. The search then stagnates (unable to improve on the best cost found 305) for X itera-

tions and stops.

The final result is the one reached at iteration 6 and is indeed the correct matching we

were expecting.

4.3 Empirical evaluation

The main goal of our empirical evaluation is to investigate the applicability and accuracy

of our approach in different diagram matching contexts. The quality focus is the accuracy

and scalability of our ETGM algorithm. The perspective is both of researchers who often

use diagrams to study software evolution, and of developers who want to quickly find some

insights on the evolution of large OO systems or the comparison of software diagrams. The

context of the evaluation consist of several open-source software applications and diagrams,

all of which are detailed in the next subsection.

4.3.1 Research Questions

We address three main research questions:

• RQ1 – MADMatch Accuracy: How accurate are the results produced by our algo-

rithm?

• RQ2 – MADMatch Scalability: What is the run-time performance of our algorithm

when the size of the diagrams to match varies from small (e.g. DNSJava) to large (e.g.

Eclipse).

• RQ3 – MADMatch Genericness: Can our generic approach be applied effectively

for different diagram matching problems?

93

RQ1 aims at providing a measure of the accuracy achieved in the returned solutions. RQ2

targets scalability; we select diagrams of different sizes to investigate the impact of the size

of the diagrams on the matching time. RQ3 aims at providing insights on the applicability

of MADMatch on different kinds of artifacts.

Figure 4.9 illustrates the methodology we adopted in order to answer those three research

questions. Our algorithm MADMatch was applied on software artifacts representing the

two main types of diagrams encountered in software engineering: structural diagrams and

behavioral diagrams.

Structural diagrams are represented by class diagrams extended with information about

methods’ dependency and attribute use. We chose to explore the applicability of MADMatch

with respect to two related important problems: Design Differencing (or Evolution) and

API11 Evolution. We conducted a compared evaluation of MADMatch by using state-of-

art specialized algorithms and trying to determine whether MADMatch improves on them.

Several differential measures are proposed and used to this end.

In our evaluation, behavioral diagrams are mainly used to answer RQ3 (the genericness

of MADMatch). They are represented in our experiments by sequence diagrams and labeled

transition systems. Consistent with what can usually be observed for behavioral diagrams,

the diagram instances used in our evaluation are small and this enables the manual retrieval

of optimal solutions. Standard information retrieval measures were thus used to assess the

performances of the considered algorithms.

In the following, we first present information about the diagrams used: how they are

modeled in our approach, which algorithm was selected to compare against and on which

datasets. Then we detail the analysis method adopted for the evaluation of our algorithm.

4.3.2 Experimental plan for class diagrams

Class diagrams are important software artifacts in Object Oriented development. Whether

explicitly conceived or not, those artifacts can often be found or reverse-engineered in OO

projects and thus naturally concentrate most of the research work on design differencing.

4.3.2.1 Modeling and extraction

Our class diagrams integrate additional elements obtained from the actual implementation

(source code or executable): calls between methods and information about the use of class

attributes.

We recover the class diagrams of the studied Java applications using the Ptidej tool

11Application Programming Interface

94

Figure 4.9 MADMatch Evaluation approach

95

Table 4.6 Modeling class diagrams

Entities

Type 0 subsystems and packages
Type 1 classes and interfaces
Type 2 methods
Type 3 attributes

Relations A→ B

Type 1 class A ”uses” class B
Type 2 class A ”aggregates” class B
Type 3 class A inherits from class B
Type 4 method A calls method B
Type 5 method A uses attribute B
Type 6 class B is the type of attribute A
Type 7 class B is the return type of method A
Type 8 class B is an input type of method A
Type 9 entity A contains entity B

suite (Gueheneuc and Antoniol (2008)) which represents reverse-engineered class diagrams in

its PADL meta-model. PADL is a language-independent meta-model to describe the static

structure and part of the behavior of object-oriented systems in a similar fashion to UML class

diagrams. PtiDej includes a Java parser and a dedicated graph exporter. All entities (classes,

methods, and attributes) were exported as nodes and several types of relations between them

were recovered as presented on Table 4.6 and illustrated on Figure 4.3.

4.3.2.2 Class diagram differencing

The goal is to retrieve and analyze the evolution of a given OO system (and its subparts)

in order to acquire some useful knowledge about the system In essence, the problem consists

in identifying between two subsequent releases (or versions) of a system which elements

(packages, classes, methods and attributes) have been kept, modified, removed, or added.

Here, we would like to stress the importance of this task, which is too often ignored. There

are many occurrences of published work in which researchers study the evolution of some

classes (e.g. those possessing a specific feature) exploiting only class names. Renaming or

simple moves (from a package to another for instance) are thus lost on them and in some

cases, this may well constitute a serious threat to validity to the proposed work.

UMLDiff Xing and Stroulia (2005b) propose UMLDiff as an algorithm which produces

as output a set of change facts between two UML class diagrams. More specifically, given

two class diagrams extracted from source code, UMLDiff identifies moves and renaming of

elements. It is based on lexical-similarity and structure-similarity heuristics and is controlled

96

by two user-defined similarity thresholds (MoveThreshold for moves and RenameThreshold

for renaming). To the best of our knowledge, UMLDiff remains the state of art algorithm

on class diagram differencing and is probably one of the most cited differencing tool. It

is available as an Eclipse plugin (linked to a PostgreSQL database) and we use it in our

experiments with the parameters of Xing and Stroulia (2005b).

Case studies for Class Diagram Evolution UMLDiff is coupled with a fact extrac-

tor that only works on Java programs. We thus chose four Java systems of various sizes:

DNSJava, JFreeChart, ArgoUML, and Eclipse. DNSJava 12, the smallest system, is an open

source Domain Name Server (DNS) written in Java. We selected the same 40 releases pre-

viously used by Antoniol et al. (2004) in their paper about class evolution discontinuities.

JFreeChart13 is a free Java chart library which purpose is to help developers creating profes-

sional quality charts in their applications. ArgoUML14 is a medium-size, Java-based, UML

development tool which supports most of the standard UML diagrams and can also export

data in a variety of formats, including XMI, C++, C#, Java, and PHP source code. Eclipse15

is a large, open-source, integrated development environment. It is a platform used both in the

open-source community and in industry, for example as a base for the WebSphere family of

development environments. Eclipse is mostly written in Java, with C/C++ code used mainly

for the widget toolkit. C++ code is not considered in this study. Table 4.7 reports infor-

mation about the diagrams extracted from the above systems: number of entities, relations,

etc.

4.3.2.3 API Evolution

Modern software development heavily rely on frameworks, libraries and many functionalities

or subroutines of a system being developed will be carried using external existing libraries.

Each new release of a given library L is not necessarily backward-compatible with its API

12http://www.dnsjava.org
13http://www.jfree.org/jfreechart/
14http://argouml.tigris.org/
15http://www.eclipse.org/

Table 4.7 Class diagram differencing: summary of the object systems (MADMatch vs.
UMLDiff)

Systems
Releases Number of

(Number Thereof) Entities Relations Classes Methods
DNSJava 0.1–1.4.3 (40) 607–1,765 1,685–5,081 39–105 337–1,084
JFreeChart 0.5.6–1.0.0 (30) 1,074–14,170 2,722–41,792 100–1,139 714–9541
ArgoUML 0.10.1–0.26.2 (10) 12,237–21,622 27,415–59,676 898–1,887 7,402–14,895
Eclipse 1.0–3.0 (4) 94,472–226,182 317,471–746,466 6,188–14,521 58,948–141,811

97

and consequently, programs which will upgrade L to its newest release may be subject to

compile or runtime errors. In order to make their programs compatible with the new L

release, developers then have to look into L source code and documentation. This time-

consuming process can be simplified if developers dispose of a tool able to tell them whether

the problematic call is caused by a method that has been completely removed or replaced by

another one.

AURA AURA (Wu et al. (2010)) is an approach which combines call dependency and text

similarity analysis to retrieve API evolution. It does not require any user-defined parameter

and, according to its authors, AURA is the first approach able to automatically handle one-

to-many and many-to-one mappings. AURA is a recent work which compared favorably to

most of the previously available algorithms for the problem.

API Evolution case studies Regarding API evolution, we studied the same pairs of sys-

tem releases used in the AURA paper: JFreeChart.0.9.11 / 0.9.12, JEdit 4.1 / 4.2, JHotDraw

5.2 / 5.3 and Jakarta Struts 1.1 / 1.2.4. These are four medium-sized Java systems which in-

clude: a text editor(JEdit), a chart library (JFreeChart), a framework for developing Java EE

web applications (Struts) and a Java GUI framework for technical and structured graphics

(JHotDraw)16.

Table 4.8 presents characteristics of the diagrams extracted from the studied systems.

4.3.3 Experimental plan for sequence diagrams

Sequence diagrams model the behavior of a system executing a given task by showing how

processes (or objects) operate with one another and in which order. There are many sce-

narios in which matching two sequence diagrams is of interest. For reuse purposes, one may

want to retrieve from a library of sequence diagrams an existing diagram similar to a given

16Erich Gamma, one of the original proponents of design patterns in Software Engineering is among the
original authors of JHotDraw which design relies heavily on some well-known design patterns.

Table 4.8 API Evolution: summary of the object systems (MADMatch versus AURA)

Systems
Releases Number of

Versions Entities Relations Classes Methods
JHotDraw 5.2 / 5.3 2,071 / 3,063 5,724 / 8,770 171 / 241 1,507 / 2,282
Struts 1.1 / 1.2.4 8,351 / 8,618 14,442 / 15,187 476 / 490 6310 / 6465
JFreechart 0.11 / 0.12 9,084 / 9,771 26,332 / 28,091 749 / 794 5,834 / 6,377
JEdit 4.1 / 4.2 8,814 / 10,862 26,113 / 31,920 637 / 777 5,227 / 6,245

98

specification. In an another setting, the interest is in comparing a behavior specification to

its real implementation. Finally, the evolution of a sequence diagram may help in the analysis

of a system. We were able to identify in the literature several work on this subject(Robinson

and Woo (2004); Park and Bae (2011), an IBM tool in Rhapsody 17) but none of this offered

enough material (availability of tool, results etc.) for a comparison. Although sequences of

messages between objects can be perceived as strings, the matching of sequence diagrams

requires more than simple string matching techniques. Indeed, constituents of the sequence

(objects, messages) may be altered (renamed) and the resulting different strings (while still

expressing the same sequence) would be missed by string comparison algorithms.

Sequence Diagram Modeling Table 4.9 details the diagrams generated for sequence

diagrams. We adopted a terminology close to that of Robinson and Woo (2004): entities

are constituted of classes, objects and messages: classes instantiate objects that exchange

messages.

The sequence diagrams used in this study were recovered from the modeling environment

VisualParadigm 18.

Case study for sequence diagram matching In order to investigate the applicability of

MADMatch on sequence diagrams we selected EasyCoin, a small software product supporting

coin collectors and developed by students as part of didactic activities. The system has

been used in Ricca et al. (2010) and we had access to the sequence diagrams used for its

development.

We evaluate the efficiency of MADMatch in two different matching contexts: (i) retrieving

the evolution of a sequence diagram from one version to another and (ii) comparing variants

of sequence diagrams in the same version. For this, we selected versions 1.2 and 2.0 (the first

two versions for which we have modeling data) of EasyCoin and three sequence diagrams out

17http://com.ibm.rhapsody.designing.doc/topics/rhp c dm sequence comp algorithm.html
18http://www.visual-paradigm.com

Table 4.9 Modeling sequence diagrams

Entities

Type 0 classes
Type 1 objects
Type 2 messages

Relations A→ B

Type 1 message A is transmitted to lifeline B
Type 9 class A instantiates B or instance A emits message B

99

of those versions: InserireEnteEmettitore and ModificareEnteEmettitore (from version 1.2)

and InserireEnteEmettitore (from version 2.0) 19 Figures 4.10, 4.11, 4.12 present the three

selected diagrams.

4.3.4 Experimental plan for Labeled Transition Systems (LTS)

State transition machines are abstract machines which consist of a set of states with transi-

tions (possibly labeled) linking them. When the label set is not a singleton, the transition

machine is said to be labeled.

Modeling Table 4.10 presents our modeling of LTS. States and transitions are represented

as entities linked by two basic relations. We assign to states artificial names obtained from the

concatenation of the labels of their surrounding transitions. In doing so, labels of incoming

transitions are preceded by a given string (”inc-”) while labels of outgoing transitions are

preceded by another (”out-”). For instance, the label of state s11 in Figure 4.13 is: inc −

rename out−storefile out−logout expressing that s11 has one incoming transition labeled

”rename”, and two outgoing transitions, one labeled ”storefile” and another ”logout”.

Comparison with PLTSDiff PLTSDiff (Bogdanov and Walkinshaw (2009)) is an algo-

rithm proposed for the matching of LTS from a structural point of view and based on the

propagation of similarity between states from the diagrams to be matched. For our proof of

concept related to the applicability of MADMatch on LTS, we selected the same LTS used

in Bogdanov and Walkinshaw (2009). They consist in three models of a small CVS client

(derived from a similar model by Lo and Khoo (2006)). The first one is the original spec-

ification (S) while the other two are the result of two different inference techniques taking

as input a random sample of traces (taken from the CVS client): Markov-based (Cook and

Wolf (1998)) and EDSM-based (Lang et al. (1998)). Figures 4.13, 4.14, and 4.15 present the

19Note that there is no particular rationale for those choices as we selected the first two versions for which
we had relevant data and the first diagrams we found in those versions.

Table 4.10 Modeling labeled transition systems

Entities

Type 0 states
Type 1 transition

Relations A→ B

Type 1 state A is the origin of transition B
Type 2 state B is the destination of transition B

100

Figure 4.10 InserireEnteEmettitore EasyCoin1.2

Figure 4.11 InserireEnteEmettitore EasyCoin2.0

101

Figure 4.12 ModificareEnteEmettitore EasyCoin1.2

102

labeled transition systems obtained from the specification (S), the markov model (M) and

the edsm model (E).

4.3.5 Analysis plan of the results

Our empiric evaluation is dedicated to the investigation of our three research questions and

include specific analyses aiming to provide answers to those RQs.

4.3.5.1 Accuracy metrics and manual validation

Answering RQ1 requires quantifying, with respect to results from previous approaches or an

oracle, the number of correctly matched entities. We adopted two different strategies for the

evaluation of our approach depending on the size of the considered diagrams.

Precision and recall The behavioral diagrams we selected for our experiments are small

and this allows us to retrieve manually oracles for the performed matchings. In such cases,

standard information retrieval techniques such as Precision and Recall (Frakes and Baeza-

Yates (1992)) can be applied. Given a set of node matches M returned by a matching

technique and the set of correct node matches Oracle taken from an oracle, the precision of

M (a measure of its exactness) is defined as follows: Precision(M) = ‖M∩Oracle‖
‖M‖

while the

recall of M (a measure of its completeness) is computed as follows: Recall(M) = ‖M∩Oracle‖
‖Oracle‖

.

Differential precision and recall Class diagrams can get very big and a manual valida-

tion of all results can take prohibitive times. In fact, given the size of some diagrams and the

possibility of many-to-many matching, an oracle may be impossible to build. We thus chose

to proceed to a compared evaluation using state-of-art algorithms of the literature. The main

goal of the adapted measures is to answer the following question: Does MADMatch perform

better than the specialised algorithms? This is an efficient way of evaluating our approach

against state-of-the art techniques. It reduces manual validation time by focusing on differ-

ence between MADMatch and a given technique. We only take interest in non-trivial node

matches (as defined in Section 4.2.1). Given two sets of non-trivial node matches M1 and

M2
20 obtained from two different techniques, we defined relatively to a given matching the

following measures: its percentage of agreement with the other matching set (pAgreement),

its differential precision (dPrecision) and recall (dRecall) measures as follows:

pAgreement(M1) = ‖M1∩M2‖
‖M1‖

pAgreement(M2) = ‖M1∩M2‖
‖M2‖

20We transform many-to-many matches in one-to-one matches: {a,b} matched to {c,d} becomes {a,c},
{a,d}, {b,c}, {b,d}

103

Figure 4.13 Labeled Transition System S

Figure 4.14 Labeled Transition System M

104

Figure 4.15 Labeled Transition System E

105

M1x = M1 −M2

M2x = M2 −M1

dPrecision(M1) = ‖correct(M1x)‖
‖M1x‖

dPrecision(M2) = ‖correct(M2x)‖
‖M2x‖

dRecall(M1) = ‖correct(M1x)‖
‖correct(M1x∪M2x)‖

dRecall(M2) = ‖correct(M2x)‖
‖correct(M1x∪M2x)

Basically, the goal is to find whether one algorithm is better than the other by assessing

their differences and evaluating which of the algorithm has less noise to filter out (dPrecision)

and which one returns more correct node matches (dRecall). Note that given our definition,

dRecall(M1) = 100−dRecall(M2) and thus, the differential recall is a measure of the number

of new node matches brought by one technique relatively to the other.

Manual validation In order to retrieve the differential precision and recall, we have

to conduct extensive manual validation on the sets of (non-trivial) node matches exclu-

sive to a given algorithm. This is a tedious task for which we use a simple but very

helpful visualization: files containing information about obtained matchings. Figure 4.16

presents a sample from such files (generated from the matching of versions 0.5.6 and 0.6.0

of JFreeChart). We can get the following information from this Figure. The method public

void com.jrefinery.chart.Axis.setShowTickLabels(boolean) is matched to the method public

void com.jrefinery.chart.Axis.setTickLabelsVisible(boolean). First, the names and specifics of

the involved entities indicate that this is a probable good match. Second, we can see that

removing this match from the solution would increase the overall cost by 120. This is crucial

information for the manual validation as it gives a quick indication of how well the considered

match fits in the solution. Third, the displayed information about the neighborhood of the two

methods can be decisive. The tag (M) after a relation indicates that the neighbor of one of the

entities has been perfectly matched to a neighbor of the other while, the tag [M] signals an im-

perfect match. In summary, in the example, one should understand that both methods call the

methods com.jrefinery.chart.event.AxisChangeEvent.AxisChangeEvent, com.jrefinery.chart.-

Axis.notifyListeners, com.jrefinery.chart.ui.AxisPropertyEditPanel.setAxisProperties. The first

method uses the attribute Axis.showTickLabels while the second uses Axis.tickLabelsVisible

and those attributes are considered as a renaming in the solution. In the case displayed in

Figure 4.16, all the evidence suggest very strongly that this is indeed a correct match. In

many cases, it is hard to decide and one has to resort to a more time-consuming option: the

exploration of the source code. As a matter of fact, those situations were not rare and the

validation of all the results presented in this chapter took about 10 days of work.

106

Figure 4.16 Sample from an output file of MADMatch

4.3.5.2 Devising scalability analysis

We retrieve computation times and memory allocation when considering different sizes of

systems, from the smallest to the largest. We specifically take interest in analysing the

run-time performance with respect to the two filters defined in our algorithm: (i) before

Filter I, (ii) after Filter I, and (iii) after Filter II. The first category refers to the cartesian

product of the vertices’ sets of the diagrams to be matched. The second category takes only

into account the the entities deemed relevant for the matching process. Considering that

obvious and certain matches are filtered out, the number of the remaining entities is strongly

correlated to the delta between two diagrams: the closer (in terms of edit operations) the

diagrams, the lower this number. Finally, the number of valid pairs, obtained after Filter II,

actually defines to some extent the size of the search space and should thus be considered in

a scalability analysis.

4.3.5.3 Devising genericness analysis

There are two aspects to consider when investigating the genericness of MADMatch. The

first is related to the effort needed to model different diagrams and has already been par-

tially answered in this case study. Indeed, the modeling of the selected kinds of diagrams is

straightforward. We do not claim that our representations of the considered diagrams are

as detailed and precise as they could be but we believe that our modeling provides enough

information for accurate matchings. The second aspect concerns both the accuracy of MAD-

Match and the tuning of its parameters. The underlying question is: how difficult it is to

fit different diagram matching problems in our generic framework and solve them? Our

approach in answering RQ3 is to first apply the default parameters (defined in 4.3.6) on a

given problem, then try other settings if the results are not deemed satisfactory.

107

4.3.6 Experimental settings

We provide in this section the settings of MADMatch parameters whether they are internal

to our implementation, or part of the cost model configuration.

With respect to our tabu search, we set the stagnation number at 100, meaning that

MADMatch stops if after 100 moves there is no improvement on the best solution found

so far. Recently-inserted node matches are forbidden to leave the solution for a number

of iterations randomly chosen 21 while recently-removed node matches are forbidden to re-

enter the solution for a number of iterations randomly chosen between 10 and 20. Our

algorithm, like most meta-heuristics, is stochastic and there is no guarantee of obtaining

identical solutions for different runs. To avoid stability issues, we rendered for this work our

algorithm deterministic: in presence of same-cost moves, the first (using entities’ assigned

numbers) one is always selected.

As for the model cost, the default values of the aggregate parameters are set as follows:

• dropWeightNode = 0.7 → for a high tolerance to text dissimilarity

• dropWeightEdge = 0.7 → for a high tolerance to structure dissimilarity

• edgeWeight = 0.2 → information brought by one edge is about 20% of information

brought by one node

• asymmetry = 1 → the matching direction is not taken into account

• nameWeight = 0.5 → the entity name counts for half the text similarity between two

entities

The above setting is partly inspired from previous experiments we conducted on class

diagrams (Kpodjedo et al. (2010c)) in a one-to-one matching context. We did not have to try

many different settings, given the good results obtained. We set the maximal cost of a node

match cnm at 100 for our experiments but this number only serves for information purposes

(about the cost of a considered match) and does not influence at all the returned matchings.

All computations were performed on a dual Opteron server, with 16GB of RAM, running

RedHat Advanced Server.

4.4 Evaluation results

We now present the results of our empirical evaluation by focusing on the three RQs previously

defined.
21Random selection of a number in a given interval is a well-known technique aimed at further preventing

cycling during a local search between 5 and 10 . Chosen values result from preliminary tests.

108

4.4.1 RQ1 – Accuracy of the returned solutions

To assess the accuracy of the results provided by our approach, we mainly rely on the class

diagrams’ case studies and the resulting comparisons to two state-of-art techniques: UMLDiff

and AURA.

4.4.1.1 Class Diagram Differencing

Figure 4.17 presents descriptive statistics on the percentages of agreement between MAD-

Match and UMLDiff, their differential precisions and recalls. There is no comparison data

for Eclipse given that the size of Eclipse is intractable for UMLDiff as confirmed by discus-

sions with the authors of Xing and Stroulia (2005b). Our differential comparison could be

conducted only on DNSJava, JFreeChart, and ArgoUML.

From Figure 4.17, it is clear that (i) MADMatch and UMLDiff agree on large parts of

their returned solutions and (ii) when they disagree MADMatch proposes higher differential

recall and precision.

The sets of matches returned by MADMatch contain the majority of the matches returned

by UMLDiff: medians are of 100% for DNSJava, 94% for JFreeChart, 90% for ArgoUML.

In contrast, the intersection of UMLDiff and MADMatch accounts for a smaller subset of

MADMatch: medians are of 86% for DNSJava, 74% for JFreeChart and 63% for ArgoUML.

The differential precisions of MADMatch are higher than those of UMLDiff as clearly

visible on the boxplots of Figure 4.17. For all 3 systems, it appears that the sets of matches

exclusive to MADMatch are consistently and significantly more precise than those of UMLD-

iff. The medians of the differential precisions of MADMatch are: 100% for DNSJava, 79% for

JFreeChart, and 78% for ArgoUML. They are substantially higher than those of UMLDiff:

42% for DNSJava, 67% for JFreeChart and 63% for ArgoUML.

The advantage of MADMatch is even more important when considering the differential

recall. Most of the correct node matches brought by matches exclusive to one algorithm come

from the sets of MADMatch with medians of 100%, 82% and 74% respectively for DNSJava,

JFreeChart and ArgoUML.

We detail in the following paragraphs the results obtained for each system.

DNSJava In average, the intersection of MADMatch and UMLDiff accounts for 92% of

the non-trivial matches returned by UMLDiff and 79% of those returned by MADMatch.

When we consider parts of the returned solutions on which the two algorithms do not agree,

MADMatch gets in average a better differential precision: 85% (versus 51% for UMLDiff)

and a better differential recall: 85%. This means that considering the node matches re-

109

Figure 4.17 Boxplots of the compared accuracy measures from MADMatch versus UMLDiff

110

turned by only one technique, only 15% of the correct matches come from UMLDiff and

MADMatch contains about 5.7 times more matches that are correct. In absolute values, con-

sidering all the versions of DNSJava used in this study, ‖MADMatch∩UMLDiff‖ = 1468,

MADMatchx (MADMatch − UMLDiff) contains 187 matches of which 163 are correct

while UMLDiffx(UMLDiff − MADMatch) contains 49 node matches of which 31 are

correct. Given the relatively small size of DNSJava, we validated manually all the matches

in MADMatch ∩ UMLDiff and found that only 5 out of the 1468 common node matches

were erroneous. The precision of this set is then of 99.66%, strongly suggesting that virtually

every match common to both algorithms is a correct one.

JFreeChart Node matches returned by both algorithms represent in average 73% of the

MADMatch sets and 90% of the UMLDiff sets. The differential precision of MADMatch is

in average 12 points higher than that of UMLDiff : 79% versus 67%. As for the differential

recall, MADMacth presents an average of 82% which translates in about 4.5 times more

correct matches than what can be found exclusively with UMLDiff. Considering all the

versions of JFreeChart, the two algorithms agreed on 9842 node matches. MADMatch gets

1714 more matches of which 376 are incorrect while UMLDiff has 623 exclusive matches of

which 183 are incorrect.

ArgoUML In average, only 62% of the matches of MADMatch are present in UMLDiff

solutions whereas 83% of the UMLDiff’s matches are retrieved by MADMatch. The aver-

age differential precisions are of 81% for MADMatch and 67% for UMLDiff. The average

differential recall of MADMatch is about 77%: for each matching of two versions and con-

sidering matches exclusive to a given algorithm, MADMatch provides about 3.3 times more

correct node matches than UMLDiff . However, unlike the other studied systems, there are

some cases in which the differential precision of UMLDiff is higher than that of MADMatch:

matching of versions 0.12 and 0.14 (75% versus 68% for MADMatch) and 0.24 to 0.26 (94%

versus 78% for MADMatch). In fact for the matching of versions 0.24 and 0.26, even the

differential recall of UMLDiff is slightly better: 52 % (versus 48% for MADMatch). Overall,

MADMatch and UMLDiff share 3617 matches. There are 1390 matches exclusive to MAD-

Match of which 195 are incorrect whereas UMLDiff proposes 729 node matches of which 132

are incorrect.

Eclipse Given that UMLDiff is unable to treat Eclipse diagrams, we do not have any

compared accuracy measures to report. The number of non-trivial matches is quite high:

1733 from 1.0 to 2.0, 827 from 2.0 to 2.1, 839 from 2.1 to 3.0. The eclipse dataset was

111

selected mainly to test the scalability of our approach, so we did not proceed to manual

validation of the obtained results. Based on our algorithm output, but without investigating

source code, we are confident about the precision of the results and reserve more detailed

analysis for future work.

4.4.1.2 API Evolution

Table 4.11 presents the comparison of MADMatch to AURA. Similarly to DNSJava, we

also manually validated the matches contained in the intersection of both algorithms and

found only one incorrect match in the total of 384 matches shared by the algorithms (on

the four matchings). This allows us to attribute a precision value to both algorithms on

the considered case studies. When we sum up matches obtained from the four case studies,

MADMatch attains an overall precision of 89% (70 incorrect matches out of 613) while

AURA stands at 84% (90 incorrect matches out of 557). Correct matches exclusively found

by MADMatch reach a total of 160 versus 84 for UMLDiff. The differential precisions are of

70% (160/229) for MADMatch and 49% (84/173) for UMLDiff and this illustrates that the

differential precision measure can be much worse than the actual standard precision.

When we apply the differential measures for each system, we find that on average,

MADMatch proposes a differential precision of 69% and a differential recall of 74% while

dPrecision(AURA) = 33% and dRecall(AURA) = 26%.

4.4.2 RQ2 – MADMatch Scalability

In complement to the theoretical time complexity order presented in Section 4.2, we were

interested to analyze computation times needed for MADMatch. Figure 4.18 presents the

computation times for DNSJava, JFreeChart and ArgoUML. The x axis represents the num-

ber of possible pairs before the Filter I (‖V1‖×‖V2‖, first column), after the Filter I (‖V1×V2‖

After Filter I, 2nd column), after the Filter II (‖V1 × V2‖ After Filter II, 3rd column). The

y axis represents the run-time in seconds.

We can observe that the computation times do not correlate strongly with the initial

Table 4.11 MADMatch versus AURA (incorrect matches are in brackets, pA=pAgreement,
dP=dPrecision, dR=dRecall)

M ∩ A M − A A − M pA(M) pA(A) dP (M) dP (A) dR(M) dR(A)
JHotDraw 5.2 / 5.3 77(0) 15(4) 18(13) 84% 81% 73% 28% 69% 31 %
Struts 1.1 / 1.2.4 56 (1) 15(5) 2(2) 79% 97% 67% 0% 100% 0%
JFreeChart 0.9.11 / 0.9.12 75(0) 61(23) 39 (19) 55% 66% 62% 51 % 66% 34%
jedit 4.1 / 4.2 176(0) 135(37) 114(55) 57% 61% 73% 52% 62% 38%
Total/Average 384 (1) 229(69) 173(89) 69% 76% 69% 33% 74% 26%

112

numbers of entities in the two diagrams to be matched. In fact, as shown in Figure 4.18 the

number of pairs of entities remaining after the application of Filter I is a better indicator

of the computation time. Given that this number is clearly linked to the delta between two

diagrams, such observation suggests that the further the versions (of the two class diagrams),

the higher the computation times.

For DNSJava, MADMatch takes from 0.1 to 30s with an average of 2.3s. Computation

times are much higher for JFreeChart: from 2 to 1390s with an average of 93s. The application

of MADMatch on ArgoUML generates computation times ranging from 156 to 1103s; the

average being 537s. On the same machine, UMLDiff took in total 18h40min for JFreeChart.

However, possibly due to its use of a backend database, the algorithm is highly sensitive to

the computer load and the number of versions differenced at once 22. Settings of the database

may also affect computation times. In Xing’s thesis, the times reported for JFreeChart were

of approximately 6h21 min. In any case, compared to the approximate 44 min MADMatch

took, it is clear that UMLDiff is much slower. The same observation goes for DNSJava (40

min versus less than 2 min for MADMatch) and ArgoUML (about 8h30min versus 1h20min

for MADMatch). As for Eclipse, MADMatch takes about 3h25 min for the matching of

versions 1.0 and 2.0, 4h for versions 2.0 and 2.1 and about 9h for the matching of versions

2.1 and 3.0.

Computation times of AURA on the studied releases were reported to be of less than

2 min per system. In contrast, MADMatch took 10s for JHotDraw, 30s for Struts, 33s for

JFreeChart, 179s for JEdit. Note that MADMatch treats more than methods and that times

reported by AURA’s authors were obtained with a different platform. Thus, reported times

for AURA and MADMatch cannot be compared directly. Nevertheless, we can safely assume

that MADMatch is faster than AURA.

Memory-wise, the process size for the experiment was limited to 8GB. For all runs, except

for Eclipse (7GB), memory usage never exceeded 2GB.

4.4.3 RQ3 – MADMatch Genericness

Our last RQ is devoted to investigate whether our diagram matching approach can be effec-

tively applied to other types of diagrams. We selected sequence diagrams, labeled transition

systems and performed simple experiments proving that MADMatch is indeed applicable on

matching problems involving diagrams other than class diagrams.

22In average, we applied UMLDiff on five consecutive releases.

113

Figure 4.18 Computation times for DNSJava, JFreeChart and ArgoUML

114

4.4.3.1 Results on sequence diagrams

We applied our approach for the two comparison tasks involving the sequence diagrams

presented in Section 4.3. Figures 4.19 and 4.20 present the obtained results. Messages

present in one diagram but missing in the other are displayed on a red (missing from the

second diagram) or blue (missing in the first diagram) background while matched messages

are displayed on green background and linked by arrows. Additionally, a lighter font is applied

when the matched messages are not perfectly similar (for instance, when inserisciEE(e,z,s) is

matched to inserisciEE(IE,e,z,s) in Figure 4.19). We detail in the following the results for

each one of the two comparison tasks.

Retrieving the evolution of a sequence diagram Figure 4.19 presents the results of

matching the versions 1.2 and 2.0 of the sequence diagram InserireEnteEmettitore. In ad-

dition to the matched messages present in this figure, all the objects of the version 1.2 are

matched to their counterparts in version 2.0; in particular the renaming of ParteSelezion-

ataEC into ParteSelezionata was retrieved. Also noticeable, the new object Visualizza (ap-

pearing in version 2.0) is identified as the object handling some of the messages previously

associated with ParteSelezionataEC. Figure 4.19 reveals that the obtained matching consists

in many contiguous matched segments. Some are long – e.g. insEE(e, z, s) to ok() – and

some consist of only one message. We can also observe the re-ordering of some messages

which cause ruptures of segments which otherwise would be longer. In this specific case, it

does not seem that the order of the messages in those segments is particularly important.

An algorithm restricting itself to retrieve sequences of messages would most likely miss those

matches. Overall, those results suggest that MADMatch can efficiently retrieve the evolution

of sequence diagrams.

Matching variants of a sequence diagram Figure 4.20 presents the results of the match-

ing of the sequences InserireEnteEmettitore and ModificareEnteEmettitore taken from the

same version (1.2). While there are less common segments between the two sequences (than

previously for the evolution of InserireEnteEmettitore), many similarities can be spotted

between these two sequences. In fact, applying MADMatch on InserireEnteEmettitore and

ModificareEnteEmettitore reveals that both diagrams seem to have the same core behavior,

with some few different specific operations. This was confirmed by discussions with authors

of Ricca et al. (2010): students involved in the EasyCoin project used to copy/paste then

modify the diagrams. Overall, MADMatch is able to retrieve common patterns of behavior

between sequence diagrams even when the messages actually matched –e.g. inserireEE()

versus modificareEE()– are quite different. We believe this is another advantage relatively to

115

Figure 4.19 Matching InserireEnteEmettitore1.2 to InserireEnteEmettitore2.0

116

Figure 4.20 Matching InserireEnteEmettitore1.2 to ModificareEnteEmettitore1.2

117

string matching techniques given that those techniques would probably be unable to match

such different strings.

Results presented above, while limited on a very small benchmark, are good indications

that MADMatch can effectively match sequence diagrams whether they are variants or evo-

lutions of one another.

4.4.3.2 Results on Labeled Transition Systems

We tested our algorithm and modeling on the datasets used in Bogdanov and Walkinshaw

(2009). Comparisons in this paper involve three labeled transition systems: the conceived

specification (S), the reverse-engineered Markov model (M) and the reverse-engineered EDSM

model (E). Comparison tasks were made between S and M, and S and E. At first, we tested

the default configuration presented in Section 4.3.6 and obtained excellent but not optimal

results. We thus took interest in trying different settings of MADMatch, mainly by exploring

the effects of less restrictive matching parameters: a lower tolerance to dissimilarity and

a strict one-to-one matching (same constraint as PLTSDiff). We kept asymmetry at 1,

edgeWeight at 0.2 and nameWeight at 0.5 then test four different configurations (including

the default one) for the comparison tasks:

(i) one-to-one tolerant matching (dropWeightNode = 0.7, dropWeightEdge = 0.7,merge =

false),

(ii) one-to-one restrictive matching (dropWeightNode = 0.2, dropWeightEdge = 0.2,merge =

false),

(iii) one-to-one tolerant matching (dropWeightNode = 0.7, dropWeightEdge = 0.7,merge =

true 23), and

(iv) many-to-many restrictive matching (dropWeightNode = 0.2, dropWeightEdge =

0.2,merge = true).

Note that the precise choices of parameters did not require any extensive analysis and

only reflect our intention to try a few different classes of settings for a better understanding

of MADMatch’s capabilities.

Matching Specification and Markov model Table 4.12 presents the results of PLTS-

Diff and MADMatch when matching the specification to the markov model. PLTSDiff and

all configurations of MADMatch agree on a large number (9) of matches. Divergences be-

tween both algorithms (boldfaced) consist mostly in additional pairs of nodes – e.g. (s6,m2),

(s7,m4), (s11,m6) – found by MADMatch. The restrictive many-to-many setting returns the

best solution. It includes the matching returned by PLTSDiff and improves it by proposing

23Note that those are the same parameters that were used for class diagrams

118

Table 4.12 Matching Specification to Markov model

Algorithm Results
All Agree on: (s0,m0), (s1,m3), (s2,m5), (s4,m13), (s5,m11), (s8,m7), (s9,m15), (s13,m14), (s15,m16).
PLTSDiff (s3,m8), (s12,m10).
MADMatch (ew=0.2, asy=1)
dwn=0.7, dwe=0.7, no-merge (s3,m8), (s6,m2), (s7,m4), (s11,m6), (s12,m10), (s14,m12)
dwn=0.2, dwe=0.2, no-merge (s3,m8), (s6,m2), (s7,m4)
dwn=0.7, dwe=0.7, merge (s3,m1&m8), (s6,m2), (s7,m4), (s12&s14,m10&m12)
dwn=0.2, dwe=0.2, merge (s3,m1&m8), (s6,m2), (s7,m4), (s12,m10&m12)

other valid matches such as (s6,m2), (s7,m4), (s12,m10&m12) or (s3,m1&m8). For instance,

(s3,m1&m8) reported by MADMatch indicates a split of the state s3 into the two states m1

and m3 and is more accurate (see Figures 4.13 and 4.14) than the simple match (s3,m8) re-

turned by PLTSDiff. The same can be said about (s12,m10&m12) proposed by MADMatch

and (s12,m10) proposed by PLTSDiff.Overall, for this matching task, the use of MADMatch

provides a better recall than PLTSDiff at no cost for the precision.

Matching Specification and EDSM model Table 4.13 presents the results of PLTS-

Diff and MADMatch when matching the specification to the edsm model. Although, all

sets of returned matches agree on only 4 matches, differences are mostly about additional

matches returned by MADMatch and the very few apparent contradictions are actually al-

ternate matches. For instance the matches (s13,e15) – returned by PLTSDiff – and (s13,e8)

– returned by the one-to-one versions of MADMatch – actually correspond to the correct

match (s13,e6&e8&e15) which is retrieved by the many-to-many versions of our algorithms.

MADMatch settings (with the exception of the restrictive one-to-one setting) provide more

matches and most of those additional matches are correct. Again, the restrictive many-to-

many setting is the best configuration. Its additional matches suggest that (i) the states

s3 and s8 have been (or can be) merged to give the state e3, (ii) the states s5 and s12 put

together behave like the sate e4, (iii) the state s7 has been split into states e7 and e13, (iv)

the state s13 (outcome of the command logout) correspond to each of the states e6, e8, e15

Table 4.13 Matching Specification to EDSM model

Algorithm Results
All Agree on (s0,e0), (s1,e1), (s2,e2), (s14,e12)
PLTSDiff (s3,e3), (s5,e4), (s7,e13), (s10,e10), (s11,e14), (s13,e15), (s15,e16)
MADMatch (ew=0.2, asy=1)
dwn=0.7, dwe=0.7, no-merge (s4,e5), (s5,e4), (s7,e13), (s8,e3), (s10,e10), (s11,e14), (s13,e8), (s15,e11)
dwn=0.2, dwe=0.2, no-merge (s5,e4), (s13,e8),(s15,e11)
dwn=0.7, dwe=0.7, merge (s3&s6&s8&s9,e3), (s4,e5), (s5&s12,e4), (s7,e7&e13), (s10,e10), (s11,e14),

(s13,e6&e8&e15), (s15,e11&e16)
dwn=0.2, dwe=0.2, merge (s3&s8,e3), (s4,e5), (s5&s12,e4), (s7,e7&e13), (s10,e10), (s11,e14),

(s13,e6&e8&e15), (s15,e11&e16)

119

and finally (v) the state s15 (outcome of the command disconnect) is represented by the

states e11 and e16.

We conclude that MADMatch provides more insight than PLTSDiff. Moreover, the lim-

ited sensitivity analysis conducted with the four different settings suggest that the matching

of LTS should be done with low-tolerance settings.

4.5 Discussion

In this section, we present a summary of the results presented in Section 4.4 and then discuss

in a qualitative way our findings related to the application of MADMatch on the studied

systems. We start with a complete analysis of the evolution of DNSJava then present some

findings and considerations about the matching of software diagrams.

4.5.1 Summary

The RQ1 (accuracy of MADMatch) was addressed from a comparative perspective and we

were able to demonstrate that MADMatch attains better precision and recall than UMLDiff

and AURA. Compared to UMLDiff, the differential precision of MADMatch is higher on

average by about 12 - 26 % while its differential recall is of 81 % (meaning that there are

4 times more correct matches exclusively brought by MADMatch). With respect to AURA,

the differential precision of MADMatch is higher on average by 36% and the differential

recall is 75%, which means MADMatch brings about 3 times more matches that are correct

(when one considers matches brought exclusively by one algorithm). Relatively to RQ2,

given the reported computation times and memory usage, we conclude that MADMatch is

practical and could be run as part of a normal development process in the industry. In

particular, MADMatch is the only approach applicable on large systems such as Eclipse.

Finally, results obtained also from the application of our algorithm on sequence diagrams and

labeled transition systems suggest that MADMatch is generic enough to be easily applied on

most diagrams encountered in software engineering.

4.5.2 Qualitative analysis of the DNSJava case study

In the present section, we present a detailed analysis of the DNSJava application. Given that

the selection of this case study was motivated by its previous use in Antoniol et al. (2004), we

include the results reported in that paper in our analysis. We thus first propose an analysis

inspired from Antoniol et al. (2004) and focused exclusively on class (and package) level

before moving to finer grain elements such as methods and attributes.

120

4.5.2.1 Class/package evolution

Table 4.14 presents the evolution of DNSJava from a package and class perspective as com-

puted by the different techniques (complemented with manual inspection). Each identified

change operation is identified by a number (first column). Information is provided about the

versions involved (second column) and the symbol → (second and third columns) is used to

indicate the transformation from the first version to the second. All changes are prefixed with

the path of the involved entities. For instance, DNS :: indicate that the classes are found

under the package DNS. Furthermore, the entities are tagged with alphanumeric symbols

which are used in Table 4.15 to present how (and whether) those changes were captured or

not by MADMatch, UMLDiff, or the technique proposed in Antoniol et al. (2004) (listed as

ADM’04 for space issues). For instance, the operation #1 represented in Table 4.14 by the

line

dns(a1) → dns(a2), Rcode(b2), Type(c2), Flags(d2), Section(e2), Dclass(f2)

correspond in Table 4.15 to the cell

(a1 → a2, b2, c2, d2, e2, f2).

Subsequent columns in Table 4.15 allow a quick assessment of the efficiency of the different

techniques. The column MADMatch contains (a1 → a2, b2, c2) + mv(a1 → d2, e2, f2) which

indicates that the class a1 is explicitly matched to classes a2, b2, and c2 (as indicated by

(a1 → a2, b2, c2)) and there are enough moves to suggest further matching of a1 to classes

d2, e2, and f2 (as indicated by mv(a1 → d2, e2, f2)).

The two tables work together to provide a detailed picture of the performances of the

involved algorithms. Out of the 18 identified refactoring operations, 10 involve single matches

and all but one (#2) of those operations are explicitly retrieved by both MADMatch and

UMLDiff. The differences between the involved techniques are more visible when it comes

to the other 8 operations: those that involve merge or split operations. The identification of

a match can take two forms: one explicit where the considered technique actually matches

the entities, and another (which may be viewed as implicit) where the considered technique

matches many sub-elements of the entities. A good illustration of such considerations can

be illustrated by the operation #1: the actual operation involves the class dns of version

0.2 being split into six others (dns, Type and Rcode, Flags, Section, DClass) of version 0.3.

MADMatch explicitly matches the class dns of version 0.2 to classes dns, Type and Rcode of

version 0.3 and identifies many moves between dns(0.2) and classes Flags, Section, DClass

of version 0.3. UMLDiff only manages to identify moves between dns (version 0.2) and

classes Type and Rcode, Flags, Section, DClass (version 0.3) while Antoniol et al. (2004)

identifies that the class dns (version 0.2) corresponds to classes dns and Type (of version

0.3). Similar observations can be made for most of the identified changes, with MADMatch

121

Table 4.14 Refactorings found on DNSJava at the package and class level

Versions Changes (Code Inspection)
1 0.2 → 0.3 DNS :: dns(a1) → dns(a2), Rcode(b2), Type(c2), Flags(d2), Section(e2), Dclass(f2)
2 0.3 → 0.4 dnsServer(a1) → jnamed(a2)
3 0.4 → 0.5 DNS.utils :: CountedDataInputStream(a1) → DataByteInputStream(a2)
4 DNS.utils :: CountedDataOutputStream(b1) → DataByteOutputStream(b2)
5 0.6 → 0.7 DNS :: Zone(a1), Cache(b1) → Zone(a2) and Cache(b2): extend NameSet(c2), use Master (d2)
6 0.7 → 0.8 DNS :: Resolver(a1) → SimpleResolver(b2), ExtendedResolver(c2) extend Resolver(a2)
7 DNS :: FindResolver(d1) → FindServer(d2)
8 0.8.3 → 0.9 DNS :: MyStringTokenizer(a1) → utils.MyStringTokenizer(a2)
9 DNS.Cache :: CacheElement(b1) → Element(b2)
10 0.9 → 0.9.1 DNS :: ZoneResponse(a1), CacheResponse(b1) → SetResponse(a2)
11 0.9.1 → 0.9.2 DNS(a1) → org.xbill.DNS (a2)
12 DNS.WorkerThread (b1) → org.xbill.Task.WorkerThread(b2), org.xbill.DNS.ResolveThread(c2)
13 0.9.5 → 1 org.xbill.DNS :: MXRecord (a1) → MXRecord (a2) extend MX KXRecord (b2)
14 1.0.2 → 1.1 org.xbill.DNS :: SimpleResolver(a1), EDNS(b1) → SimpleResolver(a2)
15 org.xbill.DNS :: TypeClass (c1) → TypeClassMap (c2)
16 1.1.6 → 1.2.0 org.xbill.DNS :: TypeClassMap (c1) → TypeMap (c2)
17 1.2.4 → 1.3.0 org.xbill.DNS.Cache :: Element (a1) → Element(a2), NegativeElement(b2), PositiveElement(c2)
18 org.xbill.DNS.Zone :: AXFREnumeration(d1) → AXFRIterator(d2)

Table 4.15 Accuracy of different techniques for class-level operations on DNSJava (N/A in-
dicates operations out of the scope of ADM’04)

Actual Refactoring MADMatch UMLDiff ADM’04
1 (a1 → a2, b2, c2, d2, e2, f2) (a1 → a2, b2, c2) + mv(a1 → d2, e2, f2) mv(a1 → a2, b2, c2, d2, e2, f2) (a1 → a2, c2)
2 (a1 → a2) (a1 → a2) mv(a1 → a2) (a1 → a2)
3 (a1 → a2) (a1 → a2) (a1 → a2) (a1 → a2)
4 (b1 → b2) (b1 → b2) (b1 → b2) (a1 → a2, b2)
5 (a1, b1 → a2, b2, c2, d2) (a1 → a2, d2) mv(a1 → d2) ()
6 (a1 → a2, b2, c2) (a1 → a2, b2) + mv(a1 → c2) mv(a1 → b2) (a1 → b2)
7 (d1 → d2) (d1 → d2) (d1 → d2) (d1 → d2)
8 (a1 → a2) (a1 → a2) (a1 → a2) N/A
9 (b1 → b2) (b1 → b2) (b1 → b2) (b1, IO → b2)
10 (a1, b1 → a2) (b1 → a2) + mv(a1 → a2) (a1 → a2) + mv (b1 → a2) ()
11 (a1 → a2) (a1 → a2) (a1 → a2) N/A
12 (b1 → b2, c2) (b1 → b2, c2) (b1 → c2) + mv(b1 → b2) ()
13 (a1 → a2, b2) (a1 → a2, b2) (a1 → a2) + mv(a1 → b2) ()
14 (a1, b1 → a2) (a1, b1 → a2) (a1 → a2) (a1 → a2)
15 (c1 → c2) (c1 → c2) (c1 → c2) ()
16 (a1 → a2) (a1 → a2) (a1 → a2) ()
17 (a1 → a2, b2, c2) (a1 → a2, b2) + mv(a1 → c2) (a1 → a2) + mv(a1 → b2, c2) (a1 → a2)
18 (d1 → d2) (d1 → d2) (d1 → d2) (d1 → d2)

122

explicitly identifying multiple matches, UMLDiff somehow suggesting those operations, and

the technique of Antoniol et al. (2004) missing several operations. In some cases, MADMatch

is the only technique able to identify some operations. This is the case for the operation #14

in which the class EDNS of version 1.0.2 is absorbed by the class SimpleResolver in the

subsequent version 1.1. There was no method or attribute move between EDNS and Simple

Resolver but MADMatch was able to identify the merge, thanks to the dependency graph.

The finding was confirmed by code inspection. We report below the evidence found in the

code to illustrate the kind of source code investigation we conduct each time we are not

absolutely sure about the correctness of a node match.

1.0.2

class EDNS

/**

* Extended DNS. EDNS is a method to extend the DNS protocol while

* providing backwards compatibility and not significantly chaning

* the protocol. This implementation of EDNS0 is partially complete.

* @see OPTRecord

*

* @author Brian Wellington

*/

class SimpleResolver

/**

* An implementation of Resolver that sends one query to one server.

* SimpleResolver handles TCP retries, transaction security (TSIG), and

* a limited subset of EDNS0.

* @see Resolver

* @see TSIG

* @see EDNS

*

* @author Brian Wellington

*/

1.1

class SimpleResolver

/**

* An implementation of Resolver that sends one query to one server.

123

* SimpleResolver handles TCP retries, transaction security (TSIG), and

* EDNS0.

* @see Resolver

* @see TSIG

* @see OPTRecord

*

* @author Brian Wellington

*/

In the version 1.0.2, the class EDNS stands for ”Extended DNS”; source code informs that

this ”implementation of EDNS0 is partially complete” and that it uses the class OPTRecord.

As for the class SimpleResolver, it ”handles ... a limited subset of EDNS0” and uses the

classes Resolver, TSIG and EDNS. In the version 1.1, the class EDNS is no longer present

but we can see that the class SimpleResolver now ”handles ... EDNS0” (there is no longer

mention of a limitation) and uses the classes Resolver, TSIG and OPTRecord (previously

used by the now missing EDNS). A deeper analysis of the source code (see below) removes

all doubts about the accuracy of the reported merge.

SimpleResolver.send(Message) version 1.0.2

...

if (EDNSlevel >= 0) {

udpLength = 1280;

query.addRecord(EDNS.newOPT(udpLength), Section.ADDITIONAL);

}

SimpleResolver.send(Message) version 1.1

...

if (EDNSlevel >= 0) {

udpLength = 1280;

Record opt = new OPTRecord(udpLength, Rcode.NOERROR, EDNSlevel);

query.addRecord(opt, Section.ADDITIONAL);

}

4.5.2.2 Method/Attribute Level

The application of differencing techniques on class diagrams also provide interesting insights

on finer-grain level 24. We propose in Tables 4.16 and 4.17, a classified and commented list

24Changes occurring only on the visibility (public, private, protected) and type (return type for methods)
of a class element are not considered in the following as they can be retrieved by naive algorithms based only

124

of some of the most interesting changes identified on methods and attributes in the DNSJava

case study.

4.5.3 Challenges for matching techniques

In this section, we present some challenges encountered by automatic matching techniques.

We first discuss text similarity and structural information since they are the main sources of

information for matching techniques, then present some particularly challenging cases.

Text similarity There are a number of challenges when trying to devise text similarity

measures for entities. Table 4.18 summarizes some of the interesting cases found while an-

alyzing the results from MADMatch and UMLDiff. A first observation is that most of the

renaming, except for typos correction, operate at the term level and not on single characters.

By considering lexical information on entities as sets of words, MADMatch is able to circum-

vent order problems and many of the situations described in Table 4.18 are easily addressed

by our algorithm. In theory, the same term can appear more than once in a name and there

are situations in which the order in which terms appear can be important (fromXtoY 6=

fromYtoX) but this is extremely rare in practice. In any case, given the range and complex-

ity of the renaming, even the most advanced text similarity measures (taking into account

synonyms, etc.) will not be able to retrieve some matches. The use of structural information

is thus required.

Structural information Structural information is usually more formal and constrained

(e.g. entity e1 has a relation of type i with entity e2). This matter of facts increases the risk

of having many entities with the same structural information: e.g. two methods may call and

be called by the same classes and methods. Another difference with textual information is

that the alteration of an entity connectivity is a quite common operation. Our experiments,

especially on class diagrams, suggest that relations between entities undergo many changes.

4.5.3.1 Challenging situations

In our case studies, many incorrect matches returned by MADMatch involved demo and test

classes with similar and generic names and weak connectivity. We share this vulnerability

with UMLDiff. Demo and test classes shared many methods such as suite(), testSerialisa-

tion(), testEqual(), main() etc. In those cases, when classes are renamed, deleted, or inserted,

the returned matches are somehow random, with different techniques ending up with different

and incorrect matches.

on entities names.

125

Table 4.16 DNSJava: A selection of change patterns occurring on methods

add a new parameter
DNSJava 0.1 - 0.2 (this operation accounts for a large part of this matching)
DNS.Zone:: Zone(String) → Zone(String,int)
dnsServer:: addZone(String) → addZone(String,int)
org.xbill.DNS.dns:: lookup(Name,short,short,byte) → lookup(Name,short,short,byte,boolean)
DNSJava 1.2.3 - 1.2.4
jnamed:: addTCP(short) → addTCP(InetAddress,short)
jnamed:: addUDP(short) → addUDP(InetAddress,short)

remove a parameter
DNSJava 0.2-0.3
DNS.Record:: toWireCanonical(CountedDataOutputStream,int) → toWireCanonical(CountedDataOutputStream)

change a parameter type
DNSJava 0.5-0.6
DNS.Header:: setCount(int,short) → setCount(int,int)
DNS.Resolver:: setEDNS(boolean) → setEDNS(int)
DNSJava 1.0.1 - 1.0.2
org.xbill.DNS.ExtendedResolver.Receiver:: receiveMessage(int,Message) → receiveMessage(Object,Message)
org.xbill.DNS.ResolverListener:: receiveMessage(int,Message) → receiveMessage(Object,Message) [missed by UMLDiff]
DNSJava 1.0.2 - 1.1
org.xbill.DNS.Header:: setRcode(byte) → setRcode(short)
DNSJava 1.2.3 - 1.2.4
org.xbill.DNS.NameSet:: addSet(Name,short,Object) → addSet(Name,short,TypedObject)
DNSJava 1.3.3 - 1.4.0 (virtually all the changes involved short → int)
org.xbill.DNS.DClass:: toShort(short) → toInteger(int)
jnamed:: getCache(short) → getCache(int)

rename method
DNSJava 1.0.2 - 1.1
jnamed:: addZone(String) → addPrimaryZone(String)
jnamed:: notimplMessage(Message) → errorMessage(Message,short)
org.xbill.DNS.TSIGRecord:: getAlg() → getAlgorithm()
DNSJava 1.3.0 - 1.3.1 (sometimes name similarity very low)
org.xbill.DNS.NameSet:: findSets(Name,short) → lookup(Name,short) [missed by UMLDiff]

Table 4.17 DNSJava: A selection of change patterns occurring on attributes

move an attribute from one class to another
DNSJava 0.2 - 0.3
DNS:: dns.AAAA → Type.AAAA
DNS:: dns.classString(int) → Type.string(int)
DNS:: dns.classValue(String) → DClass.value(String)
DNS:: dns.flagString(int) → Flags.string(int)
DNS:: dns.longSectionString(int) → Section.longString(int)

rename attribute
DNSJava 1.0.2 - 1.1
org.xbill.DNS.KEYRecord:: ANY → PROTOCOL ANY
DNSJava 1.3.3 - 1.4.0 (illustration of the usefulness of call dependency)
org.xbill.DNS.Type.DoubleHashMap:: s2v → byString
org.xbill.DNS.Type.DoubleHashMap:: v2s → byInteger
DNSJava 1.2.4 - 1.3.0 (renaming sometimes in order to be consistent with data type)
org.xbill.DNS.Compression:: (Hashtable) h → (Entry []) table
org.xbill.DNS.FindServer:: (String []) search → (String []) searchlist
org.xbill.DNS.FindServer:: (Name []) server → (Name []) servers

126

Table 4.18 A selection of renaming patterns

Typo
Inidcator → Indicator
Term re-ordering
createHorizontalStackedBarChart → createStackedHorizontalBarChart
AreaXYChartDemo → XYAreaChartDemo
Term replacement
saveChartAsPNG → writeChartAsPNG, MeterPlotDemo → MeterChartDemo,
getSegmentNumber → calculateSegmentNumber,
DEFAULT BACKGROUND COLOR → DEFAULT BACKGROUND PAINT
Contextual synonyms
DrawInfo → chartRenderingInfo, Active → AutoFill,
index → millisecond and toDomainValue → toMillisecond (context = SegmentedTimeline)
Suffix addition
autoRangeMinimum → autoRangeMinimumSize, isValidMonth → isValidMonthCode, y → yValues
Term insertion
monthToString → monthCodeToString
term expansion
getAvg → getAverage, b2s → boundToString
Term reduction
Left1Right2ButtonPanel → L1R2ButtonPanel
Term replacement
getNearestTickUnit → getCeilingTickUnit,
getMaximumAxisValue() → getUpperBound(), getMinimumAxisValue() → getLowerBound()
Term deletion
ImageTitle.setTitleImage → ImageTitle.setImage
Changing case
bulbRadius → BULB RADIUS
Addition/replacement of generic terms
simple, regular, extended, basic, default, base ...
Term recomposition
drawOutlineAndBackground → drawBackground and drawOutline
More complex changes
axisLineHasNegativeArrow → negativeArrowVisible,
axisLineHasPositiveArrow → positiveArrowVisible
interiorSpacing → interiorGapPercent
colorCritical → criticalPaint, listeners → listenerList
toolTipGenerator → itemLabelGenerator, dialBorderColor → dialOutlinePaint

127

There are some rare cases of incorrect matches returned by both UMLDiff and MAD-

Match. For instance, from DNSJava 1.3.1 to 1.3.2, the following incorrect match

org.xbill.DNS.Message:: freeze() → setTSIG(TSIG,byte,TSIGRecord)

is proposed by both algorithms. Apart from being both in the same class and called by

the method jnamed.generateReply(), those methods are clearly not related.

In some other cases, the entities share the same name but are missed by MADMatch. This

is illustrated by the match org.xbill.DNS.NameSet:: findName(Name) → findName(Name)

from DNSJava 1.3.0 to 1.3.1. In DNSJava 1.3.0, findName is defined as follows

protected TypeMap findName(Name name) { return (TypeMap) data.get(name); }

and is used by 4 functions of the class NameSet. In dns 1.3.1, although the name and input

parameters are the same, not only the signature changed

private Object findName(Name name) { return data.get(name); }

but the method is no longer used by any function. Instead, all the functions previously using

findName were directly using the line data.get(name).

We also notice during our manual code inspection that although extremely rare, it does

happen that MADMatch misses some matches due to information not completely recovered

by the PADL graph extractor applied on the binaries. For instance, from DNSJava 1.3.2 to

1.3.3 the quite obvious renaming org.xbill.DNS.Message:: (boolean) TSIGverified → (static

int) TSIG VERIFIED was not retrieved. According to the input graphs of MADMatch, no

method in DNSJava 1.3.3 was using the attribute but code inspection revealed at least one

method doing so:

isSigned() {return (tsigState==TSIG_VERIFIED || tsigState==TSIG_FAILED);}

Another point worth mentioning is that, MADMatch neither specifically addresses in-

heritance nor includes transitive closure for calls or dependencies 25. These additional

mechanisms can be particularly relevant in some cases of parameter specialisation such as

com.jrefinery.chart.LinePlot:: LinePlot(Axis,Axis) → LinePlot(CategoryAxis,ValueAxis) 26.

An interesting feature of MADMatch is that for each match of the returned solution,

a cost is associated which expresses how more expensive would be the solution if the con-

sidered match were to be removed. For instance, the previously reported incorrect match

org.xbill.DNS.Message:: freeze()→ setTSIG(TSIG,byte,TSIGRecord) was assigned a removal

cost of 2.69 compared to an average of 219 for the other matches of the matching set (from

25If m1 calls m2 and m2 calls m3, there may be interest in considering that m1 calls m3.
26This match is actually retrieved by MADMatch.

128

DNSJava 1.3.1 to 1.3.2). The cost information provided has more value than a simple sim-

ilarity measure because it expresses how well the match contributes to the solution. This

observation can be generalized as we observed that incorrect matches are generally those

bringing small improvement to the fitness while in general, the removal of correct matches

would heavily influence the solution cost.

4.5.4 Considerations about entity evolution

Combined with the manual inspection of source, the application of MADMatch on real sys-

tems was the occasion to gain interesting insights about evolution of entities found in class

diagrams. One of the most important lessons is that the evolution of entities cannot be cap-

tured by a straight line. Inheritance mechanisms are a testimony to this but it goes beyond.

Entities can be merged, absorbed, cloned, factored out, extended and techniques trying to

retrieve diagrams’ evolution have to consider this complex reality. This is why we believe

that (i) many-to-many matching are indeed needed and (ii) looking only at a given level (as

done for methods in API Evolution studies) may hide more interesting and accurate (either

simpler or more complex) realities.

Another interesting lesson is that the matching (or differencing) of class diagrams can

reveal high-level decisions. We identify two important aspects: the level of granularity (hi-

erarchical changes) and renaming rules (transversal changes). Those meta-changes often

translate into many different low-level entity matches which taken separately hardly reflect

the underlying design decisions. Our experience on the studied systems was that sometimes

hundreds of non-trivial matches could be explained by a couple of higher-level changes

4.5.4.1 Top-Down changes

Changes occurring on entities located on the higher levels have massive impact on the lower-

level entities. Some changes can be fully understood only if one considers operations occurring

at a higher level. For instance, when the root of an application is changed as observed in DNS-

Java (from DNS in version 0.9.1 to org.xbill.DNS in 0.9.2) or JFreeChart (from com.jrefinery

in version 0.9.7 to org.jfree in version 0.9.8), the impact is observable on every entity match.

Similar but less important impact can be observed in case of package restructuring. For

instance, layout classes contained in the package com.jrefinery.util.ui of JFreeChart 0.5.6 are

regrouped in a new package com.jrefinery.layout in JFreeChart 0.6.0.

Renaming of classes can also trigger many changes. For instance, the renaming of

CountedDataInputStream (DNSJava 0.4) in DataByteInputStream(DNSJava 0.5) and Counted-

DataOutputStream(DNSJava 0.4) in DataByteInputStream(DNSJava 0.5) translated into a

129

big number of changes at method level. More specifically, many methods were using objects

of type CountedDataInputStream and CountedDataOutputStream as input parameters and

the renamings affect the signature of those methods. Virtually every-one of the non-trivial

matches identified from DNSJava 0.4 to 0.5 stem from those renaming operations. In practice,

top down changes can be easy to recover, provided an analysis of changes from a hierarchical

perspective.

4.5.4.2 Transversal changes

Sometimes, the non-trivial matches identified reflect important renaming rules and are more

apparent when one considers terms in entities’ names. For instance, from JFreeChart 0.5.6

to 0.6.0, the term show is replaced by the term visible in many occurrences of methods

and attributes (from showTickLabels to tickLabelsVisible, etc.) while DataSource is replaced

by Dataset in many class names (chart.DataSource → data.Dataset, chart.DataSources →

data.Datasets, etc.). Sometimes, the renaming carries meaning about which changes were

performed. For instance, from JFreeChart 0.9.1 to 0.9.2 many methods went from displayX()

to createX() (with X being PieChartOne, etc.). Source code inspection reveals that in 0.9.1

displayX functions were used to both create and display objects X while in 0.9.2 the display

task are aggregated and delegated to another method. Term replacement occurs very fre-

quently and we believe they can be revealing about new design or implementation directions

and vocabulary evolution. For instance, from JFreeChart 0.9.9 to 0.9.10, MADMatch identi-

fies many moves and renamings involving the replacement of the term table by the term list :

chart.renderer.BooleanTable → org.jfree.util.BooleanList, org.jfree.chart.renderer.FontTable

→ org.jfree.util.FontList, etc. 27.

4.6 Conclusion

Diagrams are very common representations in software engineering. Whether conceived or

retrieved from actual implementation, they convey important knowledge and a good level of

abstraction about the software product to which they are related. There are many scenarios

in which the matching of software diagrams is of interest and matching problem have mainly

been addressed within a given scenario and on a given artifact.

MADMatch is a many-to-many approximate diagram matching approach based on an

Error Tolerant Graph Matching framework. Matching tasks are modeled as optimization

problems with valued edit operations transforming one diagram into the other. Given a cost

model and the two diagrams, a tabu search is applied to find the cheapest solution. Sub-

27The same pattern is identified for ObjectTable, NumberTable, StrokeTable.

130

stantial work has been done to integrate textual information and accommodate the need for

many-to-many matching. In particular, similarity concepts combining textual and structural

information have been proposed and used to reduce the search space.

In this chapter, our novel algorithm has been primarily and extensively evaluated on

class diagrams but limited experiments on sequence diagrams and labeled transition systems

strongly suggest that the approach is applicable to any kind of diagram. The compared

evaluation of MADMatch with respect to dedicated algorithms showed that our approach

was more accurate and scalable than previous approaches. Obtained results are extensively

discussed and we tried to convey some of the insights gained from our work on the evolution

of class diagrams.

131

CHAPTER 5

DESIGN EVOLUTION METRICS FOR DEFECT PREDICTION

In the software market, companies often face the dilemma to either deliver a software system

with poor quality or miss the window of marketing opportunity. Both choices may have

potentially serious consequences on the future of a company. Defects slipping from one

release to the next release may harm the image and trust of the users into the companies;

delaying a release may give competitors a commercial advantage.

However, software development is labor intensive and software testing can cost up to

65% of available resources (Mats Grindal and Mellin (2006)). Testing activities (e.g. unit,

integration, or system testing) are often performed as “sanity checks” to minimize the risk of

shipping a defective system.

A large body of work on OO unit and integration testing focuses on the important problem

of minimizing the cost of test activities while fulfilling clear test coverage criteria (e.g Briand

et al. (2003)). We believe that previous work does not fully address the problem of assessing

the cost of testing activities that must be devoted to a class: it leaves managers alone in the

strategic decision of allocating resources to focus the testing activities.

For example, let us consider a manager who wants to substantially improve the quality of

a large OO system in its next release. She needs to know what are the key classes on which

to focus testing activities, i.e. allocate her resources. We believe that key classes can be

defect-prone classes, i.e. classes which have the highest risk of producing defects and classes

from which a defect could propagate extensively across the system. Although reliability or

dependability is the ultimate goal, locating defects is crucial. Provided with a ranked list of

classes likely to contain defects, the manager can decide to prioritize testing activities based

on her knowledge of the project (frequency of execution or relevance to the project of the

classes). Consequently, the manager would benefit from an approach to identify defective

classes.

Many approaches to identify defective classes have been proposed in the literature. They

mainly use metrics and machine learning techniques to build predictive models. However, as

of today, researchers agree that more work is needed to obtain predictive models usable in

the industry1.

This chapter corresponds to the paper (Kpodjedo et al. (2011)) and contributes to the

1Researchers discussed the limits of current predictive models at the 6th edition of Working Conference
on Mining Software Repositories (MSR’09).

132

field by investigating the prediction of defective classes using design evolution metrics based

on changes observable in the designs of OO systems.

We introduce a new set of metrics, the Design Evolution Metrics (DEM) which include

metrics counting the additions, modifications, or deletions of attributes, methods, or relations

in the classes between releases of a system. We build models using the DEM and other metrics

to study their explanatory and predictive power to identify defective classes. We compare

the DEM with traditional object-oriented and complexity metrics when included in models

for (1) explaining defects in a system, (2) identifying defective classes, (3) predicting the

number of defects in a class, and (4) predicting the defect density in a class. We perform our

comparisons on 7 releases of Rhino, 9 of ArgoUML, and 3 of Eclipse.

Our comparisons show that the DEM improve, with statistical significance, the identifi-

cation of defective classes. The DEM have, in particular, a very good predictive power when

predicting defect density, i.e. identifying classes providing a high number of defects in a small

amount of code volume. Therefore, they are able to support a manager in the difficult task

of choosing the classes on which to concentrate her resources.

This chapter is organized as follows. Section 5.1 presents the design evolution metrics.

Section 5.2 describes our case study and Section 5.3 presents and discusses its results. Section

5.4 highlights threats to validity and Section 5.5 concludes and outlines future work.

5.1 Design Evolution Metrics

The DEM aim at capturing elementary design evolution changes. In our study, we represent

systems by their class diagrams, because such diagrams are simple to reverse engineer from

source code and are often used or altered during development and maintenance. They capture

design changes, such as additions or deletions of methods, attributes, or relations.

Identifying and counting design changes between two releases of the class diagram of an

evolving system of realistic size is tedious and error-prone. Therefore, to automate the com-

puting of the DEM, we first compute an optimal or sub-optimal matching of subsequent class

diagrams to retrieve any class evolution through time. Second, once this data is obtained,

we compute the proposed design evolution metrics.

In the following subsections, we first define the DEM and then present the problem of

retrieving the evolution of the class diagram of an OO system. Our solution to this latter

problem is based on an Error-Tolerant Graph Matching (ETGM) algorithm.

133

5.1.1 Definitions

In our approach, we consider simple design evolution metrics pertaining to basic changes that

affect the design of an OO system. We show in Sections 5.2 and 5.3 that these metrics can

identify classes with high defect-density and complement previously-used metrics.

We assume that the evolution of classes is available, extracted by hand or computed by an

algorithm, e.g. the ETGM algorithm presented in the previous chapters. Once the evolution

of classes is available, we count the numbers of simple design changes. At this stage of the

research, we consider as relations: associations, aggregations, and generalizations. Also, we

do not consider modified attributes, changes to the visibility, and modifications of relations,

which will all be studied in future work. Thus, we use the following counts:

• Number of added methods: nbAddMet

• Number of added attributes: nbAddAtt

• Number of added outgoing relations: nbAddRelOut

• Number of added incoming relations: nbAddRelIn

• Number of deleted methods: nbDelMet

• Number of deleted attributes: nbDelAtt

• Number of deleted outgoing relations: nbDelRelOut

• Number of deleted incoming relations: nbDelRelIn

• Number of modified methods: nbModMet

• Number of modified outgoing relations: nbModRelOut

• Number of modified incoming relations: nbModRelIn

Once the class diagram evolution is available, the above metrics can be easily computed as

follows. Let a class C be represented by the quadruple (A,M,Rin, Rout) with A representing

the set of attributes, M the set of methods, Rin the set of incoming relations, and Rout the

set of outgoing relations.

If a class C1(A1,M1, Rin1, Rout1) is matched with another C2(A2,M2, Rin2, Rout2), then

A = A1 ∩ A2 (respectively, M = M1 ∩M2) represents the set of matched attributes (respec-

tively, methods)2.

2An attribute is matched to another if they share the same name and type while a method is matched to
another if they share the same signature.

134

Each element in A1−A counts as a deleted attribute while each element in A2−A counts

as an added attribute. Modified methods are methods sharing the same name and either the

same return type or input type(s). New relations count as additions while relations present

in previous release and absent from the new one count as deletions. An added or deleted

relation is also counted as a modified relation when the two classes involved were present in

a previous release.

5.2 Case Study

The description of the study follows the Goal-Question-Metrics paradigm (Basili et al. (1994)).

The goal of this empirical study is to compare the efficiency of the DEM in explaining and

predicting defects in classes with regard to other previously-used metrics. The quality focus

is to achieve a prediction better than that of the predictors based on the C&K metrics and

on the complexity metrics computed by Zimmermann et al. (2007). The perspective is that

of both researchers, developers, and managers, who want to identify defective classes. The

context of this study are three open-source systems: the Rhino JavaScript/ECMAScript in-

terpreter, the ArgoUML CASE tool, and the Eclipse Integrated Development Environment

(IDE).

This study focus on the general research question with evolution metrics: do evolution

metrics improve prediction accuracy in identifying defective classes with respect to other

previously-used metrics, such as the C&K metrics? We also consider several releases of

three different systems, while in our previous work we used only Rhino v1.6R5 to which

all past defects were assigned. Also, we emphasize the relevance of our metrics and limit

threats to validity by comparing predictors built with our metrics against predictors built

with metrics detailed in another previous work3 (Zimmermann et al. (2007)).

Table 5.1 Summary of the object systems

Systems
Releases Number of

(Number Thereof) Classes LOCs Defects
Rhino 1.5R1–1.6R1 (7) 89–270 30,748–79,406 12–114
ArgoUML 0.12–0.26.2 (9) 792–1,841 128,585–316,971 25–187
Eclipse 2.0–3.0 (3) 4,647–17,167 781,480–3,756,164 1044–2502

135

5.2.1 Objects

We selected Rhino, ArgoUML, and Eclipse as systems for our case study because: (i) several

releases of these systems are available, (ii) these systems were previously used in other case

studies (Eaddy et al. (2008); Zimmermann et al. (2007)) and, (iii) defect data are available

from previous authors (Eaddy et al. (2008); Zimmermann et al. (2007)) for Rhino and Eclipse

or from a customized Bugzilla repository for ArgoUML. Table 5.1 provides summary data

about releases and defects for the three systems.

Rhino4, the smallest system, is a JavaScript/ECMAScript interpreter and compiler that

implements the ECMAScript international standard, ECMA-262 v3. We downloaded Rhino

releases between 1.4R3 to 1.6R5 from the Rhino Web site. We used only 7 releases, those for

which the total number of defects is greater than ten, from 1.5R1 to 1.6R15.

ArgoUML is a UML CASE tool to design and reverse-engineer various kinds of UML

diagrams. It is also able to generate source code from diagrams to ease the development of

systems. ArgoUML is written in Java. We use all pre-built releases available on ArgoUML

Web site6 except ArgoUML0.10.1, the initial release. We extract defect data from the Ar-

goUML customized Bugzilla repository, i.e. we use the bug-tracking issues identified by the

special tag “DEFECT”. We then match the bug IDs of the bug tracking issues with the SVN

commit messages, as retrieved from the ArgoUML SVN server. Once the file release matching

the bug ID is retrieved, we perform a context diff with the previous file release to assign the

defect to the appropriate class.

Eclipse7 is a large, open-source, IDE. It is a platform used both in the open-source com-

munity and in industry, for example as a base for the WebSphere family of development

environments. Eclipse is mostly written in Java, with C/C++ code used mainly for the wid-

get toolkit. C++ code was not considered in this study. We used releases 1.0, 2.0.0, 2.0.1,

2.0.2, 2.1, 2.1.1, 2.1.2, 2.1.3 and 3.0. to compute the DEM. Defect and metrics data made

available by previous authors (Zimmermann et al. (2007)) pertain to releases 2.0, 2.1, and

3.0. We retained in our study only the sub-set of classes whose name and path perfectly

match those of the files in the Z&Z dataset, which include more than 95% of the original files

and defects.

We recovered the class diagrams of the releases of the systems using the Ptidej tool

suite and its PADL meta-model. PADL is a language-independent meta-model to describe

3The metric values are available on-line at http://www.st.cs.uni-saarland.de/softevo/bug-data/

eclipse/.
4http://www.mozilla.org/rhino/
5Rhino1.4R3 is excluded since it is the initial release
6http://argouml-downloads.tigris.org/
7http://www.eclipse.org/

136

the static part and part of the behavior of object-oriented systems similarly to UML class

diagrams (Gueheneuc and Antoniol (2008)). It includes a Java parser and a dedicated graph

exporter.

5.2.2 Treatments

The treatments of our study are predictors for defects in a system. We build these predictors

using logistic and Poisson regressions built with different sets of metrics:

1. C&K are the metrics defined by Chidamber and Kemerer (Chidamber and Kemerer

(1994)). The C&K metrics are Response For a Class (RFC), Lack of COhesion on

Methods (LCOM), Coupling Between Objects (CBO), Weighted Methods per Class

(WMC), Depth of Inheritance Tree (DIT), Number Of Children (NOC) and Line Of

Code (LOC). WMC is defined as the sum of methods complexity. We define LCOM

following C&K, thus it cannot be negative (Briand et al. (1998)). We also define

LCOM2 and LCOM5 following Briand et al. (Briand et al. (1998)) and complete the

set with the number of attributes (nBAtt) and number of methods (nbMet). Thus,

this metric set has a cardinality of 11 and is a super-set of the set of metrics used in

previous work (e.g. Briand et al. (2002); Gyimóthy et al. (2005)).

2. Z&Z includes the complexity metrics computed by Zimmermann et al. in their study of

Eclipse (Zimmermann et al. (2007)). We use this set when studying Eclipse by reusing

metrics and defect data provided on-line by the authors. We chose this metric set to

prevent bias in the computation and analysis of the metric values.

3. DEM is the set of basic design changes and account for the number of added, modified,

and deleted attributes, methods, and relations in a class between its introduction in

the system to the release under study. It comprises the following metrics nbAddAtt,

nbAddMet, nbAddRelOut, nbAddRelIn, nbDelAtt, nbDelMet, nbDelRelOut, nbDelRelIn,

nbModMet, nbModRelOut and nbModRelIn (see Section 5.1.1).

Finally, we define two unions of the previous sets: Z&Z+DEM and C&K+DEM to

study the benefits of our novel metrics when combined with traditional metrics.

5.2.3 Research Questions

We aim at answering the following four research questions:

• RQ1 – Metrics Relevance: To answer the general research question presented above,

a preliminary study must be performed to give us confidence that the design evolution

137

metrics indeed are useful to predict defective classes. RQ1 aims at providing evidence

that a relation between the design evolution metrics and number of defects exists.

Therefore, we sought to reject the following null-hypothesis: A linear regression model

built with DEM, Z&Z+DEM, or C&K+DEM does not better explain the number

of defects discovered in classes with respect to the Z&Z or C&K sets.

• RQ2 – Defect-proneness Accuracy: Often, developers and managers are interested

to know whether a given class contains defects or not. Thus, a classification of a class

into “defective” or “not-defective”may be enough to save the developers’ and managers’

efforts. Therefore, we sought to reject the following null-hypothesis: A binary predictor

built to identify defective classes with the DEM, Z&Z+DEM, or C&K+DEM sets

does not perform better than a predictor built only with the Z&Z or C&K metric sets.

• RQ3 – Defect Count Prediction Accuracy: An adequate testing of defect-prone

classes would lead to more defects being removed from the system and, thus, it is

interesting to know the possible number of defects in a class. We want to reject the

following null-hypothesis: A predictor of the number of defects in classes built with the

DEM, Z&Z+DEM, or C&K+DEM sets, does not perform better than a predictor

built only with the Z&Z or C&K metric sets.

• RQ4 – Defect Density Prediction Accuracy: Finally, we establish the general

usefulness of the DEM by comparing their ability to reduce effort needed to test code

with defects; effort in terms of LOCs to analyze. Therefore, we sought to reject the

following null-hypothesis: A predictor of defect density in classes built with the DEM,

Z&Z+DEM, or C&K+DEM sets, does not perform better than a predictor built

only with the Z&Z or C&K metric sets.

5.2.4 Analysis Method

We perform the following analyses to answer the research questions:

• RQ1 – Metrics Relevance: We build multi-dimensional linear regression models

for each release of the systems, using the number of defects reported for a class as

dependent variable and the different sets of metrics as independent variables.

For each set of metrics, we apply backward elimination to select a first set of relevant

metrics. If the DEM are important to explain defects in classes, then they should be

kept as explanatory variables – even when mixed with other metrics – and increase the

proportion of variability accounted for than if one uses only the C&K and Z&Z metrics.

138

We consider that a metric significantly contributes to explain the dependent variable if

it is included in at least 75% of the built models with a p-value of 0.05 or smaller, i.e.

the metric must contribute to the modeling of defective classes in at least 75% of the

releases. This choice was inspired by models built for disease prediction (Hosmer and

Lemeshow (2000)).

The DEM should also improve the models and their adjusted R2. An Adjusted R2

expresses the proportion of variability in a data set that is accounted for by a statistical

model and adjusted for the number of terms in a model. A Wilcoxon test was applied

to assess statistical significance of adjusted R2 improvement.

At standard significance levels (i.e. 5% and 10%), intercepts were never significantly

different from zero; thus we force regression models built to answer RQ1 to pass through

the origin.

• RQ2 – Defect-Proneness Prediction Accuracy: To answer RQ2, we apply logistic

regression. Logistic regression models were previously used to predict if a class is

defective or not, in our previous work and by other researchers, for example Gyimóthy

et al. (2005).

In a logistic regression-based predictor, the dependent variable is commonly a dichoto-

mous variable and, thus, it assumes only two values {0, 1}, i.e. defect-free and defective.

The multivariate logistic regression predictor is based on the formula:

π(X1, X2, . . . , Xn) =
eC0+C1·X1+···+Cn·Xn

1 + eC0+C1·X1+···+Cn·Xn
(5.1)

where Xi are the characteristics describing the modeled phenomenon, C0 is the intercept,

Ci (i = 1..n) is the regression coefficient of Xi
8, and 0 ≤ π ≤ 1 is a value on the logistic

regression curve. In our study, variable Xi will be metrics quantifying structural or

evolution properties. The closer π(X1, X2, . . . , Xn) is to 1, the higher is the probability

that the class contains defects.

• RQ3 – Defect Count Prediction Accuracy: We apply Poisson regression to predict

the location and numbers of defects in the classes of a system. Poisson regression is a

well-known technique for modeling counts. It has already been used in the context of

defect prediction by Evanco (1997).

In a Poisson regression-based predictor, the dependent variable is commonly a count

8The bigger |Ci|, the more Xi influences the outcome. In particular, if Ci > 0, the probability of the
outcome increases with the value of Xi.

139

with no upper bound; the probability of observing a specific count, y, is given by the

formula:

P (Y = y) =
λye−y

y!
(5.2)

where λ is known as the population rate parameter and represents the expected value

of Y . In the general case, λ is expressed in log-linear form as:

log(λ(X1, X2, ..., Xp)) = a + b1X1 + b2X2 + ···+ bpXp (5.3)

where Xi are the characteristics describing the modeled phenomenon. In our study,

variable Xi will be metrics quantifying structural or evolution properties.

• RQ4 – Defect Density Prediction Accuracy: We investigate the usefulness of the

DEM to predict defect density rather than numbers of defects. To that end, Poisson

regression models are trained and tested for defect density, i.e. the number of defects

divided by the number of LOCs.

To answer RQ2, RQ3, and RQ4, and consistently with sound industrial practices, as

reported in Ostrand et al. (2005), results are organized as ranked lists of classes recommended

for testing.

All statistic computations were performed with the R9 programming environment.

5.2.5 Building and Assessing Predictors

We focus on inter-release prediction because such prediction is the most interesting with

respect to practitioners and researchers: using data from a release to identify defective classes

in a subsequent release.

Models are trained with the sets of metrics on a release i and used to predict a defect

measure (probability, number, and density) for classes in the subsequent release i + 1. A

step-wise backward elimination is applied using the whole set of metrics on a release i and

the best10 model returned is tested on the subsequent release i + 1. Backward elimination

starts with a model including all independent variables and creates new models with fewer

variables by removing one variable at the time and by penalizing models with a low likelihood

and containing many parameters.

For each system and research question (RQ2, RQ3, and RQ4), we report for each set of

metrics, the metrics present in at least 75% of the best models, i.e. those effectively used for

the predictions.

9http://cran.r-project.org/
10We use Akaike’s information criterion to elect the “best” model.

140

Our logistic regression model (for RQ2) assigns a probability of being defective to each

class in a system while our Poisson regression-models assign a predicted number of defects

(for RQ3) or defect density (for RQ4). Rather than trying to devise an optimal threshold

above which the classes should be recommended, we rank classes (Ostrand et al. (2005))

according to their predicted probability of being defective (for RQ2), their predicted number

of defects (for RQ3), and their predicted defect density (for RQ4).

Predictors are built with the different sets of metrics and we use results obtained with

different cut points to compare different models. For RQ2 and RQ3, we consider the classes

in the top 10%, 20% and 30% defect-prone classes. For defect density (RQ4), the number

of LOCs is the relevant measure. Briefly, we study the numbers of defects per LOCs, and we

cumulatively partition the results to obtain the top-ranked classes containing 10% 20% and

30% of the LOCs of the system.

For RQ2, we use the F-measure that is the geometric mean between precision and recall

to assess the performance of the models. The F-measure is defined as:

F =
2× Precision×Recall

Precision + Recall
(5.4)

where precision is defined as the ratio between retrieved defective classes over retrieved classes

and recall as the ratio between retrieved defective classes over all defective classes. An ideal

model would obtain an F-measure value of 1 while real models usually trade precision for

recall or vice versa. For RQ3 and RQ4, we use the percentage of defects present in the top

recommended classes as performance indices.

Note that the above performance indices are used in Section 5.3 to further specify the

Research Questions. A special focus is also made there on the top 10%, top 20%, top 30%

classes (or LOCs) as we believe a tester or manager will not likely go beyond those top sets

of classes.

For each system, predictions are made for every release and we consider the average

values of the performance indices. We also perform a Wilcoxon signed rank test to perform a

comparison of different predictors and assess whether or not our metrics induce statistically

significant improvement over a random predictor11 or a predictor built without the DEM.

We then compute the Cohen-d statistics12 to obtain a statistically-reliable effect size of our

metrics. The Cohen standardized difference between two groups (Cohen (1988)) is defined

as the difference between the means (M1 and M2) divided by the pooled standard deviation

(σp) of both groups: d = (M1 −M2)/σp. A Cohen-d inferior to 0.2 is perceived as a very

11We consider that a random prediction model would give in average X% of the defective classes or the
defects in any X% partition of the system

12We compute the Cohen-d statistics using pooled standard deviation.

141

small or trivial effect; a value between 0.2 and 0.5 is considered to represent a small effect; a

value between 0.5 and 0.8 is deemed a medium effect, and a value of more than 0.8 provides

evidence of a large effect (Cohen (1988)).

Given the small sample size (2 inter-release predictions) of Eclipse, we could not apply to

the results from this system either the Wilcoxon tests or the Cohen-d statistics. Therefore

statistical tests could not be conducted for the Z&Z set.

5.3 Results and Discussion

We now present and discuss the results of our case study.

5.3.1 RQ1 – Metrics Relevance

We answer RQ1 by testing the following null-hypothesis: DEM do not contribute to better

explain the number of defects discovered in classes with respect to Z&Z or C&K metric

sets. We use this preliminary analysis to verify that the DEM correlate with the number of

defects in classes, i.e. that these metrics bring are relevant wrt. defects.

5.3.1.1 Most Used Metrics

Following the elimination procedure, different independent variables (metrics) were retained

depending on the system and its releases. Those variations were expected and are due to

several factors, including the system size in a release, its evolution history, the class diagram

structure, and design stability.

Table 5.2 shows the metrics kept in the models built with the different sets of metrics. For

each system, metrics from the DEM are kept as relevant to explain the number of defects

per classes, even when they are added to the C&K and Z&Z sets.

Some metrics are always kept: for the C&K set, RFC, LOC, and LCOM2 are present

as significant metrics for both Rhino and ArgoUML. The metrics in DEM consistently

kept are the number of added or modified methods and number of additions, deletions, and

modifications of outgoing relations. The Z&Z set contain many relevant metrics, such as

TLOC (the total LOCs) and FOUT (fan-out).

5.3.1.2 Proportion of variability explained

Tables 5.3, 5.4, and 5.5 show the values of adjusted R2 for the regression models built using

the various sets.

For Rhino, see Table 5.3, all sets of metrics mostly give an adjusted R2 superior to 0.5.

The most effective model uses the C&K+DEM set and has an average of 0.6784, contrasting

142

Table 5.2 RQ1: Metrics kept 75% (or more) times when building linear regression models to
explain the number of defects—TM = C&K for Rhino and ArgoUML, TM = Z&Z for Eclipse

TM DEM TM+DEM
Rhino RFC, CBO, LOC,

LCOM2, LCOM1
nbDelAtt, nbDelRelOut,
nbAddMet, nbAddRelOut,
nbModMet, nbMod-
RelOut,

RFC, CBO, LOC,
LCOM1, nbAtt, LCOM2,
nbMet, nbModMet, nbDel-
RelOut, nbAddRelOut,
nbDelAtt, nbDelMet,
nbAddMet, nbAddRelIn,
nbModRelOut

Argo RFC, LCOM2,
LOC, WMC, DIT

nbAddMet, nbAddAtt,
nbAddRelOut, nbMod-
RelIn, nbDelRelOut,
nbModMet, nbAddRelIn

RFC, LOC, LCOM1,
LCOM2, DIT, WMC,
nbDelRelOut, nbAddMet,
nbModRelIn, nbAd-
dRelOut, nbModRelOut

Eclipse FOUT(max,sum),
MLOC(max,sum,avg),
NBD(sum),
NOF(avg,max),
NOM(avg,max,sum),
NOT, TLOC,
NSF(avg,sum),
NSM(avg,max),
PAR(sum),
VG(avg,max,sum)

nbAddMet, nbAddRelOut,
nbModRelOut, nbAddAtt,
nbDelMet, nbModMet,
nbAddRelIn, nbModRelIn,
nbDelRelOut

FOUT(max,sum), TLOC,
MLOC(avg,max),
NBD(sum),
NOF(avg,max), NOI,
NOM(avg,max,sum),
NSF(avg,sum),
NSM(avg,max),
PAR(avg,max,sum),
VG(avg,max,sum), nbAd-
dAtt, nbAddRelOut,
nbAddMet, nbAddRelIn,
nbDelAtt, nbDelRelIn,
nbDelMet, nbDelRelOut,
nbModMet, nbModRelOut

Table 5.3 Adjusted R2 from linear regressions on Rhino

Rhino C&K DEM C&K+DEM
1.5R1 0.3723 0.5169 0.6058
1.5R2 0.2925 0.5271 0.6063
1.5R3 0.6314 0.4468 0.711
1.5R4 0.6569 0.6437 0.7362
1.5R4.1 0.5632 0.6063 0.6619
1.5R5 0.6511 0.634 0.767
1.6R1 0.5246 0.6326 0.6608

Mean 0.5274 0.5725 0.6784
Std 0.1434 0.0759 0.0623
Median 0.5632 0.6063 0.6619

143

with the adjusted R2 of 0.5274 of the C&K model: adding DEM to C&K provides a gain

of 0.1510. The DEM model, with an adjusted R2 of 0.5725, outperforms the C&K model

by 0.0451. A Wilcoxon test rejects with a p-value of 0.007813 the following null hypothesis

The C&K+DEM set does not provide a better adjusted R2 with respect to the C&K set.

For ArgoUML, see Table 5.4, the values of R2 are substantially lower than for Rhino.

Differently from Rhino, the DEM model is now, in average, 0.0535 lower than the C&K

model. However, the best model remains the C&K+DEM model with an average of 0.2655,

improving the C&K model by 0.0406. The low means are due to some releases, such as

ArgoUML 0.26, for which the maximal adjusted R2 obtained was only 0.0705 because there

are only 25 bugs in 1,628 classes. Similarly to Rhino, a Wilcoxon test rejects the following

null-hypothesis: The C&K+DEM set does not provide a better adjusted R2 with respect to

the C&K set. with a p-value of 0.001953.

Linear regression models built on Eclipse, see Table 5.5, provide adjusted R2 of at most

0.3416 (for Eclipse 3.0 and with the C&K+DEM model). Except for the values being

higher than those for ArgoUML, the model using the mixed set Z&Z+DEM outperforms

the models built with the Z&Z and DEM sets. The size of the Z&Z set, with 31 metrics,

could explain in part the clear advantage it has over DEM set, which includes only 11

metrics.

As a conclusion, the DEM set improves the adjusted R2 of any model built with the

C&K set or Z&Z. For Rhino, it even outperforms the C&K set.

We can thus answer RQ1 affirmatively and conclude that on Rhino, ArgoUML, and

Eclipse, the design evolution metrics actually correlate with the numbers of defects and

would help in explaining the number of defects in a class.

5.3.2 RQ2 – Defect-proneness Accuracy

To answer RQ2, we rank the classes of a system according to their predicted probability of

being defective, given by a logistic regression model. Then, we select the top-ranked classes

and tag those classes as likely to be defective. We report in the following the most used

metrics in the models and the results obtained.

5.3.2.1 Most Used Metrics

Table 5.6 reports the most frequently retained metrics in predictors of RQ2, after the back-

ward elimination procedure used in the training phase. We can observe that metrics such as

the numbers of added attributes and methods (nbAddAtt, nbAddMet) and that of modified

outgoing relations (nbModRelOut) were almost always used in all systems and for both the

144

Table 5.4 Adjusted R2 from linear regressions on ArgoUML

Argo C&K DEM C&K+DEM
0.12 0.1292 0.0794 0.1479
0.14 0.4454 0.2206 0.4875
0.16 0.2873 0.2654 0.3248
0.18.1 0.3028 0.2608 0.342
0.20 0.2529 0.1572 0.2597
0.22 0.1627 0.2221 0.2794
0.24 0.2379 0.1529 0.2924
0.26 0.0433 0.0562 0.0705
0.26.2 0.1623 0.1279 0.1852

Mean 0.2249 0.1714 0.2655
Std 0.117 0.0758 0.1214
Median 0.2379 0.1572 0.2794

Table 5.5 Adjusted R2 from linear regressions on Eclipse

Eclipse Z&Z DEM Z&Z+DEM
2.0 0.2962 0.1378 0.3136
2.1 0.2236 0.1642 0.2545
3.0 0.3141 0.195 0.3416

Mean 0.2766 0.1657 0.3032

145

DEM set and mixed set (C&K+DEM or Z&Z+DEM).

5.3.2.2 Analysis of the Obtained Means

Figures 5.1, 5.2, and 5.3 report the average F-measure in the top ranked classes. As shown in

the figures, the C&K+DEM model is consistently better than the C&K model. On Rhino,

the improvement is roughly of 4 points on average for the top 10% and 20% top ranked

classes and 8 points for the top 30% classes. The improvement is on average less important

for ArgoUML (about 2%) and Eclipse (about 1%). The same remark applies when considering

the medians: the improvement is about 5 points for Rhino and 2 for ArgoUML.

5.3.2.3 Wilcoxon Tests

We performed a Wilcoxon paired test to check whether predictors built with our metrics

are indeed improving the F-measure when compared to predictors built only with the C&K

set. The null hypothesis tested is the F-measure of a predictor built with C&K+DEM is not

greater than a predictor built with C&K metrics when the top 10%, 20%, 30% classes are

selected.

For both Rhino and ArgoUML, we were able to reject the null-hypothesis, as shown by the

p-values reported in Table 5.7. Considering that a random ranking should have an average

of X% of defective classes within the top X% classes, we also perform a Wilcoxon test and

confirm that the C&K+DEM model is substantially better than the random model (see

Table 5.8).

Table 5.6 RQ2: Metrics kept 75% (or more) times when building logistic regression models
to predict defective classes—TM = C&K for Rhino and ArgoUML, TM = Z&Z for Eclipse

TM DEM TM+DEM
Rhino LCOM1, LCOM2,

CBO
nbAddMet, nbModMet,
nbAddRelIn, nbDel-
RelOut, nbModRelOut

LCOM1, LCOM2, NOC,
nbModRelOut, nbAd-
dMet, nbAddAtt, nbDel-
RelOut

Argo RFC, DIT,
LCOM5, LOC

nbAddMet, nbDelRelOut,
nbAddAtt, nbDelMet

RFC, WMC, CBO, DIT,
nbAddAtt, nbAddRelOut

Eclipse TLOC,
FOUT(avg,max),
NBD(max,sum),
NSF(max,sum),
PAR(avg,max),
VG(max,sum)

nbAddAtt, nbAddMet,
nbDelRelOut, nbMod-
RelOut

TLOC, FOUT(avg),
NBD(max,sum),
NOF(max), NOI,
NOT, NSF(max,sum),
PAR(avg,max), nbAd-
dAtt, nbModMet, nbMod-
RelOut

146

Figure 5.1 Average F-measure for defective classes on Rhino per top classes

Table 5.7 C&K+DEM ≤ C&K? p-value of Wilcoxon signed rank test for the F-measure of
defective classes (confidence level: light grey 90%, dark grey 95%)

Top 10% Top 20% Top 30%
Rhino 0.05017 0.05017 0.05017
ArgoUML 0.01125 0.003906 0.03796

5.3.2.4 Cohen-d Statistics

To further assess the improvement of F-measure brought by the DEM, we also compute

the Cohen-d statistics to quantify the effect size of using DEM in building predictors with

respect to C&K metrics or a random ranking. Results are reported in Tables 5.9 and 5.10.

In summary, when comparing C&K+DEM to C&K, for Rhino, we have a large effect

on the top 20% classes, a medium effect on the top 30% classes and a small effect on the top

10%; for ArgoUML, there is only a small effect (on the top 10% and top 20% classes) and a

very small effect on the top 30%.

The comparison with a random predictor displayed in Table 5.10 clearly demonstrates

the superiority of a model using the DEM set.

Overall, the reported means and statistical tests support that our design evolution metrics

are useful for predicting defective classes and we can claim statistical significance of the

147

Figure 5.2 Average F-measure for defective classes on ArgoUML per top classes

Table 5.8 C&K+DEM ≤ random? p-value of Wilcoxon signed rank test for the F-measure
of defective classes (confidence level: 95%)

Top 10% Top 20% Top 30%
Rhino 0.01563 0.01563 0.01563
ArgoUML 0.003906 0.003906 0.003906

observed improvement yet with a small effect size.

5.3.3 RQ3 – Defect count prediction

To answer RQ3, we first rank the classes of a system according to their predicted number of

defects, given by a Poisson regression model. Then, we select the top X% classes and assess

the percentage of defects contained within the selection. We report in the following the most

used metrics (kept after the elimination procedure) in the models and the results obtained.

5.3.3.1 Most Used Metrics

The metrics kept most of the time are reported in Table 5.11. The number of modified outgo-

ing relations (nbModRelOut) is the single most used metric for the DEM and C&K+DEM

sets.

148

Table 5.9 Assessing C&K+DEM improvement over C&K: Cohen-d statistics (percentage of
defective classes)

Top 10% Top 20% Top 30%
Rhino 0.44 0.80 0.59
ArgoUML 0.22 0.22 0.13

Table 5.10 Assessing C&K+DEM improvement over random: Cohen-d statistics (percentage
of defective classes)

Top 10% Top 20% Top 30%
Rhino 5.07 6.78 3.12
ArgoUML 3.20 2.62 1.94

Table 5.11 RQ3: Metrics kept 75% (or more) times when building Poisson regression models
to predict the number of defects—TM = C&K for Rhino and ArgoUML, TM = Z&Z for
Eclipse

TM DEM TM+DEM
Rhino LCOM1,

LCOM2,
nbMet, CBO

nbDelAtt, nbModMet,
nbAddMet, nbModRelOut

RFC, LOC, nbAtt, nbMet,
LCOM1, LCOM2, nbMod-
Met, nbDelRelOut, nbAd-
dRelOut

ArgoUML LOC, RFC,
LCOM1,
nbMet

nbModRelOut, nbAddAtt,
nbAddMet, nbDelRelOut

RFC, LCOM1, CBO,
LCOM2, WMC, DIT,
nbModRelOut, nbDelRe-
lIn

Eclipse FOUT(avg,sum),
MLOC(sum),
NBD(max,sum),
NOM (avg),
NSF(sum),
NSM(avg),
PAR(avg,max),
TLOC,
VG(max,sum)

nbDelMet, nbAddMet,
nbAddRelIn, nbDel-
RelOut, nbAddRelOut

FOUT (avg,sum),
MLOC(avg,sum),
NBD(max,sum),
NOF(sum), NOI, NOT,
NSF(sum), NSM(avg),
PAR(avg,max), TLOC,
VG(max,sum), nbMod-
Met, nbDelRelIn, nbAd-
dRelIn, nbAddRelOut,
nbModRelOut

149

Figure 5.3 Average F-measure for defective classes on Eclipse per top classes

5.3.3.2 Analysis of the Obtained Means

Figures 5.4, 5.5, and 5.6 report the mean of the percentages of defects contained in the top

X% ranked classes. The C&K+DEM model is consistently better than the C&K model.

On Rhino, the improvement is roughly of 6% on average from the top 10% to 30% ranked

classes. The improvement is less important for ArgoUML (2% to 3%) and Eclipse (2%).

Looking at the medians, the improvement due to the DEM metrics seem to increase with the

cardinality of the set of classes considered. The improvement brought by the mixed model is

quite important for the top 30 % classes (in particular more than 5 % for Rhino) but mostly

small for the top 10 % and top 20 % classes (in particular less than 1 % for the top 20 %

classes of Rhino).

5.3.3.3 Wilcoxon Tests

We perform a Wilcoxon paired test to check whether our metrics are indeed improving over

C&K set. The null hypothesis tested is the percentage of defects of a predictor built with

C&K+DEM is not greater than that of a predictor built with C&K metrics when the top 10%,

20%, 30% classes are selected.

For both Rhino and ArgoUML, considering the best model, i.e. C&K+DEM and as

shown by the p-values reported in Table 5.12, we were able to reject the null-hypothesis -

150

Figure 5.4 Average Percentage of defects on Rhino per top classes

though at a 90% confidence level for some partitions. Considering that a random ranking

should have an average of X% of defects within the top X% classes, we also performed a

Wilcoxon test to verify that the C&K+DEM model is substantially better than the C&K

model (see Table 5.13).

Table 5.12 C&K+DEM ≤ C&K? p-value of Wilcoxon signed rank test for the percentage of
defects per top classes (confidence level: light grey 90%, dark grey 95%)

Top 10% Top 20% Top 30%
Rhino 0.03125 0.05017 0.08876
ArgoUML 0.01802 0.02596 0.09766

5.3.3.4 Cohen-d Statistics

To assess the size in the improvement of percentage of defects in the top ranked classes, we

also computed the Cohen-d statistics to quantify the effect size of using DEM in building

predictors with respect to C&K metrics or a random ranking. Results are reported in Tables

5.14 and 5.15.

In summary, when comparing C&K+DEM to C&K, for Rhino, we have a large effect

on the top 10% and top 30% classes and medium effect on the top 20%; for ArgoUML,

151

Figure 5.5 Average Percentage of defects on ArgoUML per top classes

Table 5.13 C&K+DEM ≤ random? p-value of Wilcoxon signed rank test for the percentage
of defects per top classes (confidence level: 95%)

Top 10% Top 20% Top 30%
Rhino 0.01563 0.01563 0.01563
ArgoUML 0.003906 0.003906 0.003906

there is only a small effect on the top 20% classes and a very small effect on the rest. The

comparison with a random predictor shows the clear superiority of a model built using our

evolution metrics.

Overall, the reported means and statistical tests support our conjecture that our evolution

metrics are useful for predicting the number of defects. In addition, we can claim statistical

significance of the observed improvement on all systems and a large effect on Rhino.

5.3.4 RQ4 – Defect Density Prediction

To answer RQ4, we test whether, given the same volume of recommended code, our metrics

provide a higher percentage of defects than traditional metrics. We use Poisson regression

to assess the predictive accuracy for defect density of models built with the DEM and other

metrics sets. We first rank the classes of a system according to their predicted defect density;

then, we cut this list by selecting the classes containing the top X% LOCs and assess the

152

Figure 5.6 Average Percentage of defects on Eclipse per top classes

Table 5.14 Assessing C&K+DEM improvement over C&K: Cohen-d statistics (percentage of
defects)

Top 10% Top 20% Top 30%
Rhino 0.88 0.58 0.91
ArgoUML 0.18 0.29 0.12

percentage of defects contained within the selection. We report in the following the most

used metrics (kept after the elimination procedure) in the models and the results obtained.

5.3.4.1 Most Used Metrics

Table 5.16 reports the metrics that were the most used in the prediction, i.e. those kept after

the elimination procedure. We observe that the number of added attributes and methods

and the number of modified outgoing relations (nbAddAtt, nbAddMet, nbModRelOut) are

again the most frequently kept by the elimination procedure.

5.3.4.2 Analysis of the Obtained Means

Figures 5.7, 5.8, and 5.9 report the average percentage of defects contained in the top LOCs.

They show that, for all systems, the models built with DEM are clearly superior to the ones

153

Table 5.15 Assessing C&K+DEM improvement over random: Cohen-d statistics (percentage
of defects)

Top 10% Top 20% Top 30%
Rhino 10.63 8.44 12.05
ArgoUML 4.21 5.54 5.51

Table 5.16 RQ4: Metrics kept 75% (or more) times when building Poisson regression models
with different metric sets—TM = C&K for Rhino and ArgoUML, TM = Z&Z for Eclipse

TM DEM TM+DEM
Rhino LCOM1,

LCOM2, CBO,
DIT, WMC

nbAddMet, nbMod-
RelOut, nbAddAtt,
nbDelRelIn, nbAd-
dRelIn, nbModRelIn,
nbAddRelOut

LOC, nbMet, nbAddMet,
nbModMet, nbDelRelIn,
nbModRelOut

ArgoUML LCOM1,
LCOM2, DIT,
RFC, WMC

nbAddAtt, nbDelMet,
nbAddMet, nbModMet,
nbDelRelOut, nbMod-
RelOut

LOC, LCOM1, nbMet,
DIT, nbAddAtt, nbDel-
RelOut, nbDelMet, nbAd-
dRelIn, nbModRelOut

Eclipse NBD(avg,max),
NOM (avg),
PAR(max)

nbAddAtt, nbAddMet,
nbModRelIn

TLOC, NOI, NOF(avg),
NBD(avg,max), nbAd-
dAtt, nbAddMet, nbMod-
RelOut

built with only C&K or Z&Z.

For Rhino, we have on average roughly 7% more defects with the top 10% (from 10% to

17%), 6% more defects with the top 20% LOCs (from 27% to 33%) and 10% more defects for

the top 30% LOCs (from 40% to 50%). For ArgoUML, the difference is, in average, roughly

3% more defects with the top 10% LOCs (from 14% to 17%), 10% more defects with the

top 20% LOCs (from 20% to 30%), and 13% more defects for the top 30% LOCs (from 32%

to 45%). With the two predictions for Eclipse, we have on average 6% more defects (from

9% to 15%) with the top 10% LOCs, 9% more defects (from 18% to 27%) with the top 20%

LOCs, and 8% more defects (from 29% to 37%) with the top 30% LOCs. On the medians,

the DEM model improves over the C&K model by 8 to 11 % for Rhino and by 4 to 8 %

for ArgoUML. In summary, for all systems, there is a substantial gain when models are built

with only the DEM set.

Note that on average, the mixed set performs worse than the DEM set for all the systems

but better than the C&K or Z&Z set. It appears that adding the traditional metrics degrades

the predictive power of the DEM set. This is not rare in a prediction context as overfitting

can cause occurrences of a set performing much worse than one of its subsets.

154

Figure 5.7 Average Percentage of defects on Rhino per top LOCs

5.3.4.3 Wilcoxon Tests

We perform a Wilcoxon paired test to check whether our metrics are indeed improving

over C&K. The null hypothesis tested is the percentage of defects of a predictor built with

C&K+DEM is not greater than that of a predictor built with C&K metrics when the top

classes containing from 10% to 30% LOCs of the system are selected.

For both Rhino and ArgoUML, considering the best model, i.e. DEM, we were able to

reject the null-hypothesis, as shown by the p-values reported in Table 5.17. Considering that

a random ranking should have an average of X% of defects within the top X% LOCs, we also

performed a Wilcoxon test and confirmed that the DEM model is substantially better than

a random predictor (see Table 5.18).

Table 5.17 DEM ≤ C&K? p-value of Wilcoxon signed rank test for the percentage of defects
per top LOCs (confidence level: light grey 90%, dark grey 95%)

Top 10% Top 20% Top 30%
Rhino 0.01563 0.07813 0.04688
ArgoUML 0.07422 0.003906 0.003906

155

Figure 5.8 Average Percentage of defects on ArgoUML per top LOCs

Table 5.18 DEM ≤ random? p-value of Wilcoxon signed rank test for the percentage of
defects per top LOCs (confidence level: 95%)

Top 10% Top 20% Top 30%
Rhino 0.01563 0.01563 0.01563
ArgoUML 0.003906 0.003906 0.007813

5.3.4.4 Cohen-d Statistics

To assess the size in the improvement of percentage of defects in the top LOCs, we also

computed the Cohen-d statistics to quantify the effect size of using the DEM model with

respect to C&K metrics or a random ranking. Results are reported in Tables 5.19 and 5.20.

In summary, when comparing DEM to C&K models, except for a medium effect for

ArgoUML on the top 10% LOCs, we always observe a large effect for Rhino and ArgoUML.

The comparison with a random predictor again demonstrates the clear superiority of our

model.

Overall, the reported means as well as the Wilcoxon tests and Cohen-d statistics provide

evidence that our metrics increase the percentages of detected defects for a given size of

code. Hence, they help managers save their developers’ efforts by returning less LOCs to be

analyzed to locate and correct a defect.

156

Figure 5.9 Average Percentage of defects on Eclipse per top LOCs

Table 5.19 Assessing DEM improvement over C&K: Cohen-d statistics (defect density)

Top 10% Top 20% Top 30%
Rhino 2.17 0.85 1.76
ArgoUML 0.53 1.05 1.08

5.4 Threats to Validity

Our purpose is not to investigate the formal properties of the DEM following the guidelines of

measurement theory (Fenton and Pfleeger (1997)). We believe that before any formal study

of the properties of a metric, the metric itself must be shown useful. Thus, this work is a

preliminary study which provides evidence that the DEM can help developers in saving effort

by focusing quality assurance on defective classes.

Threats to construct validity concern the relation between the theory and the observation.

Table 5.20 Assessing DEM improvement over random: Cohen-d statistics (defect density)

Top 10% Top 20% Top 30%
Rhino 3.60 4.05 6.78
ArgoUML 3.06 1.9 1.82

157

This threat is mainly due to the use of incorrect defect classification or incorrect collected

metrics values. In our study, we used material and defects manually classified and used by

others (Eaddy et al. (2008); Zimmermann et al. (2007)) and the independent issues stored in

ArgoUML bug-tracker. We inspected several randomly-chosen ArgoUML issues and manually

verified that they represented corrective maintenance requests in most of the cases. Releases

of ArgoUML were found to contain relatively few defects but it is possible that defects are

more than those we had access to or could attach to a given release, especially considering

that ArgoUML has many intermediary development releases. Manual classification of defects

for large Bugzilla repository is not feasible and thus a clear insight about how many defects

were possibly missed cannot be proposed. We conjecture that more defect data should result

in better performances of the built models.

Extraction of C&K metrics for Rhino and ArgoUML is performed with PADL, a tool

already used in other experiments. Metrics values were manually assessed for a subset of the

classes. The Eclipse case study was performed using the metrics suite, values, and defect

classification provided by Zimmermann et al. (2007). Consequently, we believe that it is

highly unlikely that the relation found between the theory and the observation is due to a

statistical fluctuation.

Threats to internal validity concern any confounding factor that could influence our re-

sults. In particular, these threats can be due to subjectiveness during the manual building

of oracles and to the bias introduced by manually classifying defects.

As reported by Ayari et al. (2007), most of bug tracking entries are not related to corrective

maintenance. We attempted to avoid any bias in the building of the oracle by adopting a

classification made available by other researchers (Eaddy et al. (2008); Zimmermann et al.

(2007)) or documented in the independent ArgoUML bug-tracking system. For Rhino, the

defect data results from a manual classification provided by Eaddy et al. (2008). As for

ArgoUML, its bug tracking system has a field used to explicitly specify when an issue is a

”defect”. In our study, we selected only the entries ArgoUML developers tagged as ”defect”;

thus minimizing the risk that non defect issues are part of our dataset. Finally, as we

replicated Zimmermann et al. (2007) study for comparison purposes, we reused their publicly

available defect datasets. However their data, though about post-release defects, may contain

some non defect entries. Furthermore, Bird et al. (2009) argue that defects documented by

the developers are only a subset of all defects and are hardly representative of the whole set

of defects in terms of important defect features, such as severity. They specifically claimed

that the Eclipse data set by Zimmermann et al. (2007) was only a sample of the actual defects

but fortunately representative in terms of severity. Unfortunately, their own data sets were

not made publicly available.

158

Another factor influencing results is the choice of the costs used in our ETGM algorithm.

A complete study of the influence of costs is beyond the scope of this work and is documented

in an earlier publication (Kpodjedo et al. (2010c)). We used costs learned from that study

and though we cannot claim that changing ETGM costs would not affect our results, we are

confident that the chosen costs are appropriate for this study. The same costs were used on

the various releases of the three systems. In addition, we manually inspected matched and

non-matched classes and found an excellent agreement with the expected results.

Threats to conclusion validity concern the relationship between the treatment and the

results. Proper tests were performed to statistically reject the null-hypotheses in nearly all

cases. In particular, non-parametric tests were used in place of parametric tests where the

conditions necessary to use parametric tests do not hold. As an example, we selected the

Wilcoxon test because it is very robust and sensitive (Wohlin et al. (2000)).

Threats to external validity concern the possibility of generalizing our results. The study

is limited to three systems: Rhino, ArgoUML, and Eclipse and a total of 19 releases on which

we have defect data. Yet, our approach is applicable to any other OO system. Results are

encouraging on the studied systems but more work is needed to verify if our approach is

in general better than previously known fault location approaches. We cannot claim that

similar results will be obtained with other systems. We have built different predictive models

and cannot be sure that their relative performances will remain the same on different systems

or releases. On different systems or releases, the procedure of variable selection can lead to

different models with different sets of variables. Nevertheless, the three systems correspond

to different domains and applications, have different sizes, are developed by different teams,

and have a different history. We believe this choice confirms the external validity of our case

study.

5.5 Conclusion

Testing activities play a central role in quality assurance. Testing effort should be focused

on defective classes to avoid wasting valuable resources. Unfortunately, identifying defective

classes is a challenging and difficult task. In this work, we compare, on the one hand, the

Chidamber and Kemerer’s metrics suite and traditional complexity metrics (e.g. fan-in, fan-

out) with, on the other hand, our set of design evolution metrics, DEM, measuring basic

design changes between releases of a system. To establish the empirical evidence of a relation

between our evolution metrics and defects in classes, we apply our proposal on several releases

of Rhino, a Java ECMA script interpreter, ArgoUML, a Java UML CASE tool, and Eclipse,

a Java development environment, to predict defective classes. We thus were able to address

159

four research questions: RQ1 on metrics relevance, RQ2 on prediction of defective classes,

RQ3 on prediction of numbers of defects, and RQ3 on prediction of defect density.

By means of multivariate linear models, we positively answered RQ1: the new metrics

contribute to better explain the numbers of defects in the classes in Rhino, ArgoUML, and

Eclipse. On the extended set of systems, we found that integrating the new metrics led to a

significant improvement but with small effect size regarding the location of the defects, thus

answering positively RQ2. Combining the DEM with traditional metrics led to a significant

improvement with mostly medium to large effect size thus answering positively RQ3. Finally,

the prediction for which the DEM were far better was about defect density, i.e. when it comes

to maximize the number of defects contained in a small share of the volume code in a system.

We positively answered RQ4 as the DEM consistently outperformed traditional OO and

complexity metrics with a large effect size.

160

CHAPTER 6

CONCLUSION

The research results presented in this thesis span several knowledge domains and integrates

theoretical and practical considerations. The original problem at the genesis of our research

project was the recovery of class diagram evolution through different versions or releases.

Our methodology stems from the observation that this problem is part of a more general

one encompassing the comparison of software artifacts. Thus, instead of directly addressing

the evolution of class diagrams, we searched for more generic approaches and selected error

tolerant graph matching (ETGM) as the best framework able to address diagram comparison

problems in a generic way. Our work results in the proposal of two similarity enhanced tabu

search algorithms addressing approximate graph matching problems through the ETGM

framework: SIM-T and MADMatch. SIM-T is a technique using local structural information

to efficiently address one-to-one matchings of simple labeled graphs (without discriminatory

lexical information) while MADMatch is a many-to-many approximate diagram matching

making the best out of both structural and lexical information. Figure 6.2 presents the main

ideas used in both proposals and how they are interconnected.

Moreover, using our ETGM approach, we took interest in investigating direct practical use

from evolution analysis and proposed design evolution metrics for defect prediction. Figure

6.1 presents a snapshot of the work done on this thesis along with the publications it generates.

In the following, we present a more detailed synthesis of the work done during our thesis,

the limitations of our approaches and our plans.

6.1 Synthesis

In definitive, approximate graph matching techniques, their application on software diagrams

and the insights gained from a software quality perspective constituted the main topics of

the Ph.D. research. The main contributions of our research work include:

A SIM-T: a generic graph matching technique, based on taboo search and suitable structural

node similarity measures, which was tested on synthetic random graphs

B MADMatch: a Many-to-Many Approximate Diagram Matching approach which was ef-

fectively applied on software (structural or behavioral) diagrams and gave valuable insight

about a system evolution.

161

Figure 6.1 From graph matching to defect prediction: Summary and publications

C Design Evolution Metrics which quantify the evolution of class diagrams and were used

to predict defect density levels for classes of Object Oriented software

Each of the above mentioned approaches has been compared to state-of-the-art techniques

and either achieved better results (A and B) either brought significant improvement with

respect to some aspects (C). We summarize in the following the work done on those three

aspects.

6.1.1 Approximate Graph Matching

Many practical problems can be modeled as approximate graph matching (AGM) problems

in which the goal is to find a ”good” matching between two objects represented as graphs.

Unfortunately, existing literature on AGM do not propose generic techniques readily usable

in research areas other than image processing and bio-chemistry. To address this situation,

we tackled in a generic way, the AGM problems. For this purpose, we first select, out of

the possible formulations, the Error Tolerant Graph Matching (ETGM) framework which is

able to model most AGM formulations. Given that AGM problems are generally NP-hard,

we based our resolution approach on meta-heuristics, given the demonstrated efficiency of

this family of techniques on (NP-)hard problems. Our approach avoids as much as possible

assumptions about graphs to be matched and tries to make the best out of basic graph features

such as node connectivity and edge types. Consequently, the proposal is a local search

technique using new node similarity measures derived from simple structural information.

The proposed technique was devised as follows. First, we observed and empirically validated

that initializing a local search with a very small subset of ”correct” node matches is enough

to get excellent results. Instead of directly trying to correctly match all nodes and edges

162

Figure 6.2 Synthesis of the AGM algorithms SIM-T and MADMatch

163

of a given graph to the nodes and edges of another graph, one could focus on correctly

matching a reduced subset of nodes. Second, in order to retrieve such subsets, we resorted to

the concept of local node similarity. Our approach consists in assessing, by analyzing their

neighborhoods, how likely it is to have a pair of nodes included in a good matching. We

investigated many ways of computing similarity values between pairs of nodes and proposed

additional techniques to attach a level of confidence to computed similarity value. Our work

results in a similarity enhanced tabu algorithm (SIM-T) which is demonstrated to be more

accurate and efficient than known state-of-the-art algorithms. Part of the work done has

been published in Kpodjedo et al. (2010a) and Kpodjedo et al. (2010b).

6.1.2 Approximate Diagram Matching in software engineering

Given the size and complexity of OO systems, retrieving and understanding the history

of the design evolution is a difficult task which requires appropriate techniques. Building

on the work done for generic AGM problems, we propose MADMatch, a Many-to-many

Approximate Diagram Matching algorithm based on an ETGM formulation. In our approach,

design representations are modeled as attributed directed multi-graphs. Transformations

such as modifying, renaming, or merging entities in a software diagram are explicitly taken

into account through edit operations to which specific costs can be assigned. MADMatch

fully integrates the textual information available on diagrams and proposes several concepts

enabling accurate and fast computation of matchings. We notably integrate to our proposal

the use of termal footprints which capture the lexical context of any given entity and is

exploited in order to reduce the search space of our tabu search. Through several case

studies involving different types of diagrams (such as class diagrams, sequence diagrams and

labeled transition systems), we show that our algorithm is generic and advances the state of

art with respect to scalability and accuracy. Part of the work done has been published in

Kpodjedo et al. (2008a), Kpodjedo et al. (2009b), and Kpodjedo et al. (2010c).

6.1.3 Design Evolution Metrics for Defect Prediction

Testing is the most widely adopted practice to ensure software quality. However, this activity

is often a compromise between the available resources and sought software quality. In object-

oriented development, testing effort should be focused on defect-prone classes or alternatively

on classes deemed critical based on criteria such as their connectivity or evolution profile.

Unfortunately, the identification of defect-prone classes is a challenging and difficult activity

on which many metrics, techniques, and models have been tried with mixed success. Following

the retrieval of class diagrams’ evolution by our graph matching approach, we proposed and

164

investigated the usefulness of elementary design evolution metrics in the identification of

defective classes. The metrics include the numbers of added, deleted, and modified attributes,

methods, and relations. They are used to recommend a ranked list of classes likely to contain

defects for a system. We evaluated the efficiency of our approach according to three criteria:

presence of defects, number of defects, and defect density in the top-ranked classes. We

conducted experiments with small to large systems and made comparisons against well known

complexity and OO metrics. Results show that the design evolution metrics, when used in

conjunction with known metrics, improve the identification of defective classes. In addition,

they provide evidence that design evolution metrics make significantly better predictions

of defect density than other metrics and, thus, can help in reducing the testing effort by

focusing test activity on a reduced volume of code. Our work on defect prediction using

evolution metrics has been published in Kpodjedo et al. (2008b), Kpodjedo et al. (2009a),

and Kpodjedo et al. (2011).

6.2 Limitations

The work proposed in this thesis is of course perfectible and there are many ways in which

the proposed approaches can be improved.

Limitations of SIM-T The algorithm SIM-T is a two-phase algorithm proposed as a

generic approach for error tolerant graph matching problems. While the tabu search (the

second phase) uses the cost parameters of the problem at hand, the first phase (the greedy

algorithm) tries to maximize the number of perfect matches between the two graphs to be

matched. The benefits of this configuration have been experimentally demonstrated on two

different cost functions but a more extensive exploration of different cost models may be

needed for stronger claims of genericness. Our proposal is based on the assumption that

in most cost models, an excellent matching should be one that proposes a great quantity

of perfect matches. This is a reasonable assumption and our experiments with the f1,1

cost model 1 suggest that our proposal is efficient even in cases where a perfect match is as

important as a match error. In the f1,1 configuration, the highly error-tolerant initial solution

brought by our greedy algorithm (GreedySim)is gradually cleansed from the errors it contain

by the tabu search operating with the real cost parameters. We believe the same pattern

will be observed even for much less error-tolerant configurations but we did not empirically

investigate this assumption.

1A configuration in which the bonus brought by a perfect edge match equals the penalty for an edge match
error

165

Limitations of MADMatch One of the main features of the algorithm MADMatch is its

ability to match a group of nodes to another group. However, our approach does not actually

allow shared matches between nodes. Imagine a configuration in which the correct matching

include (a1 → a2, b2, c2) and (b1 → b2, d2), meaning that the entity a1 (resp. b1) in the first

diagram actually corresponds respectively to the entities a2, b2, c2 (resp. b2, d2). MADMatch

would not be able to capture this: at best, it would return (a1, b1 → a2, b2, c2, d2) or (a1, b1 →

a2, b2) and thus fail in accurately reporting the changes from one version to another. This

can become an important limitation for cases in which the matching is to be performed

between diagrams of different levels of abstraction. For instance, in requirements traceability,

the intersection between sets of source code entities related to different requirements can be

quite important and MADMatch would probably not provide precise enough matchings. Note

however that some of the concepts we proposed and integrated in MADMatch, such as the

termal footprint and the semilarity, are expected to be very relevant even in such contexts.

Limitations of the design evolution metrics The design evolution metrics we inves-

tigated in Chapter 5 are simple metrics based on the analysis of the evolution of classes in

Object Oriented applications. While their usefulness for defect prediction has been demon-

strated on three case studies, we believe that more experimentation should be done to confirm

the obtained results.

6.3 Future Work

There are a number of directions we would like to explore as follow-up to the work presented

in this thesis. In the following, we propose a classified list of some of the future work we are

considering.

6.3.1 Improving the algorithms

We intend to explore new ways to improve the accuracy and efficiency of the algorithms

proposed in this thesis. There are many ideas that came under consideration during the

conception of our algorithms but were not retained, following the Occam’s razor principle.

Often, the question is not about whether those ideas would help our techniques but rather

whether the additional level of complexity they would add could be compensated by signifi-

cant benefits.

Considering the similarity measures, there are many possible ways to enhance our pro-

posals. For instance, we would like to investigate whether our node similarity measures can

benefit from an extension of the neighborhood to more distant nodes. A related interrogation

166

is whether we should include transitive closure in the computation of our similarity. Accord-

ing to (Xing and Stroulia (2005a)), doing so slightly improves the accuracy of the found

matchings but comes with a high computational cost.

With respect to the lexical information, there could be benefits in weighting differently

the terms extracted from the entities’ names. Another option could be to integrate more the

specificities of each kind of diagram specificities.

Investigations could also be done with regard to other heuristics. In particular, we are

interested in assessing the benefits of using memetic algorithms on the AGM problem. Those

algorithms can be used as a mix between local search techniques and genetic algorithms and

offer interesting possibilities. For instance, one could build a population of solutions using a

greedy heuristic (similar to GreedySim) and apply evolution operators which could integrate

some iterations of a tabu search technique.

6.3.2 Hybrid diagram matching approach

An interesting idea originating from the extensive manual validation done for our experiments

is the reformulation of the matching between diagrams as a two-part graph matching problem:

one could first match the lexical terms (and identify possible replacements) before tackling

the actual diagram matching problem. First, we could build the diagrams of the terms: the

terms would be the entities and relations between them would express whether two terms are

retrieved in the same names, ”call” each other in the real diagram etc. The advantage is that

such diagrams would be much smaller than the actual software diagrams and their matching

could be easier too.

Such matching between the terms, even with a low level of precision could inform about

possible replacements for a given term. They could be used to derive even better ”semilarity”

values. An even simpler idea could be to get for each term a list of possible replacements and

limit the possible matches (involving renamings) to those within the limits of such lists. For

instance, if we identify as possible replacements to the term ”create”, the terms ”generate”and

”produce”, we may choose not to consider an entity named ”storeX”as a possible replacement

to an entity named ”createX”.

6.3.3 Performing more experiments

The application of our approaches on more datasets is part of our plan, as we believe that

new experiments can bring more insight about the strengths and weaknesses of our tech-

niques. For instance, we would like to apply SIM-T on other kinds of synthetic graphs, such

as grid graphs. MADMatch could be applied to different kinds of software diagrams: log

167

graphs, build dependency graphs. Also interesting, would be the application of our matching

algorithms on problems out of software engineering. We believe that SIM-T, MADMatch or

a combination of both could be very relevant on matching problems coming from biochem-

istry or networks. Also, with respect to defect prediction, there are more and more defect

data of good quality and we are very interest in replicating our studies on those ever-growing

benchmarks.

6.3.4 Software evolution

There are many interesting insights that could be derived from a software evolution per-

spective. First, we believe that the analysis of the vocabulary evolution gained from the

application of MADMatch could be very interesting. One possible interesting study could be

to analyze the meaning and rationale behind some renamings. Do those renamings convey

higher level knowledge about a system? Which terms are more likely to be replaced? Are

they those expressing domain knowledge or implementation choices? Can this knowledge be

used in software traceability to filter out the terms more likely to be replaced in subsequent

versions?

Another point we would like to explore is related to complex evolution profiles. We

believe that the evolution of an entity is a multi-dimensional process which may not be

entirely captured by simple traceability lines. Consequently, we are interesting in proposing

deeper assessment of the way software entities evolve in a given application.

Finally, with respect to defect prediction and the basic design evolution metrics we pro-

posed, we would like to explore finer grain metrics. For instance, instead of counting the

number of modified methods, one could take interest in counting the number of methods

which changed their input(parameter re-ordering, removal), or output. Such refinement could

give more precise insight about risk levels associated to each edit operation.

168

BIBLIOGRAPHY

ABI-ANTOUN, M., ALDRICH, J., NAHAS, N., SCHMERL, B. and GARLAN, D. (2008).

Differencing and merging of architectural views. Automated Software Engineering, 15, 35–74.

ALMOHAMAD, H. A. and DUFFUAA, S. O. (1993). A linear programming approach

for the weighted graph matching problem. IEEE Trans. Pattern Anal. Mach. Intell., 15,

522–525.

ANTONIOL, G., CANFORA, G., CASAZZA, G. and LUCIA, A. D. (2001). Maintaining

traceability links during object-oriented software evolution. Software - Practice and Expe-

rience, 31, 331–355.

ANTONIOL, G., PENTA, M. D. and MERLO, E. (2004). An automatic approach to identify

class evolution discontinuities. IWPSE. 31–40.

AYARI, K., MESHKINFAM, P., ANTONIOL, G. and PENTA, M. D. (2007). Threats on

building models from cvs and bugzilla repositories : the mozilla case study. IBM Centers

for Advanced Studies Conference. ACM, Toronto CA, 215–228.

BARECKE, T. and DETYNIECKI, M. (2007). Memetic algorithms for inexact graph mat-

ching. CEC : IEEE Congress on Evolutionary Computation.

BASILI, V., CALDIERA, G. and ROMBACH, D. H. (1994). The Goal Question Metric

Paradigm Encyclopedia of Software Engineering. John Wiley and Sons.

BASILI, V. R., BRIAND, L. C. and MELO, W. L. (1996). A validation of object-oriented

design metrics as quality indicators. IEEE Transactions on Software Engineering, 22, 751–

761.

BERGE, C. (1958). Theorie des graphes et ses applications. Collection Universitaire de

Mathematiques.

BINKLEY, D., DAVIS, M., LAWRIE, D. and MORRELL, C. (2009). To camelcase or

under score. ICPC. 158–167.

BIRD, C., BACHMANN, A., AUNE, E., DUFFY, J., BERNSTEIN, A., FILKOV, V. and

DEVANBU, P. (2009). Fair and balanced ? bias in bug-fix datasets. ESEC/SIGSOFT FSE.

121–130.

BOGDANOV, K. and WALKINSHAW, N. (2009). Computing the structural difference

between state-based models. WCRE. 177–186.

BRIAND, L. C., DALY, J. W. and WÜST, J. (1998). A unified framework for cohesion

measurement in object-oriented systems. Empirical Softw. Eng., 3, 65–117.

169

BRIAND, L. C., LABICHE, Y. and WANG, Y. (2003). An investigation of graph-based

class integration test order strategies. IEEE Trans. on Software Engineering, 29, 594–607.

BRIAND, L. C., MELO, W. L. and WÜST, J. (2002). Assessing the applicability of fault-

proneness models across object-oriented software projects. IEEE Trans. on Software Engi-

neering, 28, 706–720.

BUNKE, H. (1997). On a relation between graph edit distance and maximum common

subgraph. Pattern Recogn. Lett., 18, 689–694.

BUNKE, H. (1998). Error-tolerant graph matching : a formal framework and algorithms.

Proc. Advances in Pattern Recognition. 1–14.

CAELLI, T. and KOSINOV, S. (2004). An eigenspace projection clustering method for

inexact graph matching. IEEE Trans. Pattern Anal. Mach. Intell., 26, 515–519.

CANFORA, G., CERULO, L. and PENTA, M. D. (2009). Tracking your changes : A

language-independent approach. IEEE Software, 26, 50–57.

CARCASSONI, M. and HANCOCK, E. R. (2001). Weighted graph-matching using modal

clusters. CAIP ’01 : Proceedings of the 9th International Conference on Computer Analysis

of Images and Patterns. Springer-Verlag, London UK, 142–151.

CARTWRIGHT, M. and SHEPPERD, M. (2000). An empirical investigation of an object-

oriented software system. IEEE Trans. on Software Engineering, 26, 786–796.

CHIDAMBER, S. R. and KEMERER, C. F. (1994). A metrics suite for object oriented

design. IEEE Transactions on Software Engineering, 20, 476–493.

COHEN, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence

Earlbaum Associates, Hillsdale, NJ.

CONTE, D., FOGGIA, P., SANSONE, C. and VENTO, M. (2004). Thirty years of graph

matching in pattern recognition. International Journal of Pattern Recognition and Artificial

Intelligence, 18, 265–294.

COOK, J. E. and WOLF, A. L. (1998). Discovering models of software processes from

event-based data. ACM Trans. Softw. Eng. Methodol., 7, 215–249.

COOK, S. A. (1971). The complexity of theorem-proving procedures. Proc. 3rd ACM

Symposium on Theory of Computing. 151–158.

CORDELLA, L. P., FOGGIA, P., SANSONE, C. and VENTO, M. (1996). An efficient

algorithm for the inexact matching of arg graphs using a contextual transformational model.

ICPR ’96 : Proceedings of the International Conference on Pattern Recognition (ICPR ’96)

Volume III-Volume 7276. IEEE Computer Society, Washington DC USA, 180–184.

170

CORMEN, T. H., LEISERSON, C. E. and RIVEST, R. L. (1990). Introductions to Algo-

rithms. MIT Press.

CRESCENZI, P. and KANN, V. (1997). Approximation on the web : a compendium of np

optimization problems. Proc. of RANDOM ’97. 111–118.

DEPIERO, F. W. and KROUT, D. K. (2003). An algorithm using length-r paths to ap-

proximate subgraph isomorphism. Pattern Recognition Letters, 24, 33–46.

DUMAY, A. C. M., VAN DER GEEST, R. J., GERBRANDS, J. J., JANSEN, E. and

REIBER, J. H. C. (1992). Consistent inexact graph matching applied to labeling coronary

segments in arteriograms. Proc. Int. Conf. Pattern Recognition Conf. C (1992). 439–442.

EADDY, M., ZIMMERMANN, T., SHERWOOD, K. D., GARG, V., MURPHY, G. C.,

NAGAPPAN, N. and AHO, A. V. (2008). Do crosscutting concerns cause defects ? IEEE

Transaction on Software Engineering, 34, 497–515.

EMAM, K. E., BENLARBI, S., GOEL, N. and RAI, S. (2001). The confounding effect of

class size on the validity of object-oriented metrics. IEEE Trans. on Software Engineering,

27, 630–650.

EMMS, D., WILSON, R. C. and HANCOCK, E. R. (2009). Graph matching using the

interference of discrete-time quantum walks. Image Vision Comput., 27, 934–949.

ENSLEN, E., HILL, E., POLLOCK, L. L. and VIJAY-SHANKER, K. (2009). Mining source

code to automatically split identifiers for software analysis. MSR. 71–80.

ESHERA, A. A. and FU, K. S. (1984). A similarity measure between attributed relational

graphs for image analysis. Proc. 7th Int. Conf. Pattern Recognition. 75–77.

EVANCO, W. M. (1997). Poisson analyses of defects for small software components. Journal

of Systems and Software, 38, 27–35.

FENTON, N. and PFLEEGER, S. (1997). Software Metrics : A Rigorous and Practical

Approach (2nd Edition). International Thomson Computer Press, Boston.

FOGGIA, P., SANSONE, C. and VENTO, M. (2001). A database of graphs for isomorphism

and subgraph isomorphism benchmarking. Proc.Third IAPR TC-15 Intl Workshop Graph-

Based Representations in Pattern Recognition. 176–187.

FRAKES, W. B. and BAEZA-YATES, R. (1992). Information Retrieval : Data Structures

and Algorithms. Prentice-Hall, Englewood Cliffs, NJ.

GALINIER, P. and HAO, J.-K. (1999). Hybrid evolutionary algorithms for graph coloring.

J. Comb. Optim., 3, 379–397.

GAREY, M. and JOHNSON, D. (1979a). Computers and Intractability : a Guide to the

Theory of NP-Completeness. W.H. Freeman.

171

GAREY, M. R. and JOHNSON, D. S. (1979b). Computers and Intractability : A Guide to

the Theory of NP-Completeness. W.H. Freeman.

GLOVER, F. (1989). Tabu search-part i. ORSA Journal on Computing, 1 (3), 190–206.

GLOVER, F. W. and KOCHENBERGER, G. A. (2003). Handbook of Metaheuristics (In-

ternational Series in Operations Research & Management Science). Springer.

GODFREY, M. W. and ZOU, L. (2005). Using origin analysis to detect merging and

splitting of source code entities. IEEE Transactions on Software Engineering, 31, 161–181.

GOLD, S. and RANGARAJAN, A. (1996). A graduated assignment algorithm for graph

matching. IEEE Trans.on Patt. Anal. and Mach. Int., 18, 377–388.

GORI, M., MAGGINI, M. and SARTI, L. (2005). Exact and approximate graph matching

using random walks. IEEE Trans. on Patt. Anal. and Mach. Intel., 27, pp.1100–1111.

GRAVES, T., KARR, A., MARRON, J. and SIY, H. (2000). Predicting fault incidence

using software change history. IEEE Trans. on Software Engineering, 26, 653–661.

GUEHENEUC, Y.-G. and ANTONIOL, G. (2008). Demima : A multilayered approach for

design pattern identification. IEEE Trans. Software Eng., 34, 667–684.

GUTIN, G., YEO, A. and ZVEROVICH, A. (2002). Traveling salesman should not be

greedy : domination analysis of greedy-type heuristics for the tsp. Discrete Applied Mathe-

matics, 117, 81–86.

GYIMÓTHY, T., FERENC, R. and SIKET, I. (2005). Empirical validation of object-

oriented metrics on open source software for fault prediction. IEEE Trans. Software Eng.,

31, 897–910.

HARIS, K., EFSTRATIADIS, S. N., MAGLAVEROS, N., GOURASSAS, J. and LOURI-

DAS, G. (1999). Model-based morphological segmentation and labeling of coronary angio-

grams. IEEE Trans. Med. Imaging, 18, 1003–1015.

HASSAN, A. E. (2009). Predicting faults using the complexity of code changes. ICSE.

78–88.

HOLLAND, J. (1975). Adaptation in Natural Artificial Systems. University of Michigan

Press.

HOLT, R. (1998). Structural manipulations of software architecture using tarski relation

algebra. Proc. of the Working Conference on Reverse Engineering. 210–219.

HOSMER, D. and LEMESHOW, S. (2000). Applied Logistic Regression (2nd Edition).

Wiley.

172

JOUILI, S. and TABBONE, S. (2009). Graph matching based on node signatures. Procee-

dings of the 7th IAPR-TC-15 International Workshop on Graph-Based Representations in

Pattern Recognition. 154 – 163.

KANG, J. and NAUGHTON, J. F. (2008). Schema matching using interattribute depen-

dencies. IEEE Trans. Knowl. Data Eng., 20, 1393–1407.

KARP, R. M. (1972). Reducibility Among Combinatorial Problems. R. E. Miller and J. W.

Thatcher, éditeurs, Complexity of Computer Computations, Plenum Press. 85–103.

KIM, M. and NOTKIN, D. (2009). Discovering and representing systematic code changes.

ICSE. 309–319.

KIRKPATRICK, S., GELATT, C. D. and VECCHI, M. P. (1983). Optimization by simu-

lated annealing. Science, 220, 671–680.

KITTLER, J. and HANCOCK, E. R. (1989). Combining evidence in probabilistic relaxation.

Int. J. of Patt. Recogn. Artif. Intell, 3, 29–51.

KPODJEDO, S., GALINIER, P. and ANTONIOL, G. (2010a). Enhancing a tabu algorithm

for approximate graph matching with a similarity measure. EvoCOP’10, Eur. Conf. on

Evolutionary Computation in Combinatorial Optimisation (2010). 119–130.

KPODJEDO, S., GALINIER, P. and ANTONIOL, G. (2010b). On the use of local similarity

measures for approximate graph matching. Electronic Notes in Discrete Mathematics, 36,

687–694.

KPODJEDO, S., RICCA, F., ANTONIOL, G. and GALINIER, P. (2009a). Evolution and

search based metrics to improve defects prediction. Search Based Software Engineering,

International Symposium on, 0, 23–32.

KPODJEDO, S., RICCA, F., GALINIER, P. and ANTONIOL, G. (2008a). Error correcting

graph matching application to software evolution. Proc. of the Working Conference on

Reverse Engineering. 289–293.

KPODJEDO, S., RICCA, F., GALINIER, P. and ANTONIOL, G. (2008b). Not all classes

are created equal : toward a recommendation system for focusing testing. RSSE ’08 : Proc.

of the International Workshop on Recommendation Systems for Software Engineering. New

York, NY, USA, 6–10.

KPODJEDO, S., RICCA, F., GALINIER, P. and ANTONIOL, G. (2009b). Recovering the

evolution stable part using an ECGM algorithm : Is there a tunnel in mozilla ? Proceedings of

European Conference on Software Maintenance and Reengineering. IEEE Computer Society,

Los Alamitos, CA, USA, 179–188.

173

KPODJEDO, S., RICCA, F., GALINIER, P., ANTONIOL, G. and GUEHENEUC,

Y.-G. (2010c). Studying software evolution of large object-oriented software sys-

tems using an etgm algorithm. Journal of Software Maintenance and Evolution,

http ://dx.doi.org/10.1002/smr.519.

KPODJEDO, S., RICCA, F., GALINIER, P., GUÉHÉNEUC, Y.-G. and ANTONIOL, G.

(2011). Design evolution metrics for defect prediction in object oriented systems. Empirical

Software Engineering, 16, 141–175.

KUHN, H. (1955). The hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2, 83–97.

LANG, K. J., PEARLMUTTER, B. A. and PRICE, R. A. (1998). Results of the abbadingo

one dfa learning competition and a new evidence-driven state merging algorithm. ICGI.

1–12.

LANZA, M., GALL, H. and DUGERDIL, P. (2009). Evospaces : Multi-dimensional navi-

gation spaces for software evolution. CSMR. 293–296.

LIN, S. and KERNIGHAN, B. W. (1973). An Effective Heuristic Algorithm for the

Traveling-Salesman Problem. Operations Research, 21, 498–516.

LO, D. and KHOO, S.-C. (2006). Quark : Empirical assessment of automaton-based speci-

fication miners. WCRE. 51–60.

LUCIA, A. D., PENTA, M. D. and OLIVETO, R. (2011). Improving source code lexicon

via traceability and information retrieval. IEEE Trans. Software Eng., 37, 205–227.

MADANI, N., GUERROUJ, L., PENTA, M. D., GUEHENEUC, Y.-G. and ANTONIOL, G.

(2010). Recognizing words from source code identifiers using speech recognition techniques.

CSMR. 68–77.

MANDELIN, D., KIMELMAN, D. and YELLIN, D. M. (2006). A bayesian approach to

diagram matching with application to architectural models. ICSE. 222–231.

MASSARO, A. and PELILLO, M. (2003). Matching graphs by pivoting. Pattern Recognition

Letters, 24, 1099–1106.

MATS GRINDAL, J. O. and MELLIN, J. (2006). On the testing maturity of software

producing organizations. Proceedings of the Testing : Academic & Industrial Conference on

Practice And Research Techniques. 171–180.

MILLER, G. (1979). Graph isomorphism, general remarks. Journal of Computer and System

Sciences, 18, 128–142.

MOSER, R., PEDRYCZ, W. and SUCCI, G. (2008). A comparative analysis of the efficiency

of change metrics and static code attributes for defect prediction. ICSE. 181–190.

174

MUNKRES, J. (1957). Algorithms for the assignment and transportation problems. Journal

of the Society for Industrial and Applied Mathematics, 5, pp.32–38.

MUNSON, J. and ELBAUM, S. (1998). Code churn : a measure for estimating the impact of

code change. Proceedings of the International Conference on Software Maintenance. 24–31.

MYERS, R., WILSON, R. C. and HANCOCK, E. R. (2000). Bayesian graph edit distance.

IEEE Trans. Pattern Anal. Mach. Intell., 22, 628–635.

NAGAPPAN, N. and BALL, T. (2005). Use of relative code churn measures to predict sys-

tem defect density. Proc. of the International Conference on Software Engineering (ICSE).

284–292.

OSTRAND, T. J., WEYUKER, E. J. and BELL, R. M. (2005). Predicting the location

and number of faults in large software systems. IEEE Trans. on Software Engineering, 31,

340–355.

PARK, W.-J. and BAE, D.-H. (2011). A two-stage framework for uml specification mat-

ching. Information & Software Technology, 53, 230–244.

RAYMOND, J., GARDINER, E. and WILLETT, P. (2002). Rascal : calculation of graph

similarity using maximum common edge subgraphs. Computer Journal, 45, 631–44.

RICCA, F., SCANNIELLO, G., TORCHIANO, M., REGGIO, G. and ASTESIANO, E.

(2010). On the effectiveness of screen mockups in requirements engineering : results from

an internal replication. ESEM.

RIESEN, K. and BUNKE, H. (2009). Approximate graph edit distance computation by

means of bipartite graph matching. Image and Vision Computing, 27, pp.950–959.

ROBINSON, W. N. and WOO, H. G. (2004). Finding reusable uml sequence diagrams

automatically. IEEE Software, 21, 60–67.

SALMON, J.-P. and WENDLING, L. (2007). Arg based on arcs and segments to improve

the symbol recognition by genetic algorithm. Proceedings of GREC’ 2007. 80 – 90.

SAMMOUD, O., SORLIN, S., SOLNON, C. and GHEDIRA, K. (2006). A comparative

study of ant colony optimization and reactive search for graph matching problems. Evo-

COP’06, Eur. Conf on Evolutionary Computation in Combinatorial Optimisation. 234–246.

SANFELIU, A. and FU, K. S. (1983). A distance measure between attributed relational

graphs for pattern recognition. IEEE Trans. Syst. Man, Cybern., 13, 353–362.

SARTI, L. (2005). Exact and approximate graph matching using random walks. IEEE

Trans. Pattern Anal. Mach. Intell., 27, 1100–1111.

S.G., E., J.L., S. and E.E, S. (1992). Seesoft-a tool for visualizing line-oriented software

statistics. IEEE Transactions of Software Engineering, 18, 957–968.

175

SHOKOUFANDEH, A. and DICKINSON, S. (1999). Applications of bipartite matching

to problems in object recognition. Proceedings, ICCV Workshop on Graph Algorithms and

Computer Vision. 154 – 163.

SHOKOUFANDEH, A. and DICKINSON, S. J. (2001). A unified framework for indexing

and matching hierarchical shape structures (2001). IWVF-4 : Proceedings of the 4th Inter-

national Workshop on Visual Form. Springer-Verlag, London UK, 67–84.

SORLIN, S. and SOLNON, C. (2005). Reactive tabu search for measuring graph similarity.

GbRPR. 172–182.

TOSHEV, A., JIANBO, S. and DANIILIDIS, K. (2007). Image matching via saliency region

correspondences. CVPR ’07, IEEE Conf. on Computer Vision and Pattern Recognition. 33–

40.

TU, Q. and GODFREY, M. (2002). An integrated approach for studying architectural

evolution. Proceedings of the 10th International Workshop on Program Comprehension

(IWPC). 127–136.

TURING, A. M. (1937). On computable numbers, with an application to the entscheidung-

sproblem. Proceedings of The London Mathematical Society, s2-42, 230–265.

UMEYAMA, S. (1988). An eigendecomposition approach to weighted graph matching pro-

blems. IEEE Trans. Pattern Anal. Mach. Intell., 10, 695–703.

WANG, Y., MAKEDON, F., FORD, J. and HUANG, H. (2004). A bipartite graph mat-

ching framework for finding correspondences between structural elements in two proteins.

EMBS’04, IEEE Conf. Engineering in Medicine and Biology Society. 2972–2975.

WOHLIN, C., RUNESON, P., HOST, M., OHLSSON, M. C., REGNELL, B. and WESS-

LEN, A. (2000). Experimentation in Software Engineering - An Introduction. Kluwer Aca-

demic Publishers.

WOLPERT, D. and MACREADY, W. G. (1997). No free lunch theorems for optimization.

IEEE Trans. Evolutionary Computation, 1, 67–82.

WU, W., GUÉHÉNEUC, Y.-G., ANTONIOL, G. and KIM, M. (2010). Aura : a hybrid

approach to identify framework evolution. ICSE (1). 325–334.

XING, Z. and STROULIA, E. (2005a). Analyzing the evolutionary history of the logical

design of object-oriented software. IEEE Transactions on Software Engineering, 31, 850–

868.

XING, Z. and STROULIA, E. (2005b). Umldiff : an algorithm for object-oriented design

differencing. ASE ’05 : Proceedings of the 20th IEEE/ACM international Conference on

Automated software engineering. ACM, New York, NY, USA, 54–65.

176

YOU, A. K. C. W. M. and CHAN, S. C. (1990). An algorithm for graph optimal monomor-

phism. IEEE Trans. Syst. Man Cybern., 20, 628–638.

ZASLAVSKIY, M., BACH, F. and VERT, J.-P. (2009). A path following algorithm for the

graph matching problem. IEEE Trans.on Patt. Anal. and Mach. Int., 31, 2227–2242.

ZIMMERMANN, T., PREMRAJ, R. and ZELLER, A. (2007). Predicting defects for eclipse.

Proceedings of the Third International Workshop on Predictor Models in Software Enginee-

ring.

