

Blending Conceptual and Evolutionary Couplings to

 Support Change Impact Analysis in Source Code

Huzefa Kagdi1, Malcom Gethers2, Denys Poshyvanyk2, Michael L. Collard3
1Department of Computer Science

Winston-Salem State University
Winston-Salem, NC 27110

kagdih@mst.edu

2Computer Science Department
 The College of William and Mary

Williamsburg, VA 23185
{mgethers, denys}@cs.wm.edu

3Department of Computer Science
The University of Akron

Akron, OH 44325
collard@uakron.edu

Abstract — The paper presents an approach that combines
conceptual and evolutionary techniques to support change
impact analysis in source code. Information Retrieval (IR) is
used to derive conceptual couplings from the source code in a
single version (release) of a software system. Evolutionary
couplings are mined from source code commits. The premise
is that such combined methods provide improvements to the
accuracy of impact sets. A rigorous empirical assessment on
the changes of the open source systems Apache httpd,
ArgoUML, iBatis, and KOffice is also reported. The results
show that a combination of these two techniques, across several
cut points, provides statistically significant improvements in
accuracy over either of the two techniques used independently.
Improvements in recall values of up to 20% over the
conceptual technique in KOffice and up to 45% over the
evolutionary technique in iBatis were reported.

I. INTRODUCTION

According to Arnold and Bohner [8] software-change
impact analysis, or simply impact analysis (IA), is defined as
the determination of potential effects to a subject system
resulting from a proposed software change. The premise of
impact analysis is that a proposed change may result in
undesirable side effects and/or ripple effects. A side effect is
a condition that leads the software to a state that is erroneous
or violates the original assumptions/semantics as a result of a
proposed change. A ripple effect is a phenomenon that
affects other parts of a system on account of a proposed
change. The task of an impact analysis technique is to
estimate the (complete closure of) ripple effects and prevent
side effects of a proposed change. The scope of the analyzed
and estimated software artifacts may include requirements,
design, and source code.

IA is a key task in software maintenance and evolution.
Decades of research efforts have produced a wide spectrum
of approaches, ranging from the traditional static and
dynamic analysis techniques [10, 28, 30, 31, 37, 38] to the
contemporary methods such as those based on Information
Retrieval (IR) [11, 20, 34] and Mining Software Repositories
(MSR) [46]. Although ample progress has been made, there
still remains much work to be done in further improving the
effectiveness (e.g., accuracy) of the state-of-the-art IA
techniques. Our goal is to develop a new and improved IA
approach by reusing some of the existing contemporary
solutions. Central to our approach are the information

sources that are developer centric (e.g., comments and
identifiers, and commits and commit practices), rather than
artifact centric (e.g., static and dynamic dependencies such
as call graphs).

In this paper, we present an approach that combines
conceptual and evolutionary couplings to support IA in
source code. Conceptual couplings capture the extent to
which domain concepts and software artifacts are related to
each other. This information is derived using Information
Retrieval based analysis of textual software artifacts that are
found in a single version of software (e.g., comments and
identifiers in a single snapshot of source code). This analysis
focused on a single version is consistent with its previous
usages in IA [3, 34]. Evolutionary couplings capture the
extent to which software artifacts were co-changed. This
information is derived from analyzing patterns, relationships,
and relevant information of source code changes mined from
multiple versions in software repositories.

The core research philosophy behind our approach is that
present+past of software systems leads to better IA. For IA,
both single (present) and multiple versions (past) analysis
methods have been utilized independently, but their
combined use has not been previously investigated. Our
larger research objective is focused on the investigation of
these combinations of IR and MSR techniques for IA. The
combinations presented in this paper are a fundamental and
necessary baseline step in this direction. We investigate two
different combinations, i.e., disjunctive and conjunctive, and
compute impact sets at varying source code granularity
levels (e.g., files and methods). Our principal research
hypothesis is that such combined methods provide
improvements to the accuracy of impact sets.

An extensive empirical study on hundreds of changes
from the open source systems, such as Apache httpd,
ArgoUML, iBatis, and KOffice was conducted to test the
research hypothesis. The results of the study show that the
disjunctive combination of IR and MSR techniques, across
several cut points (impact set sizes), provides statistically
significant improvements in accuracy over either of the two
standalone techniques. For example, the disjunctive method
reported improvements in recall values of up to 20% over the
conceptual technique in KOffice and up to 45% improvement
over the evolutionary technique in iBatis. These results are
encouraging considering that the combinations do not require
an overly complex blending of two separate approaches.

The rest of the paper is organized as follows. Section II
provides a brief discussion of the related work, whereas
section III presents our combined approach. The empirical
assessment is presented in IV. We conclude in Section V.

II. BACKGROUND AND RELATED WORK

The paper addresses a key maintenance task of software
change impact analysis by involving conceptual and
evolutionary couplings. There is a rich volume of literature
covering each of these areas. Our intention is not to cover
every individual work exhaustively, but to provide a breadth
of the solutions offered to the problem and by the solutions.

A. Software Change Impact Analysis (IA)
Dependency analysis and traceability analysis are the two

primary methodologies for performing impact analysis.
Broadly, dependency analysis refers to impact analysis of
software artifacts at the same level of abstraction (e.g.,
source code to source code or design to design). Traceability
analysis refers to impact analysis of software artifacts across
different levels of abstractions (e.g., source code to UML).
Various dependency-analysis methods based on call graphs,
program slicing [19], hidden dependency analysis [14, 41,
45], lightweight static analysis approaches [29, 31], concept
analysis [40], dynamic analysis [28], hypertext systems,
documentation systems, UML models [9], and Information
Retrieval [3] are already investigated in the literature.
Queille et al. [36] proposed an interactive process in which
the programmer, guided by dependencies among program
components (i.e., classes, functions), inspects components
one-by-one and identifies the ones that are going to change –
this process involves both searching and browsing activities.
This interactive process was supported via a formal model,
based on graph rewriting rules [13].

Coupling measures have been also used to support
impact analysis in OO systems [10, 44]. Wilkie and
Kitchenham [44] investigated if classes with high CBO
(Coupling Between Objects) coupling metric values are more
likely to be affected by change ripple effects. Although
CBO was found to be an indicator of change-proneness in
general, it was not sufficient to account for all possible
changes. Briand et al. [10] investigated the use of coupling
measures and derived decision models for identifying classes
likely to be changed during impact analysis. The results of
an empirical investigation of the structural coupling
measures and their combinations showed that the coupling
measures can be used to focus the underlying dependency
analysis and reduce impact analysis effort. On the other
hand, the study revealed a substantial number of ripple
effects, which are not accounted for by the highly coupled
(structurally) classes.

More recent work appears in [20, 38], where proposed
tools can help navigate and prioritize system dependencies
during various software maintenance tasks. The work in
[20] relates to our approach in as much as it also uses lexical
(textual) clues from the source code to identify related
methods. Several recent papers presented algorithms that
estimate the impact of a change on tests [27, 39]. A

comparison of different impact analysis algorithms is
provided in [30].

B. Conceptual Information in Software
Identifiers used by programmers for names of classes,

methods, or attributes in source code or other artifacts
contain important information and account for approximately
half of the source code in software [17]. These names often
serve as a starting point in many program comprehension
tasks [12], hence it is essential that these names clearly
reflect the concepts that they are supposed to represent, as
self-documenting identifiers decrease the time and effort
needed to acquire a basic comprehension level for a
programming task [4].

The software maintenance research community recently
recognized the problem of extracting and analyzing
conceptual information in software artifacts. IR-based
methods have been applied to support practical tasks. For
instance, IR methods have been successfully used to support
feature location [32, 35], traceability link recovery [2, 16]
and impact analysis [3, 34]. We do not discuss other
applications of IR-based techniques in the context of
software maintenance due to space limitations, however,
interested readers are referred to [7] for such an overview.

C. Evolutionary Information in Software Repositories
The term MSR has been coined to describe a broad class

of investigations into the examination of software
repositories (e.g., Subversion and Bugzilla). The premise of
MSR is that empirical and systematic investigations of
repositories will shed new light on the process of software
evolution, and the changes that occur over time, by
uncovering pertinent information, relationships, or trends
about a particular evolutionary characteristic of the system.

We now briefly discuss some representative works in
MSR for mining of evolutionary couplings. Zimmerman et
al. [46] used CVS logs for detecting evolutionary coupling
between source code entities. Association rules based on
itemset mining were formed from the change-sets and used
for change-prediction. Canfora et al. [11] used the bug
descriptions and the CVS commit messages for the purpose
of change prediction. An information retrieval method is
used to index the changed files, and commit logs, in the CVS
and the past bug reports from the Bugzilla repositories.

In addition, conceptual information has been utilized in
conjunction with evolutionary data to support several other
tasks, such as assigning incoming bug reports to developers
[5, 21, 25], identifying duplicate bug reports [42], estimating
time to fix incoming bugs [43] and classifying software
maintenance requests [18]. Finally, we conducted a
comprehensive literature survey on MSR approaches during
the prologue of this work [22]. Xie’s online bibliography
and tutorial1 on MSR is another well-maintained source.

The above discussion shows that both IR and MSR have
been used for impact analysis. Also, IR techniques have
been applied to software repositories. Our work differs in
that we limit the use of IR to a single snapshot (i.e., to derive

1 https://sites.google.com/site/asergrp/dmse

conceptual couplings) of source code and data mining
techniques are used on past commits of source code (i.e., to
derive evolutionary couplings). To the best of our
knowledge, such a combined use of IR and MSR has not
been presented elsewhere or empirically investigated before
in the research literature. Our approach builds on existing
solutions, but synergizes them in a new holistic technique.

III. A COMBINED APPROACH TO IMPACT ANALYSIS

A typical IA technique takes a software entity in which a
change is proposed or identified and estimates other entities
that are also potential change candidates, referred to as an
estimated impact set. Our general approach computes the
estimated impact set with the following steps:

Step 1: Select the first software entity, es, for which IA
needs to be performed. For example, this first entity could
be a result of a feature location activity. Note that IA starts
with a given entity.

Step 2: Compute conceptual couplings with IR methods
from the release of a software system in which the first entity
is selected. Let EI(es) be the set of entities that are
conceptually related to the entity from Step 1.

Step 3: Mine a set of commits from the source code
repository and compute evolutionary couplings. Here, only
the commits that occurred before the release in the above
step are considered. Let EM(es) be the set of entities that are
evolutionary coupled to the entity from Step 1.

Step 4: Compute the estimated impact set, E(es), from
the combinations of couplings computed in steps 3 and 4.

We now discuss the details of these steps, especially
conceptual and evolutionary couplings, and their
combinations.

A. Conceptual Couplings
We use conceptual similarity as a primary mechanism of

capturing conceptual coupling among software entities. This
measure is designed to capture the conceptual relationship
among documents. Formally, the conceptual similarity
between software entities ek and ej (where ek and ej can be
methods), is computed as the cosine between the vectors vek

and vej, corresponding to ek and ej in the vector space
constructed by an IR method (e.g., Latent Semantic Indexing
- LSI):

CSE(ek, ej) =
2 2| | | |

T
k j

k j

ve ve

ve ve

As defined, the value of CSE(ek, ej)  [-1, 1], as CSE is a
cosine in the Vector Space Model (VSM). For source code
documents, the entities can be attributes, methods, classes,
files, etc. Computing attribute-attribute or method-method
similarities, CSE is straightforward (e.g., ek and ej are
substituted by ak and aj in the CSE formula), while deriving
method-class or class-class CSE requires additional steps.
We define the conceptual similarity between a method mk
and a class cj (CSEMC) with t number of methods as follows:

CSEMC(mk, cj) =
1

(,)
t

k jq
q

CSE m m

 /t, which is an average

of the conceptual similarities between method mk and all the

methods from class cj. Using CSEMC we define the
conceptual similarity between two classes (CSEBC) ck  C
with r number of methods and cj  C (where C is a set of

classes in software) as: CSEBC(ck, cj) =
1

(,)
r

kl j
l

CSEMC m c

 /r,

which is the average of the similarity measures between all
unordered pairs of methods from class ck and class cj. The
assumption, which is used in defining CSE, CSEMC, and
CSEBC, is that if the methods of a class relate to each other,
then the two methods or classes are also related. For more
details and examples, please refer to our preliminary work on
conceptual coupling measures [33, 34].

To analyze conceptual information in a given release of a
software system, the source code is parsed using a developer-
defined granularity level (i.e., methods or files). A corpus is
created, so that each software artifact will have a
corresponding document in it. We rely on srcML [15] for
the underlying representation of the source code and textual
information. srcML is an XML representation of source code
that explicitly embeds the syntactic structure inherently
present in source code text with XML tags. The format
preserves all the original source code contents including
comments, white space, and preprocessor directives, which
are used to build the corpus.

B. Evolutionary Couplings
We mine the change history of a software system for

evolutionary relationships. In our approach, evolutionary
couplings are essentially mined patterns of changed entities.
We employ itemset mining [1], as the specific order of
change between artifacts is not considered. This unordered
set allows the computed evolutionary couplings to be
consistent with the conceptual couplings (with no change
order between coupled artifacts).

Formally, a software change history, SCH, is a set of
change-sets (commits) submitted to the source-control
repository during the evolution of the system in the time
interval . Also, let E =  csii  1

mU be the set of m entities,

each of which was changed in at least one change-set. An
unordered evolutionary coupling is a set of source code
entities that are found to be recurring in at least a given
number (min) of change-sets, ecu = {ep, eq, …, eo} where
each e  E and there exists a set of related change-sets,
S(ec) = {c  SCH | ec  c } with its cardinality, (ec) =
|S(ec)| ≥ min. The (ec) value of a mined pattern is termed
its support value in the data mining vocabulary. Similarly,
the min value is termed as minimum support value. Also, let
EC =  ecii  1

kU be a set of all the evolutionary couplings

observed in SCH.
For any given software entity from E, which could be the

first point es for impact analysis, we compute all the
association rules from the mined evolutionary couplings
where it occurs as an antecedent (lhs) and another entity
from E as a consequent (rhs). Simply put, an association
rule gives the conditional probability of the rhs also
occurring when the lhs occurs, measured by a confidence
value. That is, an association rules is of the form lhs  rhs.

When multiple rules are found for a given entity, they are
first ranked by their confidence values and then by their
support values; both in a descending order (higher the value,
stronger the rule). We allow a user specified cut-off point to
pick the top n rules. Thus, EM(es) is the set of all
consequents in the selected n rules.

Broadly, the presented approach for mining fine-grained
evolutionary couplings and prediction rules consists of three
steps:

1) Extract Change-sets from Software Repositories
Modern source-control systems, such as Subversion,

preserve the grouping of several changes in multiple files to
a single change-set as performed by a committer. This
information can be easily obtained (e.g., svn log and pysvn).

2) Process to Fine-grained Change-sets
The differences in a file of a change-set can be readily

obtained at a line-level granularity (e.g., with diff utility). In
this case, the line differences need to be mapped to the
corresponding fine-grained differences in the syntactic
constructs. Our approach employs srcDiff, a lightweight
methodology for fine-grained differencing of files in a
change-set. srcDiff extends the srcML representation by also
marking the regions of changes to the code in a collection of
difference elements. Information about the syntactic changes
to the code is found using an XPath query.

3) Mine Evolutionary Couplings
A mining tool, namely sqminer, was previously

developed to uncover evolutionary couplings from the set of
commits (processed at fine-granularity levels with srcDiff
should the need be). The basic premise of sqminer is if the

same set of source code entities frequently co-changes then
there is a potential evolutionary coupling between them.
sqminer supports mining of both unordered and ordered
patterns. These patterns are used to generate association
rules that serve as prediction rules for source code changes.
sqminer has already been applied previously to mine co-
changes at the file level [26], uncover/discover traceability
links [24], and mine evolutionary couplings of localized
documents [23].

C. Disjunctive and Conjunctive Combinations
 With regards to combining conceptual and evolutionary

dependencies, there is a pertinent research question. Should
the union or intersection of the two estimations be
considered, i.e., EI(es)  EM(es) or EI(es)  EM(es)? This
question may not be an issue, if both EI(es) and EM(es)
predict the same estimation set. If the estimation sets differ,
taking their union could result in increased recall; however,
at the expense of decreased precision (if a large number of
false-positive are estimated). Alternatively, taking only the
intersection imposes a stricter constraint that could result in
increased precision; however, at the expense of decreased
recall.

The combined approaches for IA that use the union and
intersection of estimations of conceptual and evolutionary
estimations are termed as disjunctive approach and
conjunctive approach respectively (see Figure 2). That is,
E(es) = EI(es)  EM(es) and E(es) = EI(es)  EM(es). Our
approach supports both of these combinations. Both
approaches require the user to specify a starting entity as
well as a cut point for deriving an estimated impact set. For a # procedure to get the n ranked concep couplings for the given entry

function getConceptual(anentity, n)

 CCBE := conceptualBase (src_code, granularity, ia_params)

 # get the top n couplings for the only the given entity

 return slice (CCBE, anentity, n)

procedure to get the n ranked evol couplings for the given entry

function getEvolutionary(anentity, n)

 ECBE := evolutionaryBase (history, granularity, m_params)

 # get the top n couplings for the only the given entity

 return slice (ECBE, anentity, n)

procedure to form a corpus with LSI and compute conc coupling

function conceptualBase (src_code, granularity, ia_params)

 # recomputed only if needed

 # form a corpus with LSI

 corpus := lsi (src_code, granularity, ia_params)

 # compute conceptual couplings between all pairs of

 # entities in the corpus

 CCBE := formConceptual (corpus)

 # CCBE is sorted by similarity values

 return CCBE

procedure to mine evolutionary couplings and form

association rules from a given commit history

function evolutionaryBase (history, granularity, m_params)

 # recomputed only if needed

 # mine patterns of co‐changes entities from the history

 # and then form binary association rules

 ECBE := mineEvolutionary (history, granularity, m_params)

 # ECBE is sorted by confidence and support values

 return ECBE

Figure 1. The procedures for computing
conceptual and evolutionary couplings

Figure 2. The procedures for disjunctive and conjunctive
impact analysis

procedure to compute a disjunctive impact set

the ranking parameters that control the appropriate entities

(recursion) to get from both couplings are discarded for brevity

function disjIA(anentity, cutpoint)

 # anentity: initial entity for IA; # cutpoint: size of the impact set

 # look for equal contributions from both

 # get the top cutpoint/2 conceptual couplings

 EI := getConceptual(anentity, cutpoint/2)

 # get the top cutpoint/2 evolutionary couplings

 EM := getEvolutionary(anentity, cutpoint/2)

 # did we get the equal share? If not try again.

 if |EI U EM| < cutpoint

 return (EI U EM U disjIA(anentity, cutpoint ‐ |EI U EM|)

 # a disjunctive set is the union of the sets EI and EM

 return (EI U EM)

procedure to compute a conjunctive impact set

the ranking parameters that control the appropriate entities to get

function conjIA(anentity, cutpoint)

 # anentity: initial entity for IA

 # get the top cutpoint conceptual couplings

 EI := getConceptual(anentity, cutpoint)

 # get the top cutpoint evolutionary couplings

 EM := getEvolutionary(anentity, cutpoint)

 if | EI  EM)| < cutpoint

 return ((EI  EM) U conjIA(anentity, cutpoint ‐ |EI  EM|)

 # a conjunctive set is the intersection of the sets EI and EM

 return (EI  EM)

given cut point, μ, provided by the user, we compute the
impact set of the disjunctive method E(es) by determining
EI(es) and EM(es) such that the cardinality of each set is
equal (or the cardinality EI(es) is larger by one entity) and the
cardinality of their union equals μ. A similar approach is
taken to obtain the impact set of the conjunctive method;
however, in this case we ensure the cardinality of the
intersection equals μ. The procedures used to compute the
underlying conceptual and evolutionary couplings are shown
in Figure 1. They use typical sets of parameters needed for
LSI and itemset mining algorithms.

D. Examples
In order to explain what each technique finds and the

issues that arise in the combination of the techniques, we
present an example from a real system. In Apache httpd
commit# 888310 addresses the bug#47087 2 regarding
"Incorrect request body handling with Expect: 100-continue
if the client does not receive a transmitted 300 or 400
response prior to sending its body." In this revision to fix
the bug there were three source code files which needed to
be changed (/modules/http/http_filters.c,
/modules/http/http_protocol.c, and /server/protocol.c). In
order to perform impact analysis, the developer must have a
starting entity. For this example, let us assume the developer
discovers, through feature location, that fixing the problem
requires modifying /modules/http/http_filters.c. From this
point the developer can perform impact analysis to discover
other entities which also require modification. Using
conceptual and evolutionary couplings for impact analysis,
we obtain the results in Table I. As standalone techniques
neither conceptual nor evolutionary coupling are capable of
establishing 100% recall. Conceptual coupling ranks
/server/protocol.c as first in the ranked list, but ranks
/modules/http/http_protocol.c as 91st, whereas evolutionary
coupling ranks /modules/http/http_protocol.c second in the
ranked list, but ranks /server/protocol.c as 16th. We can
combine the results using our disjunctive approach. This
results in the set of entities that also appear in Table I. Here
we can see that when combined, the couplings are capable of
identifying all methods requiring modification within an
impact set, i.e., cut point, of five methods. Note that our
disjunctive and conjunctive approaches result in sets as
opposed to ranked lists (i.e., the entities are unordered).

2 https://issues.apache.org/bugzilla/show_bug.cgi?id=47087

IV. CASE STUDY

In this section we describe the empirical assessment of
our approach. We describe our study following the Goal-
Question-Metrics paradigm [6], which includes goals,
quality focus, and context. In the context of our case study
we aim at addressing the research questions (RQs):

 RQ1: Does combining conceptual and evolutionary
couplings improve the accuracy of IA when
compared to the two standalone techniques?

 RQ2: Does the choice of granularity, i.e., file or
method, affect the accuracy of IA of standalone
techniques and their combination?

The goal of the case study is to investigate these research
questions. The quality focus is on providing improved
accuracy, while the perspective was of a software developer
performing a change task, which requires extensive impact
analysis of related source code entities. Our two research
questions directly address the effectiveness and
expressiveness of an IA solution. With regards to
effectiveness, it is desirable to have a technique that provides
all, and only, the impacted entities, i.e., prevents false
positives and false negatives in the estimated impact set as
much as possible. Additionally, it is desirable to provide the
developers with the ability to apply the IA technique at
various source code granularities. Our approach offers this
feature; however, an important issue is to assess the change
in effectiveness at different levels of granularity.

A. Accuracy Metrics

1) Precision and Recall
Impact analysis techniques are typically assessed with the

two widely used metrics precision (i.e., inverse measure of
false positives) and recall (i.e., inverse measure of false
negatives). These metrics are computed from the estimated
impact set produced from a technique and the actual impact
set from the established ground truth (e.g., change-
sets/patches after the proposed change is actually
implemented or developer verification).

For a given entity es (e.g., file and method) let EI(es) be
the set of entities that are conceptually related to the entity es.
Let Ri be the set of actual or correctly changed entities with
the entity es. The precision of conceptual couplings, PEI, is
the mean percentage of correctly estimated changed entities
over the total estimated entities. The recall of conceptual
couplings, REI, is the mean percentage of correctly estimated
changed entities over the total correctly changed entities.

PEI =
1

n

| EIiRi |

| EIi |
100%

i1

n

 REI=
1

n

| EiRi |

| Ri |
100%

i1

n



The precision and recall values for evolutionary
couplings, disjunctive, and conjunctive methods can be
similarly computed. The set EM(es) would indicate the set
of entities that are related to a known entity es based on
evolutionary couplings. The sets E(es) and E(es) would

Table I. Example showing the accuracy gains of the
disjunctive impact analysis method on the bug# 47087

in Apache httpd
 Conceptual Evolutionary Disjunctive

1 /server/protocol.c
/modules/http/byterang

e_filter.c /server/protocol.c

2 /modules/proxy/mod_pro
xy_http.c

/modules/http/http_p
rotocol.c

/modules/proxy/mo
d_proxy_http.c

3 /modules/debugging/mod
_bucketeer.c

/modules/proxy/mod_
proxy_ftp.c

/modules/http/byte
range_filter.c

4 /server/core_filters.c /server/core.c /modules/http/http_
protocol.c

5 /modules/http/byterange_f
ilter.c /include/ap_mmn.h /server/core_filters.c

indicate the couplings from the disjunctive and conjunctive
methods respectively.

B. Evaluated Subject Systems

The context of our study is characterized by a set of four
open source software systems, namely Apache httpd,
ArgoUML, iBatis, and KOffice. The selected set of systems
represents different primary implementation languages (e.g.,
C/C++ and Java), size, development environment, and
application domain. Apache httpd is an open source
implementation of an HTTP server, which focuses on
providing a robust and commercial-grade system.
ArgoUML is a Java implementation of a UML diagramming
tool. The iBatis Data Mapper framework provides a
mechanism that simplifies the use of relational database
systems with Java and .NET applications. KOffice is an
application suite that includes various office productivity
applications such as word (i.e., KWord) and spreadsheet
(i.e., KSpread) processing. Specifics of various system
characteristics appear in Table II.

C. Evaluation Procedure

The source code changes in software repositories, i.e.,
commits, are used for the evaluation purpose. Our general
evaluation procedure consists of the following steps:
1. Compute conceptual couplings on a release (e.g.,

KOffice 2.0.91) of a subject system – Conceptual
Training Set.

2. Mine evolutionary couplings (and association rules)
from a set of commits in a history period prior to the
selected release in Step 1 – Evolutionary Training Set.

3. Select a set of commits in a history period after the
selected release in Step 1 –Testing Set. Each commit in
the testing set is considered as an actual impact set, i.e.,
the ground truth, for evaluation purposes.

4. Derive disjunctive and conjunctive impact sets from the
two training sets for each commit in the testing set.

5. Compute accuracy metrics for the two standalone
techniques and their two combinations.

6. Compare standalone and combination accuracy results.
7. Repeat the above steps for all the considered subject

systems and releases.
The details of the training and testing sets are detailed next.

1) Conceptual training sets - Corpora
We generated two sets of corpora from the subject

systems corresponding to the granularity of documents at the
file and method levels. The process of generating a corpus
consisted of extracting textual information, i.e., identifiers
and comments, from the source code for the specific
granularity level. The identifiers and comments, i.e., terms,
from each file (or a method if that is the chosen granularity)
formed a document, whereas a complete collection of these

documents formed a corpus. Once a corpus was built, LSI
was used to index its term-by-document co-occurrence
matrix. Conceptual couplings between source code
documents, i.e., files or methods, were then computed (see
section III). Details of the corpora, including the releases
indexed, are provided in Table II. The associated computing
time was consistent with the previous uses [3, 34].

2) Evolutionary training sets
 In order to obtain evolutionary training sets we selected

a period of history, which preceded the version of the system
used to build the corpus. For example, the corpus created for
Apache httpd used the source code from version 2.2.3. The
commit history from releases 2.2.9 to 2.2.3 was considered
for the evolutionary training set. Commits with more than
ten files were discarded. This type of filtering is a common
heuristic used in mining techniques to mitigate factors such
as updating the license information on every file or
performing merging and copying [24, 46]. Furthermore,
because commits may contain non source code files, only
source code files were considered and other types discarded.

The tool sqminer was employed to mine evolutionary
couplings (and association rules) in the itemset mining mode
with minimum support values of 1, 2, 4, and 8. Also, we
considered all the possible association rules with the
confidence values greater than zero. Mining was performed
at both file and method levels of granularity. The mining
time was in the order of a few seconds.

3) Testing set
The testing sets were extracted similar to training sets;

however, the periods of history used were different from the
training set. The testing set consists of commits extracted
from a period of history after the release date of the version
of the system used to build the corpus. For example, the
commit history of Apache httpd after the release 2.2.3 and up
to the release 2.2.5 was considered for the testing set. The
testing set provides a way to evaluate our proposed approach.
Similar approaches for the training and testing sets are
previously reported in the literature, for example in [24, 46].

Table III shows the details of the evolutionary training
and testing sets considered at the file and method levels. The
entries corresponding to the method level are suffixes with a
* symbol (same notation in other tables). They include a
range of releases corresponding to different history periods.
Also, the numbers of commits and files (methods) during
those periods of history are provided. The (larger) training
sets and (smaller) testing sets were extracted from the
History (Table III) periods before and after the Versions
(Table II) used to index with LSI. For the method level, the
number of commits corresponds to commits that contained
method changes (and so differs from those at the file level).

Table II. Characteristics of the subject systems
considered in the empirical evaluation.

System Version LOC Files Methds Terms
Apache(httpd) 2.2.3 311K 782 n/a 6583

ArgoUML 0.28 367K 1,995 n/a 9384
iBatis 3.0.0-216 70K 774 n/a 3772

KOffice 2.0.91 2.0.91 231K 6.5K n/a 48513
KOffice 2.0.1 2.0.1 257K 6.7K 68.4K 32212

Table III. Evolutionary training and (testing)
datasets used for the empirical evaluation

System History # of
Commits

of
Entities

Apache(httpd) 2.2.9-2.3.5 1736 (287) 2086 (982)
ArgoUML 0.24-0.28 3375 (773) 4217 (621)

iBatis
3.0.0-190_b1 -
3.0.0-240_b10 108 (40) 461 (118)

KOffice 2.0.91 2.0.0-2.0.91 2749 (522) 5580 (1072)
KOffice 2.0.1 2.0.0-2.0.2 763 (255) 1233 (533)
KOffice 2.0.1* 2.0.0-2.0.2 577 (192) 5530 (1438)

D. Results

1) RQ1:Does combining conceptual and evolutionary
couplings improve accuracy of IA?

Prior research efforts have investigated the performance
of coupling metrics that use specific sources of information
(e.g., structural and textual) to capture couplings in source
code. Our first research question focuses on determining if
we can improve the accuracy of IA by augmenting metrics
based on complementary underlying information.

As a step toward determining the potential benefits of
combining conceptual and evolutionary couplings, we
analyze the orthogonality of the two standalone couplings.
One situation where the combination of the techniques is
beneficial is when techniques provide complementary sets of
correct entities. If the standalone techniques considered for
combination provide identical or very similar information,
combining them may not be a worthwhile effort. In order to
measure the degree to which the techniques could potentially
complement one another we use the following metrics:

%i j

i j

i j

m m

m m

m m

correct correct
correct

correct correct






\

\
%i j

i j

i j

m m

m m

m m

correct correct
correct

correct correct




where correctmi represents the set of source code entities
correctly identified when using coupling metric mi for IA.

The two metrics capture the overlap between the set of
correct source code entities and the percentage of correct
entities identified only by mi respectively.

The results of orthogonality metrics between the two
metrics for the various systems are given in Table IV. Based
on our datasets, the overlap between the set of correct links
for the two approaches did not exceed 46%. Minimal
overlap indicates potential orthogonality between the two
techniques. One exception is the case where virtually all
correct entities identified by one technique make up a small
subset of the correct entities identified by the other
technique. A similar scenario is where one technique
performs inadequately and returns very few correct entities.
Both cases are captured by our metric correctmi\mj. Our
results contain cases where conceptual couplings are capable
of identifying a large portion of correct entities not identified
by evolutionary couplings, and vice versa. In case of
KOffice 2.0.1 both techniques are capable of capturing a
similar portion of correct entities. These findings support
our premise that combining conceptual and evolutionary
couplings could identify a larger set of correct entities.

Based on our datasets, conceptual and semantic
couplings identify correct entities orthogonally. With this
knowledge we direct our attention to our second step towards
demonstrating the benefits of combining the couplings.

Table IV. Orthogonality check for various cut points of conceptual (C), evolutionary (E), and their combination.
The results show that conceptual and evolutionary couplings provide orthogonal information, and support a

strong case for combining them.
 5 10 20 30 40 50 5 10 20 30 40 50

C\E 32 33 35 35 35 37 C\E 60 62 64 64 63 64

E\C 39 36 28 23 20 17 E\C 26 22 16 13 12 11 Apache

CE 29 32 37 42 45 46

KOffice 2.0.91

CE 14 16 20 23 24 26

C\E 59 51 44 41 41 40 C\E 42 41 40 42 43 44

E\C 28 26 28 25 24 22 E\C 43 38 36 35 33 32 ArgoUML

CE 13 23 29 34 35 38

KOffice 2.0.1

CE 16 21 23 23 23 24

C\E 67 65 69 70 70 70 C\E 47 48 46 47 46 46

E\C 15 21 14 14 13 12 E\C 52 51 52 50 51 51 iBatis
CE 18 13 16 16 17 18

KOffice 2.0.1*
CE 1 1 2 3 3 3

Table V. Precision (P) and recall (R) percentages results of conceptual coupling (Conc), evolutionary coupling
(Evol), disjunctive (Disj), and conjunctive (Conj) approaches to impact analysis for all systems using various cut

points. ImpC and ImpE show the improvement obtained by the disjunctive approach compared to conceptual and
evolutionary couplings respectively. The disjunctive approach outperforms with statistical significance.

 5 10 20 30 40 50 5 10 20 30 40 50
 P R P R P R P R P R P R P R P R P R P R P R P R

Conc 15 28 11 38 7 49 6 58 5 63 4 67 13 27 9 35 6 46 5 53 4 56 3 59
Evol 18 38 11 43 6 48 4 51 3 53 3 54 9 19 6 22 4 24 3 26 2 28 2 28
Disj 21 43 14 54 9 64 6 70 5 73 4 78 17 34 12 44 8 55 6 60 5 63 4 65
Conj 16 34 10 40 6 47 4 47 3 48 2 48 8 16 5 21 3 22 2 22 2 23 1 23
ImpC 6 15 3 16 2 15 0 12 0 10 0 11 4 7 3 9 2 9 1 7 1 7 1 6
ImpE

A
pa

ch
e

3 5 3 11 3 16 2 19 2 20 1 24

K
O

ff
ic

e
2.

0.
91

8 15 6 22 4 31 3 34 3 35 2 37
Conc 11 17 8 22 5 27 4 32 4 35 3 38 10 19 7 26 4 30 3 33 3 35 2 37
Evol 6 10 5 15 4 20 3 24 3 27 2 29 13 26 9 30 5 35 4 36 3 37 2 37
Disj 11 19 9 27 6 33 5 38 4 41 4 44 16 34 11 41 7 49 5 53 4 55 4 57
Conj 10 16 7 18 4 21 3 25 3 25 2 25 8 15 5 17 3 18 2 18 2 18 1 18
ImpC 0 2 1 5 1 6 1 6 0 6 1 6 6 15 4 15 3 19 2 20 1 20 2 20
ImpE

A
rg

oU
M

L

5 9 4 12 2 13 2 14 1 14 2 15

K
O

ff
ic

e
2.

0.
1

3 8 2 11 2 14 1 17 1 18 2 20
Conc 17 27 13 37 10 56 7 59 6 61 5 63 5 4 3 4 2 5 2 6 1 7 1 7
Evol 7 11 6 17 3 19 2 21 2 24 2 24 11 7 10 12 7 17 6 17 5 18 4 19
Disj 18 27 14 40 10 60 8 66 6 68 5 68 14 10 12 15 8 21 6 22 5 24 4 25
Conj 8 12 5 13 3 15 2 15 1 15 1 15 2 1 1 1 1 1 1 1 1 1 1 1
ImpC 1 0 1 3 0 4 1 7 0 7 0 5 9 6 9 11 6 16 4 16 4 17 3 18
ImpE

iB
at

is

11 16 8 23 7 41 6 45 4 44 3 44

K
O

ff
ic

e
2.

0.
1*

3 3 2 3 1 4 0 5 0 6 0 6

Table V provides precision and recall results for the subject
systems under study. These results are obtained by using the
various couplings for IA. Only a subset of the cut points (μ)
we considered are shown in Table V. The cut points
represent the sizes of the impact set considered with our
combinations. For example, a cut point of 5 indicate that the
estimated impact set with our approach contained 5 entities.

We considered both disjunctive and conjunctive
approaches to combining couplings. The disjunctive
approach outperforms the conjunctive approach in all cases
considered (see Table V). Additionally, the conjunctive
approach is generally unable to provide improvement over
either technique. This is somewhat expected because the
two couplings appear complementary (see Table IV). The
orthogonality between the sets of correct entities identified
by the two couplings appears to contribute to the
performance of the conjunctive approach. The utility of the
conjunctive approach is probably better suited for scenarios
where a pair of couplings identifies similar sets of correct
entities, but varying sets of false positives. For such a
scenario the conjunctive approach may serve as a useful
filtering mechanism for false positives. The disjunctive
approach better leverages the orthogonality between the
couplings. The rest of the discussion about the combinations
of two couplings refers to the disjunctive approach.

The prevailing pattern of our results demonstrates that
the combination of conceptual and evolutionary couplings
improves the performance over either standalone technique.
Consider a case in Table V where μ = 30 for Apache httpd.
Conceptual and evolutionary couplings in this instance yield
recall values of 58% and 51% respectively, while the
combination of the two increases recall to 70%. Similar
improvements are apparent throughout all the datasets
considered in our evaluation. Another example is where μ =
50 for KOffice 2.0.1 (file-level granularity). In this case both
conceptual and evolutionary couplings result in recall of 37%
while their combination gives recall of 57%. Within our
results a few cases surface that illustrate the importance of
both techniques. For example, in the case where μ = 5 for
iBatis combining conceptual and evolutionary couplings
does not improve accuracy. This can be partially attributed
to the accuracy of the evolutionary coupling metric. In this
case, the inadequate individual performance of a technique
limits the gain acquired when they are combined.

Our results for combining conceptual and evolutionary
couplings are promising. To further ascertain our
conclusions on our initial dataset, we carried out a statistical
test. We developed four testable null hypotheses:

H0 CP: Combining conceptual and evolutionary couplings
does not significantly improve precision results of
impact analysis compared to conceptual couplings.

H0 CR: Combining conceptual and evolutionary couplings
does not significantly improve recall results of
impact analysis compared to conceptual couplings.

H0 EP: Combining conceptual and evolutionary couplings
does not significantly improve precision results of
impact analysis compared to evolutionary
couplings.

H0 ER: Combining conceptual and evolutionary couplings
does not significantly improve recall results of
impact analysis compared to evolutionary
couplings.

We also developed alternative hypotheses for the cases
where the null hypotheses can be rejected with relatively
high confidence. For example:

Ha CP: Combining conceptual and evolutionary couplings
significantly improve precision results of impact
analysis compared to conceptual couplings.

The remaining three alternative hypotheses are
formulated in a similar manner and are left out for brevity.

To test for statistical significance we used the Wilcoxon
signed-rank test, a non-parametric paired samples test. Our
application of the test determines whether the improvement
obtained using the combination of conceptual and
evolutionary couplings compared to standalone approaches
is statistically significant.

Table VI presents the results of performing the Wilcoxon
signed-rank test. We performed the test for each of the four
hypotheses for each system to determine whether the
improvements for precision and recall when combining the
techniques are statistically significant over the accuracy of
standalone conceptual and evolutionary couplings. In all
cases considered for our dataset we obtained a p-value less
than 0.05, indicating that the improvement in accuracy
obtained is not by chance.

2) RQ2: Does the choice of granularity (i.e., file vs.
method) impact standalone techniques and their
combinations?

Our second research question focuses on the impact of
granularity on the accuracy of the standalone techniques, as
well as their combinations. We examined the impact of
different granularities on the accuracy of the couplings when
they are used for IA. Here, we focused on the accuracy of
the various couplings on the system KOffice 2.0.1. For this
system we obtained results at both file and method levels of
granularity. Accuracy results of the techniques for IA are
shown in Table V. There is a noticeable decrease in
accuracy when method level granularity is used. Conceptual
coupling is affected by the difference in granularity more
than evolutionary coupling. Regardless of the decrease in
accuracy of the standalone techniques, when the two are

Table VI. Results of Wilcoxon signed-rank test (μ = 30). The p values indicate
that the disjunctive approach provided improvement is not by chance.

System H0 CP H0 CR H0 EP H0 ER Null Hypothesis
Apache(httpd) 0.0002 0.0003 0.0001 0.0003 Rejected

ArgoUML 0.0050 0.0039 < 0.0001 < 0.0001 Rejected
iBatis 0.0126 0.0126 0.0001 0.0002 Rejected

KOffice 2.0.91 < 0.0001 < 0.0001 < 0.0001 < 0.0001 Rejected
KOffice 2.0.1 < 0.0001 < 0.0001 < 0.0001 < 0.0001 Rejected
KOffice 2.0.1* < 0.0001 < 0.0001 < 0.0001 < 0.0001 Rejected

combined there exists a statistically significant improvement
in accuracy. In certain cases the improvement achieved is
6%. Generally, only a small portion of correct methods
identified by both techniques overlap, i.e., they exhibit
orthogonality. This allows their combination to provide an
enriched set of correct methods.

Our results show that the level of granularity does impact
the accuracy of both standalone techniques and their
combinations. Although finer granularity decreases accuracy
of all approaches, it does not prevent the combination of the
two from outperforming the standalone techniques. That is,
the gain acquired by combining conceptual and evolutionary
coupling exists regardless of the granularity considered in
this study. For both file-level and method-level granularity
levels, combining conceptual and evolutionary information
delivers accuracy superior to either standalone technique.

E. Threats to validity

We address some of the threats to validity that could
have impacted our empirical study and results. The uses of
LSI and itemset mining algorithms are sensitive to a set of
user-defined parameters. It is a viable risk that the
improvements gained by our approach are valid only for a
particular set of these parameter values. To address this risk,
we experimented with different parameter values. For
example, the accuracy of evolutionary couplings decreases
with an increase in the minimum support value; however, the
trend of accuracy gains continued with our approach. We
will continue our quest to obtain the optimal values with
other studies in the future.

We measured the accuracy of IA with precision and
recall metrics. It is possible that a different accuracy metric
may produce a different result; however, both these metrics
are widely used and accepted in the community, including
for IA. We tried with F-measure, which is based on
precision and recall, and also noticed statistically significant
improvements with our disjunctive approach. We
considered (later) commits as the gold standard for
computing our accuracy metrics. It is reasonable to assume
that not all the entities in a commit are related to a single
change request, and a single commit may not capture all the
entities related to a change request. Therefore, they may not
be an accurate representation of the actual change-sets and
could have compromised our accuracy basis. However,
commits have been used as a basis for accuracy assessment
previously (e.g., see Zimmerman et al. [46]). We did some
manual inspection and plan to conduct a user study with
developer established actual impact sets in the future. We
reported our findings at the granularity of file and method
levels. A possible issue here could be how well our results
hold for other granularity levels besides the two considered.
We concur with previous studies [46] that file and method
granularity levels provide a realistic balance of coarse and
fine granularity levels for IA. The accuracies of the two
standalone techniques, however low in certain cases to raise
a practicality concern, are comparable to other previous
results [34, 46]. Our work shows how to improve accuracy
by forming effective combinations.

We evaluated on datasets from four open source systems
that represent a wide spectrum of domains, programming
languages (C/C++ and Java), sizes, and development
processes. However, we do not claim that our combined
approach would operate with equivalent improvement in
accuracy on other systems, including closed source.

V. CONCLUSIONS AND FUTURE WORK

The empirical assessment on four open source systems
provides support for our approach with several conclusions
in the context of change impact analysis. Combining
conceptual and evolutionary couplings improves accuracy.
Our findings indicate that in certain cases an improvement of
20% in recall is achieved when conceptual and evolutionary
coupling is combined. The overall improvement obtained
when combining the two techniques is statistically
significant for the dataset used in our evaluation. Although
our combining methods of couplings may appear
straightforward, it did provide promising improvements in
accuracy. Our findings show that the disjunctive approach
clearly outperforms the conjunctive approach in accuracy.
We conjecture that the difference in performance is, in part,
an attribute of the orthogonal nature of the correct entities
revealed by the two couplings in our empirical analysis.

Varying granularity levels does impact accuracy;
however, combining conceptual and evolutionary couplings
maintains the accuracy gains. Based on our datasets, using
finer granularity (i.e., method-level) decreases the accuracy
of all techniques considered. One important point to note is
that, regardless of the decrease in individual accuracy, the
combination of conceptual and evolutionary coupling
consistently outperformed both standalone techniques. Thus,
there is strong evidence showing the benefits of the
combination of conceptual and evolutionary couplings at
various levels of granularity.

We plan to devise and empirically validate other
combinations of conceptual and evolutionary couplings (e.g.,
weighed contributions of entities from each coupling based
on the amount of change history considered). Another key
future direction includes the addition of static and dynamic
analysis information, and application of IR on multi-version
artifacts (e.g., commit messages and bug reports) in our
approach, and extending our approach to provide IA support
beginning from a high-level textual change request. We are
also planning extensive comparative studies with other
approaches (e.g., structural metrics). In a previous study [3,
34], it was reported that IR techniques performed as well as
or better than those based on structural metrics for IA. This
work will serve as a guideline for our future studies.

VI. ACKNOWLEDGEMENTS

This work is supported by NSF CCF-1016868 and NSF
CCF-1016887 grants. Any opinions, findings, and
conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

VII. REFERENCES

[1] Agrawal, R. and Srikant, R., "Mining Sequential Patterns", in Proc.
of 11th ICDE, Taipei, Taiwan, March 1995.

[2] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E.,
"Recovering Traceability Links between Code and
Documentation", IEEE TSE, vol. 28, no. 10, October 2002, pp.
970 - 983.

[3] Antoniol, G., Canfora, G., Casazza, G., and Lucia, A., "Identifying
the Starting Impact Set of a Maintenance Request: A Case Study",
in Proc. of 4th CSMR'00, Zurich, Switzerland, pp. 227-231.

[4] Antoniol, G., Gueheneuc, Y.-G., Merlo, E., and Tonella, P., "Mining
the Lexicon Used by Programmers during Software Evolution",
in Proc. of 23rd ICSM'07, Paris, pp. 14-23.

[5] Anvik, J., Hiew, L., and Murphy, G. C., "Who should fix this bug?",
in Proc. of 28th ICSE'06, pp. 361-370.

[6] Basili, V. R., Caldiera, G., and Rombach., D. H., The Goal Question
Metric Paradigm, John W & S, 1994.

[7] Binkley, D. and Lawrie, D., "Information Retrieval Applications in
Software Maintenance and Evolution", in Encyclopedia of
Software Engineering: Taylor & Francis LLC, 2009.

[8] Bohner, S. and Arnold, R., Software Change Impact Analysis, Los
Alamitos, CA, IEEE Computer Society, 1996.

[9] Briand, L., Labiche, Y., and Soccar, G., "Automating Impact
Analysis and Regression Test Selection Based on UML Designs",
in Proc. of ICSM'02, Montreal, pp. 252-261.

[10] Briand, L., Wust, J., and Louinis, H., "Using Coupling
Measurement for Impact Analysis in Object-Oriented Systems",
in Proc. of ICSM'99, pp. 475-482.

[11] Canfora, G. and Cerulo, L., "Impact Analysis by Mining Software
and Change Request Repositories", 11th METRICS'05, pp. 20-29.

[12] Caprile, C. and Tonella, P., "Nomen Est Omen: Analyzing the
Language of Function Identifiers", in Proc. of 6th WCRE'99,
Atlanta, Georgia, USA, October 6-8, pp. 112-122.

[13] Chen, K. and Rajlich, V., "Case Study of Feature Location Using
Dependence Graph", 8th IWPC'00, pp. 241-249.

[14] Chen, K. and Rajlich, V., "RIPPLES: Tool for Change in Legacy
Software", in Proc. of ICSM'01, pp. 230-239.

[15] Collard, M. L., Kagdi, H. H., and Maletic, J. I., "An XML-Based
Lightweight C++ Fact Extractor", in Proc. of 11th IWPC'03,
Portland, OR, May 10-11 2003, pp. 134-143.

[16] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G., "Recovering
Traceability Links in Software Artefact Management Systems",
ACM TOSEM, vol. 16, no. 4, 2007.

[17] Deissenboeck, F. and Pizka, M., "Concise and Consistent
Naming", in Proc. of 13th IWPC'05, 2005, pp. 97-106.

[18] Di Lucca, G. A., Di Penta, M., and Gradara, S., "An Approach to
Classify Software Maintenance Requests", in Proc. of IEEE
ICSM'02, Montréal, Québec, Canada, 2002, pp. 93-102.

[19] Gallagher, K. and Lyle, J., "Using Program Slicing in Software
Maintenance", IEEE TSE, vol. 17, no. 8, August 1991 1991, pp.
751-762.

[20] Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the
Neighborhood with Dora to Expedite Software Maintenance", in
Proc. of 22nd ASE'07, November 2007, pp. 14-23.

[21] Jeong, G., Kim, S., and Zimmermann, T., "Improving Bug Triage
with Bug Tossing Graphs", in Proc. of ESEC/FSE'09.

[22] Kagdi, H., Collard, M. L., and Maletic, J. I., "A Survey and
Taxonomy of Approaches for Mining Software Repositories in
the Context of Software Evolution", JSME, vol. 19, no. 2,
March/April 2007, pp. 77-131.

[23] Kagdi, H. and Maletic, J. I., "Mining Evolutionary Dependencies
from Web-Localization Repositories", JSME, vol. 19, no. 5, 2007,
pp. 315-337.

[24] Kagdi, H., Maletic, J. I., and Sharif, B., "Mining Software
Repositories for Traceability Links", in Proc. of IEEE ICPC'07,
Banff, Canada, June 26-29 2007, pp. 145-154.

[25] Kagdi, H. and Poshyvanyk, D., "Who Can Help Me with this
Change Request?", in Proc. of 17th IEEE ICPC'09, Vancouver,
British Columbia, Canada, 2009, pp. 273-277.

[26] Kagdi, H., Yusuf, S., and Maletic, J. I., "Mining Sequences of
Changed-files from Version Histories", in Proc. of 3rd MSR'06
Shanghai, China, May 22-23 2006, pp. 47-53.

[27] Kosara, R., Healey, C. G., Interrante, V., Laidlaw, D. H., and Ware,
C., "Visualization viewpoints", Computer Graphics and
Applications, vol. 23, no. 4, July-August 2003, pp. 20-25.

[28] Law, J. and Rothermel, G., "Whole Program Path-Based Dynamic
Impact Analysis", in Proc. of 25th ICSE, Portland, Oregon, May
03 - 10, 2003 2003, pp. 308-318.

[29] Moonen, L., "Lightweight Impact Analysis using Island
Grammars", in Proc. of 10th IWPC'02, Paris, France, June 27 - 29,
2002 2002, pp. 219-228.

[30] Orso, A., Apiwattanapong, T., Law, J., Rothermel, G., and Harrold,
M. J., "An empirical comparison of dynamic impact analysis
algorithms", in Proc. of ICSE'04, pp. 776-786.

[31] Petrenko, M. and Rajlich, V., "Variable Granularity for Improving
Precision of Impact Analysis", in Proc. of 17th ICPC'09,
Vancouver, BC, Canada, 2009, pp. 10-19

[32] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and
Rajlich, V., "Feature Location using Probabilistic Ranking of
Methods based on Execution Scenarios and Information
Retrieval", IEEE TSE, vol. 33, no. 6, June 2007, pp. 420-432.

[33] Poshyvanyk, D. and Marcus, A., "The Conceptual Coupling
Metrics for Object-Oriented Systems", in Proc. of 22nd ICSM'06,
Philadelphia, PA, Sept. 25-27 2006, pp. 469 - 478.

[34] Poshyvanyk, D., Marcus, A., Ferenc, R., and Gyimóthy, T., "Using
Information Retrieval based Coupling Measures for Impact
Analysis", ESE, vol. 14, no. 1, 2009, pp. 5-32.

[35] Poshyvanyk, D. and Marcus, D., "Combining Formal Concept
Analysis with Information Retrieval for Concept Location in
Source Code", in Proc. of 15th IEEE ICPC'07, Banff, Alberta,
Canada, June 2007, pp. 37-48.

[36] Queille, J.-P., Voidrot, J.-F., Wilde, N., Munro, M., and "The
Impact Analysis Task in Software Maintenance: A Model and a
Case Study", in Proc. of ICSM'94, pp. 234 - 242.

[37] Ren, X., Shah, F., Tip, F., Ryder, B. G., and Chesley, O., "Chianti:
a Tool for Change Impact Analysis of Java Programs", in Proc. of
19th ACM OOPSLA '04, Vancouver, BC, Canada, pp. 432-448.

[38] Robillard, M., "Automatic Generation of Suggestions for Program
Investigation", in Proc. of ESEC/FSE'05, pp. 11 - 20

[39] Rountev, A., Milanova, A., and Ryder, B., G., "Points-to analysis
for Java using annotated constraints", in Proc. of ACM
OOPSLA'01, Tampa Bay, FL, USA, 2001, pp. 43-55.

[40] Tonella, P., "Using a Concept Lattice of Decomposition Slices for
Program Understanding and Impact Analysis", IEEE TSE, vol.
29, no. 6, June 2003 2003, pp. 495-509.

[41] Vaclav, R., "A Model for Change Propagation Based on Graph
Rewriting", in Proc. of ICSM '97, Bari, Italy, 1997, pp. 84-91.

[42] Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J., "An Approach
to Detecting Duplicate Bug Reports using Natural Language and
Execution Information", in Proc. of 30th ICSE’08, Leipzig,
Germany, May 10 - 18 2008, pp. 461-470.

[43] Weiss, C., Premraj, R., Zimmermann, T., and Zeller, A., "How
Long Will It Take to Fix This Bug?", in Proc. of 4th IEEE
MSR'07, Minneapolis, MN, 2007, pp. 1-8.

[44] Wilkie, F. G. and Kitchenham, B. A., "Coupling measures and
change ripples in C++ application software", The Journal of
Systems and Software, vol. 52, 2000, pp. 157-164.

[45] Yu, Z. and Rajlich, V., "Hidden Dependencies in Program
Comprehension and Change Propagation", in Proc. of 9th IEEE
IWPC'01, Toronto, Canada, May 12 -13 2001, pp. 293-299.

[46] Zimmermann, T., Zeller, A., Weißgerber, P., and Diehl, S.,
"Mining Version Histories to Guide Software Changes", IEEE
TSE, vol. 31, no. 6, 2005, pp. 429-445.

