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Abstract — The paper presents an approach that combines 
conceptual and evolutionary techniques to support change 
impact analysis in source code.  Information Retrieval (IR) is 
used to derive conceptual couplings from the source code in a 
single version (release) of a software system.  Evolutionary 
couplings are mined from source code commits.  The premise 
is that such combined methods provide improvements to the 
accuracy of impact sets.  A rigorous empirical assessment on 
the changes of the open source systems Apache httpd, 
ArgoUML, iBatis, and KOffice is also reported.  The results 
show that a combination of these two techniques, across several 
cut points, provides statistically significant improvements in 
accuracy over either of the two techniques used independently.  
Improvements in recall values of up to 20% over the 
conceptual technique in KOffice and up to 45% over the 
evolutionary technique in iBatis were reported. 

I. INTRODUCTION 

According to Arnold and Bohner [8] software-change 
impact analysis, or simply impact analysis (IA), is defined as 
the determination of potential effects to a subject system 
resulting from a proposed software change.  The premise of 
impact analysis is that a proposed change may result in 
undesirable side effects and/or ripple effects.  A side effect is 
a condition that leads the software to a state that is erroneous 
or violates the original assumptions/semantics as a result of a 
proposed change.  A ripple effect is a phenomenon that 
affects other parts of a system on account of a proposed 
change.  The task of an impact analysis technique is to 
estimate the (complete closure of) ripple effects and prevent 
side effects of a proposed change.  The scope of the analyzed 
and estimated software artifacts may include requirements, 
design, and source code. 

IA is a key task in software maintenance and evolution.  
Decades of research efforts have produced a wide spectrum 
of approaches, ranging from the traditional static and 
dynamic analysis techniques [10, 28, 30, 31, 37, 38] to the 
contemporary methods such as those based on Information 
Retrieval (IR) [11, 20, 34] and Mining Software Repositories 
(MSR) [46].  Although ample progress has been made, there 
still remains much work to be done in further improving the 
effectiveness (e.g., accuracy) of the state-of-the-art IA 
techniques.  Our goal is to develop a new and improved IA 
approach by reusing some of the existing contemporary 
solutions.  Central to our approach are the information 

sources that are developer centric (e.g., comments and 
identifiers, and commits and commit practices), rather than 
artifact centric (e.g., static and dynamic dependencies such 
as call graphs). 

In this paper, we present an approach that combines 
conceptual and evolutionary couplings to support IA in 
source code.  Conceptual couplings capture the extent to 
which domain concepts and software artifacts are related to 
each other.  This information is derived using Information 
Retrieval based analysis of textual software artifacts that are 
found in a single version of software (e.g., comments and 
identifiers in a single snapshot of source code).  This analysis 
focused on a single version is consistent with its previous 
usages in IA [3, 34].  Evolutionary couplings capture the 
extent to which software artifacts were co-changed. This 
information is derived from analyzing patterns, relationships, 
and relevant information of source code changes mined from 
multiple versions in software repositories. 

The core research philosophy behind our approach is that 
present+past of software systems leads to better IA.  For IA, 
both single (present) and multiple versions (past) analysis 
methods have been utilized independently, but their 
combined use has not been previously investigated.  Our 
larger research objective is focused on the investigation of 
these combinations of IR and MSR techniques for IA.  The 
combinations presented in this paper are a fundamental and 
necessary baseline step in this direction.  We investigate two 
different combinations, i.e., disjunctive and conjunctive, and 
compute impact sets at varying source code granularity 
levels (e.g., files and methods).  Our principal research 
hypothesis is that such combined methods provide 
improvements to the accuracy of impact sets. 

An extensive empirical study on hundreds of changes 
from the open source systems, such as Apache httpd, 
ArgoUML, iBatis, and KOffice was conducted to test the 
research hypothesis.  The results of the study show that the 
disjunctive combination of IR and MSR techniques, across 
several cut points (impact set sizes), provides statistically 
significant improvements in accuracy over either of the two 
standalone techniques.  For example, the disjunctive method 
reported improvements in recall values of up to 20% over the 
conceptual technique in KOffice and up to 45% improvement 
over the evolutionary technique in iBatis.   These results are 
encouraging considering that the combinations do not require 
an overly complex blending of two separate approaches. 



 

 

The rest of the paper is organized as follows. Section II 
provides a brief discussion of the related work, whereas 
section III presents our combined approach.  The empirical 
assessment is presented in IV.  We conclude in Section V. 

II. BACKGROUND AND RELATED WORK 

The paper addresses a key maintenance task of software 
change impact analysis by involving conceptual and 
evolutionary couplings.  There is a rich volume of literature 
covering each of these areas.  Our intention is not to cover 
every individual work exhaustively, but to provide a breadth 
of the solutions offered to the problem and by the solutions. 

A. Software Change Impact Analysis (IA) 
Dependency analysis and traceability analysis are the two 

primary methodologies for performing impact analysis.  
Broadly, dependency analysis refers to impact analysis of 
software artifacts at the same level of abstraction (e.g., 
source code to source code or design to design).  Traceability 
analysis refers to impact analysis of software artifacts across 
different levels of abstractions (e.g., source code to UML).  
Various dependency-analysis methods based on call graphs, 
program slicing [19], hidden dependency analysis [14, 41, 
45], lightweight static analysis approaches [29, 31], concept 
analysis [40], dynamic analysis [28], hypertext systems, 
documentation systems, UML models [9], and Information 
Retrieval [3] are already investigated in the literature.  
Queille et al. [36] proposed an interactive process in which 
the programmer, guided by dependencies among program 
components (i.e., classes, functions), inspects components 
one-by-one and identifies the ones that are going to change – 
this process involves both searching and browsing activities.  
This interactive process was supported via a formal model, 
based on graph rewriting rules [13]. 

Coupling measures have been also used to support 
impact analysis in OO systems [10, 44].  Wilkie and 
Kitchenham [44] investigated if classes with high CBO 
(Coupling Between Objects) coupling metric values are more 
likely to be affected by change ripple effects.  Although 
CBO was found to be an indicator of change-proneness in 
general, it was not sufficient to account for all possible 
changes.  Briand et al. [10] investigated the use of coupling 
measures and derived decision models for identifying classes 
likely to be changed during impact analysis.  The results of 
an empirical investigation of the structural coupling 
measures and their combinations showed that the coupling 
measures can be used to focus the underlying dependency 
analysis and reduce impact analysis effort.  On the other 
hand, the study revealed a substantial number of ripple 
effects, which are not accounted for by the highly coupled 
(structurally) classes.  

More recent work appears in [20, 38], where proposed 
tools can help navigate and prioritize system dependencies 
during various software maintenance tasks.  The work in 
[20] relates to our approach in as much as it also uses lexical 
(textual) clues from the source code to identify related 
methods.  Several recent papers presented algorithms that 
estimate the impact of a change on tests [27, 39].  A 

comparison of different impact analysis algorithms is 
provided in [30]. 

B. Conceptual Information in Software 
Identifiers used by programmers for names of classes, 

methods, or attributes in source code or other artifacts 
contain important information and account for approximately 
half of the source code in software [17].  These names often 
serve as a starting point in many program comprehension 
tasks [12], hence it is essential that these names clearly 
reflect the concepts that they are supposed to represent, as 
self-documenting identifiers decrease the time and effort 
needed to acquire a basic comprehension level for a 
programming task [4].   

The software maintenance research community recently 
recognized the problem of extracting and analyzing 
conceptual information in software artifacts.  IR-based 
methods have been applied to support practical tasks.  For 
instance, IR methods have been successfully used to support 
feature location [32, 35], traceability link recovery [2, 16] 
and impact analysis [3, 34].  We do not discuss other 
applications of IR-based techniques in the context of 
software maintenance due to space limitations, however, 
interested readers are referred to [7] for such an overview. 

C. Evolutionary Information in Software Repositories 
The term MSR has been coined to describe a broad class 

of investigations into the examination of software 
repositories (e.g., Subversion and Bugzilla).  The premise of 
MSR is that empirical and systematic investigations of 
repositories will shed new light on the process of software 
evolution, and the changes that occur over time, by 
uncovering pertinent information, relationships, or trends 
about a particular evolutionary characteristic of the system.  

We now briefly discuss some representative works in 
MSR for mining of evolutionary couplings.  Zimmerman et 
al. [46] used CVS logs for detecting evolutionary coupling 
between source code entities.  Association rules based on 
itemset mining were formed from the change-sets and used 
for change-prediction.  Canfora et al. [11] used the bug 
descriptions and the CVS commit messages for the purpose 
of change prediction.  An information retrieval method is 
used to index the changed files, and commit logs, in the CVS 
and the past bug reports from the Bugzilla repositories. 

In addition, conceptual information has been utilized in 
conjunction with evolutionary data to support several other 
tasks, such as assigning incoming bug reports to developers 
[5, 21, 25], identifying duplicate bug reports [42], estimating 
time to fix incoming bugs [43] and classifying software 
maintenance requests [18].  Finally, we conducted a 
comprehensive literature survey on MSR approaches during 
the prologue of this work [22].  Xie’s online bibliography 
and tutorial1 on MSR is another well-maintained source. 

The above discussion shows that both IR and MSR have 
been used for impact analysis.  Also, IR techniques have 
been applied to software repositories.  Our work differs in 
that we limit the use of IR to a single snapshot (i.e., to derive 

                                                           
1 https://sites.google.com/site/asergrp/dmse 



 

 

conceptual couplings) of source code and data mining 
techniques are used on past commits of source code (i.e., to 
derive evolutionary couplings).  To the best of our 
knowledge, such a combined use of IR and MSR has not 
been presented elsewhere or empirically investigated before 
in the research literature.  Our approach builds on existing 
solutions, but synergizes them in a new holistic technique. 

III. A COMBINED APPROACH TO IMPACT ANALYSIS 

A typical IA technique takes a software entity in which a 
change is proposed or identified and estimates other entities 
that are also potential change candidates, referred to as an 
estimated impact set.  Our general approach computes the 
estimated impact set with the following steps: 

Step 1: Select the first software entity, es, for which IA 
needs to be performed.  For example, this first entity could 
be a result of a feature location activity.  Note that IA starts 
with a given entity. 

Step 2: Compute conceptual couplings with IR methods 
from the release of a software system in which the first entity 
is selected.  Let EI(es) be the set of entities that are 
conceptually related to the entity from Step 1. 

Step 3: Mine a set of commits from the source code 
repository and compute evolutionary couplings.  Here, only 
the commits that occurred before the release in the above 
step are considered.  Let EM(es) be the set of entities that are 
evolutionary coupled to the entity from Step 1. 

Step 4: Compute the estimated impact set, E(es), from 
the combinations of couplings computed in steps 3 and 4. 

We now discuss the details of these steps, especially 
conceptual and evolutionary couplings, and their 
combinations. 

A. Conceptual Couplings 
We use conceptual similarity as a primary mechanism of 

capturing conceptual coupling among software entities.  This 
measure is designed to capture the conceptual relationship 
among documents.  Formally, the conceptual similarity 
between software entities ek and ej (where ek and ej can be 
methods), is computed as the cosine between the vectors vek 

and vej, corresponding to ek and ej in the vector space 
constructed by an IR method (e.g., Latent Semantic Indexing 
- LSI): 

CSE(ek, ej) = 
2 2| | | |

T
k j

k j

ve ve

ve ve
 

As defined, the value of CSE(ek, ej)  [-1, 1], as CSE is a 
cosine in the Vector Space Model (VSM).  For source code 
documents, the entities can be attributes, methods, classes, 
files, etc.  Computing attribute-attribute or method-method 
similarities, CSE is straightforward (e.g., ek and ej are 
substituted by ak and aj in the CSE formula), while deriving 
method-class or class-class CSE requires additional steps.  
We define the conceptual similarity between a method mk 
and a class cj (CSEMC) with t number of methods as follows:  

CSEMC(mk, cj) = 
1

( , )
t

k jq
q

CSE m m

 /t, which is an average 

of the conceptual similarities between method mk and all the 

methods from class cj.  Using CSEMC we define the 
conceptual similarity between two classes (CSEBC) ck  C 
with r number of methods and cj  C (where C is a set of 

classes in software) as: CSEBC(ck, cj) = 
1

( , )
r

kl j
l

CSEMC m c

 /r, 

which is the average of the similarity measures between all 
unordered pairs of methods from class ck and class cj.  The 
assumption, which is used in defining CSE, CSEMC, and 
CSEBC, is that if the methods of a class relate to each other, 
then the two methods or classes are also related.  For more 
details and examples, please refer to our preliminary work on 
conceptual coupling measures [33, 34]. 

To analyze conceptual information in a given release of a 
software system, the source code is parsed using a developer-
defined granularity level (i.e., methods or files).  A corpus is 
created, so that each software artifact will have a 
corresponding document in it.  We rely on srcML [15] for 
the underlying representation of the source code and textual 
information.  srcML is an XML representation of source code 
that explicitly embeds the syntactic structure inherently 
present in source code text with XML tags.  The format 
preserves all the original source code contents including 
comments, white space, and preprocessor directives, which 
are used to build the corpus. 

B. Evolutionary Couplings 
We mine the change history of a software system for 

evolutionary relationships.  In our approach, evolutionary 
couplings are essentially mined patterns of changed entities.  
We employ itemset mining [1], as the specific order of 
change between artifacts is not considered.  This unordered 
set allows the computed evolutionary couplings to be 
consistent with the conceptual couplings (with no change 
order between coupled artifacts). 

Formally, a software change history, SCH, is a set of 
change-sets (commits) submitted to the source-control 
repository during the evolution of the system in the time 
interval .  Also, let E =  csii  1

mU  be the set of m entities, 

each of which was changed in at least one change-set.  An 
unordered evolutionary coupling is a set of source code 
entities that are found to be recurring in at least a given 
number (min) of change-sets, ecu = {ep, eq, …, eo} where 
each e  E  and there exists a set of related change-sets, 
S(ec) = {c  SCH | ec  c } with its cardinality, (ec) = 
|S(ec)| ≥ min.  The (ec) value of a mined pattern is termed 
its support value in the data mining vocabulary.  Similarly, 
the min value is termed as minimum support value.  Also, let 
EC =  ecii  1

kU  be a set of all the evolutionary couplings 

observed in SCH.  
For any given software entity from E, which could be the 

first point es for impact analysis, we compute all the 
association rules from the mined evolutionary couplings 
where it occurs as an antecedent (lhs) and another entity 
from E as a consequent (rhs).  Simply put, an association 
rule gives the conditional probability of the rhs also 
occurring when the lhs occurs, measured by a confidence 
value.  That is, an association rules is of the form lhs  rhs.  



 

 

When multiple rules are found for a given entity, they are 
first ranked by their confidence values and then by their 
support values; both in a descending order (higher the value, 
stronger the rule).  We allow a user specified cut-off point to 
pick the top n rules.  Thus, EM(es) is the set of all 
consequents in the selected n rules. 

Broadly, the presented approach for mining fine-grained 
evolutionary couplings and prediction rules consists of three 
steps:  

1) Extract Change-sets from Software Repositories 
Modern source-control systems, such as Subversion, 

preserve the grouping of several changes in multiple files to 
a single change-set as performed by a committer.  This 
information can be easily obtained (e.g., svn log and pysvn). 

2) Process to Fine-grained Change-sets 
The differences in a file of a change-set can be readily 

obtained at a line-level granularity (e.g., with diff utility).  In 
this case, the line differences need to be mapped to the 
corresponding fine-grained differences in the syntactic 
constructs.  Our approach employs srcDiff, a lightweight 
methodology for fine-grained differencing of files in a 
change-set.  srcDiff extends the srcML representation by also 
marking the regions of changes to the code in a collection of 
difference elements.  Information about the syntactic changes 
to the code is found using an XPath query.  

3) Mine Evolutionary Couplings 
A mining tool, namely sqminer, was previously 

developed to uncover evolutionary couplings from the set of 
commits (processed at fine-granularity levels with srcDiff 
should the need be).  The basic premise of sqminer is if the 

same set of source code entities frequently co-changes then 
there is a potential evolutionary coupling between them.  
sqminer supports mining of both unordered and ordered 
patterns.  These patterns are used to generate association 
rules that serve as prediction rules for source code changes.  
sqminer has already been applied previously to mine co-
changes at the file level [26], uncover/discover traceability 
links [24], and mine evolutionary couplings of localized 
documents [23]. 

C.  Disjunctive and Conjunctive Combinations 
 With regards to combining conceptual and evolutionary 

dependencies, there is a pertinent research question.  Should 
the union or intersection of the two estimations be 
considered, i.e., EI(es)  EM(es) or EI(es)  EM(es)?  This 
question may not be an issue, if both EI(es) and EM(es) 
predict the same estimation set.  If the estimation sets differ, 
taking their union could result in increased recall; however, 
at the expense of decreased precision (if a large number of 
false-positive are estimated).  Alternatively, taking only the 
intersection imposes a stricter constraint that could result in 
increased precision; however, at the expense of decreased 
recall. 

The combined approaches for IA that use the union and 
intersection of estimations of conceptual and evolutionary 
estimations are termed as disjunctive approach and 
conjunctive approach respectively (see Figure 2).  That is, 
E(es) = EI(es)  EM(es) and E(es) = EI(es)  EM(es).  Our 
approach supports both of these combinations.  Both 
approaches require the user to specify a starting entity as 
well as a cut point for deriving an estimated impact set. For a # procedure to get the n ranked concep couplings for the given entry  

function getConceptual(anentity, n) 

    CCBE := conceptualBase (src_code, granularity, ia_params) 

    # get the top n couplings for the only the given entity 

    return slice (CCBE, anentity, n) 

# procedure to get the n ranked evol couplings for the given entry 

function getEvolutionary(anentity, n) 

    ECBE := evolutionaryBase (history, granularity, m_params) 

    # get the top n couplings for the only the given entity 

    return slice (ECBE, anentity, n) 

# procedure to form a corpus with LSI and compute conc coupling 

function conceptualBase (src_code, granularity, ia_params) 

    # recomputed only if needed 

    # form a corpus with LSI 

    corpus := lsi (src_code, granularity, ia_params) 

    # compute conceptual couplings between all pairs of  

    # entities in the corpus  

    CCBE := formConceptual (corpus) 

    # CCBE is sorted by similarity values  

    return CCBE   

# procedure to mine evolutionary couplings and form 

# association rules from a given commit history 

function evolutionaryBase (history, granularity, m_params) 

    # recomputed only if needed 

    # mine patterns of co‐changes entities from the history 

    # and then form binary association rules  

    ECBE := mineEvolutionary (history, granularity, m_params) 

    # ECBE is sorted by confidence and support values 

    return ECBE   

Figure 1. The procedures for computing 
conceptual and evolutionary couplings 

Figure 2. The procedures for disjunctive and conjunctive 
impact analysis 

# procedure to compute a disjunctive impact set 

# the ranking parameters that control the appropriate entities  

# (recursion) to get from both couplings are discarded for brevity 

function disjIA(anentity, cutpoint) 

    # anentity: initial entity for IA;  # cutpoint: size of the impact set 

    # look for equal contributions from both 

    # get the top cutpoint/2 conceptual couplings 

    EI := getConceptual(anentity, cutpoint/2) 

    # get the top cutpoint/2 evolutionary couplings 

    EM := getEvolutionary(anentity, cutpoint/2) 

    # did we get the equal share?  If not try again. 

    if |EI U EM| < cutpoint 

         return (EI U EM U disjIA(anentity, cutpoint ‐ |EI U EM|) 

    # a disjunctive set is the union of the sets EI and EM 

    return (EI U EM) 

 

# procedure to compute a conjunctive impact set 

# the ranking parameters that control the appropriate entities to get  

function conjIA(anentity, cutpoint) 

    # anentity: initial entity for IA 

     # get the top cutpoint conceptual couplings 

    EI := getConceptual(anentity, cutpoint) 

    # get the top cutpoint evolutionary couplings 

    EM := getEvolutionary(anentity, cutpoint) 

    if | EI  EM)| < cutpoint 

         return (  (EI  EM) U conjIA(anentity, cutpoint ‐ |EI  EM|) 

    # a conjunctive set is the intersection of the sets EI and EM 

    return (EI  EM) 



 

 

given cut point, μ, provided by the user, we compute the 
impact set of the disjunctive method E(es) by determining  
EI(es) and EM(es) such that the cardinality of each set is 
equal (or the cardinality EI(es) is larger by one entity) and the 
cardinality of their union equals μ.  A similar approach is 
taken to obtain the impact set of the conjunctive method; 
however, in this case we ensure the cardinality of the 
intersection equals μ.  The procedures used to compute the 
underlying conceptual and evolutionary couplings are shown 
in Figure 1.  They use typical sets of parameters needed for 
LSI and itemset mining algorithms. 

D. Examples 
In order to explain what each technique finds and the 

issues that arise in the combination of the techniques, we 
present an example from a real system.  In Apache httpd 
commit# 888310 addresses the bug#47087 2  regarding 
"Incorrect request body handling with Expect: 100-continue 
if the client does not receive a transmitted 300 or 400 
response prior to sending its body."  In this revision to fix 
the bug there were three source code files which needed to 
be changed (/modules/http/http_filters.c, 
/modules/http/http_protocol.c, and /server/protocol.c).  In 
order to perform impact analysis, the developer must have a 
starting entity.  For this example, let us assume the developer 
discovers, through feature location, that fixing the problem 
requires modifying /modules/http/http_filters.c.  From this 
point the developer can perform impact analysis to discover 
other entities which also require modification.  Using 
conceptual and evolutionary couplings for impact analysis, 
we obtain the results in Table I.  As standalone techniques 
neither conceptual nor evolutionary coupling are capable of 
establishing 100% recall.  Conceptual coupling ranks 
/server/protocol.c as first in the ranked list, but ranks 
/modules/http/http_protocol.c as 91st, whereas evolutionary 
coupling ranks /modules/http/http_protocol.c second in the 
ranked list, but ranks /server/protocol.c as 16th.  We can 
combine the results using our disjunctive approach.  This 
results in the set of entities that also appear in Table I.  Here 
we can see that when combined, the couplings are capable of 
identifying all methods requiring modification within an 
impact set, i.e., cut point, of five methods.  Note that our 
disjunctive and conjunctive approaches result in sets as 
opposed to ranked lists (i.e., the entities are unordered). 

                                                           
2 https://issues.apache.org/bugzilla/show_bug.cgi?id=47087 
 

IV. CASE STUDY 

In this section we describe the empirical assessment of 
our approach.  We describe our study following the Goal-
Question-Metrics paradigm [6], which includes goals, 
quality focus, and context.  In the context of our case study 
we aim at addressing the research questions (RQs): 

 RQ1: Does combining conceptual and evolutionary 
couplings improve the accuracy of IA when 
compared to the two standalone techniques? 

 RQ2: Does the choice of granularity, i.e., file or 
method, affect the accuracy of IA of standalone 
techniques and their combination? 

The goal of the case study is to investigate these research 
questions.  The quality focus is on providing improved 
accuracy, while the perspective was of a software developer 
performing a change task, which requires extensive impact 
analysis of related source code entities.  Our two research 
questions directly address the effectiveness and 
expressiveness of an IA solution. With regards to 
effectiveness, it is desirable to have a technique that provides 
all, and only, the impacted entities, i.e., prevents false 
positives and false negatives in the estimated impact set as 
much as possible.  Additionally, it is desirable to provide the 
developers with the ability to apply the IA technique at 
various source code granularities.  Our approach offers this 
feature; however, an important issue is to assess the change 
in effectiveness at different levels of granularity. 

A. Accuracy Metrics 

1) Precision and Recall 
Impact analysis techniques are typically assessed with the 

two widely used metrics precision (i.e., inverse measure of 
false positives) and recall (i.e., inverse measure of false 
negatives).  These metrics are computed from the estimated 
impact set produced from a technique and the actual impact 
set from the established ground truth (e.g., change-
sets/patches after the proposed change is actually 
implemented or developer verification). 

For a given entity es (e.g., file and method) let EI(es) be 
the set of entities that are conceptually related to the entity es.  
Let Ri  be the set of actual or correctly changed entities with 
the entity es. The precision of conceptual couplings, PEI, is 
the mean percentage of correctly estimated changed entities 
over the total estimated entities.  The recall of conceptual 
couplings, REI, is the mean percentage of correctly estimated 
changed entities over the total correctly changed entities. 

PEI = 
1

n

| EIiRi |

| EIi |
100%

i1

n

  REI= 
1

n

| EiRi |

| Ri |
100%

i1

n

  

The precision and recall values for evolutionary 
couplings, disjunctive, and conjunctive methods can be 
similarly computed.   The set EM(es) would indicate the set 
of entities that are related to a known entity es based on 
evolutionary couplings.  The sets E(es) and E(es) would 

                                                           
 

 

Table I. Example showing the accuracy gains of the 
disjunctive impact analysis method on the bug# 47087 

in Apache httpd  
 Conceptual Evolutionary Disjunctive 

1 /server/protocol.c 
/modules/http/byterang

e_filter.c /server/protocol.c 

2 /modules/proxy/mod_pro
xy_http.c 

/modules/http/http_p
rotocol.c 

/modules/proxy/mo
d_proxy_http.c 

3 /modules/debugging/mod
_bucketeer.c 

/modules/proxy/mod_
proxy_ftp.c 

/modules/http/byte
range_filter.c 

4 /server/core_filters.c /server/core.c /modules/http/http_
protocol.c 

5 /modules/http/byterange_f
ilter.c /include/ap_mmn.h /server/core_filters.c 



 

 

indicate the couplings from the disjunctive and conjunctive 
methods respectively. 

B. Evaluated Subject Systems 

The context of our study is characterized by a set of four 
open source software systems, namely Apache httpd, 
ArgoUML, iBatis, and KOffice.  The selected set of systems 
represents different primary implementation languages (e.g., 
C/C++ and Java), size, development environment, and 
application domain.  Apache httpd is an open source 
implementation of an HTTP server, which focuses on 
providing a robust and commercial-grade system.  
ArgoUML is a Java implementation of a UML diagramming 
tool.  The iBatis Data Mapper framework provides a 
mechanism that simplifies the use of relational database 
systems with Java and .NET applications.  KOffice is an 
application suite that includes various office productivity 
applications such as word (i.e., KWord) and spreadsheet 
(i.e., KSpread) processing.  Specifics of various system 
characteristics appear in Table II. 

C. Evaluation Procedure 

The source code changes in software repositories, i.e., 
commits, are used for the evaluation purpose.  Our general 
evaluation procedure consists of the following steps: 
1. Compute conceptual couplings on a release (e.g., 

KOffice 2.0.91) of a subject system – Conceptual 
Training Set. 

2. Mine evolutionary couplings (and association rules) 
from a set of commits in a history period prior to the 
selected release in Step 1 – Evolutionary Training Set.  

3. Select a set of commits in a history period after the 
selected release in Step 1 –Testing Set.  Each commit in 
the testing set is considered as an actual impact set, i.e., 
the ground truth, for evaluation purposes.  

4. Derive disjunctive and conjunctive impact sets from the 
two training sets for each commit in the testing set. 

5. Compute accuracy metrics for the two standalone 
techniques and their two combinations. 

6. Compare standalone and combination accuracy results. 
7. Repeat the above steps for all the considered subject 

systems and releases. 
The details of the training and testing sets are detailed next. 

1) Conceptual training sets - Corpora 
We generated two sets of corpora from the subject 

systems corresponding to the granularity of documents at the 
file and method levels.  The process of generating a corpus 
consisted of extracting textual information, i.e., identifiers 
and comments, from the source code for the specific 
granularity level.  The identifiers and comments, i.e., terms, 
from each file (or a method if that is the chosen granularity) 
formed a document, whereas a complete collection of these 

documents formed a corpus.  Once a corpus was built, LSI 
was used to index its term-by-document co-occurrence 
matrix.  Conceptual couplings between source code 
documents, i.e., files or methods, were then computed (see 
section III).  Details of the corpora, including the releases 
indexed, are provided in Table II.  The associated computing  
time was consistent with the previous uses [3, 34].  

2) Evolutionary training sets 
 In order to obtain evolutionary training sets we selected 

a period of history, which preceded the version of the system 
used to build the corpus.  For example, the corpus created for 
Apache httpd used the source code from version 2.2.3.  The 
commit history from releases 2.2.9 to 2.2.3 was considered 
for the evolutionary training set.  Commits with more than 
ten files were discarded.  This type of filtering is a common 
heuristic used in mining techniques to mitigate factors such 
as updating the license information on every file or 
performing merging and copying [24, 46].  Furthermore, 
because commits may contain non source code files, only 
source code files were considered and other types discarded. 

The tool sqminer was employed to mine evolutionary 
couplings (and association rules) in the itemset mining mode 
with minimum support values of 1, 2, 4, and 8.  Also, we 
considered all the possible association rules with the 
confidence values greater than zero.  Mining was performed 
at both file and method levels of granularity.  The mining 
time was in the order of a few seconds. 

3) Testing set 
The testing sets were extracted similar to training sets; 

however, the periods of history used were different from the 
training set.  The testing set consists of commits extracted 
from a period of history after the release date of the version 
of the system used to build the corpus.  For example, the 
commit history of Apache httpd after the release 2.2.3 and up 
to the release 2.2.5 was considered for the testing set.  The 
testing set provides a way to evaluate our proposed approach.  
Similar approaches for the training and testing sets are 
previously reported in the literature, for example in [24, 46]. 

Table III shows the details of the evolutionary training 
and testing sets considered at the file and method levels.  The 
entries corresponding to the method level are suffixes with a 
* symbol (same notation in other tables).  They include a 
range of releases corresponding to different history periods.  
Also, the numbers of commits and files (methods) during 
those periods of history are provided.  The (larger) training 
sets and (smaller) testing sets were extracted from the 
History (Table III) periods before and after the Versions 
(Table II) used to index with LSI.  For the method level, the 
number of commits corresponds to commits that contained 
method changes (and so differs from those at the file level). 

Table II. Characteristics of the subject systems 
considered in the empirical evaluation. 

System Version LOC Files Methds Terms 
Apache(httpd) 2.2.3 311K 782 n/a 6583 

ArgoUML 0.28 367K 1,995 n/a 9384 
iBatis 3.0.0-216 70K 774 n/a 3772 

KOffice 2.0.91 2.0.91 231K 6.5K n/a 48513 
KOffice 2.0.1 2.0.1 257K 6.7K 68.4K 32212 

Table III. Evolutionary training and (testing) 
datasets used for the empirical evaluation 

System History #  of 
Commits 

# of 
Entities 

Apache(httpd) 2.2.9-2.3.5 1736 (287)  2086 (982) 
ArgoUML 0.24-0.28 3375 (773) 4217 (621) 

iBatis 
3.0.0-190_b1 -
3.0.0-240_b10 108 (40) 461 (118) 

KOffice 2.0.91 2.0.0-2.0.91 2749 (522) 5580 (1072) 
KOffice 2.0.1 2.0.0-2.0.2 763 (255) 1233 (533) 
KOffice 2.0.1* 2.0.0-2.0.2 577 (192) 5530 (1438) 



 

 

D. Results 

1) RQ1:Does combining conceptual and evolutionary 
couplings improve accuracy of IA? 

Prior research efforts have investigated the performance 
of coupling metrics that use specific sources of information 
(e.g., structural and textual) to capture couplings in source 
code.  Our first research question focuses on determining if 
we can improve the accuracy of IA by augmenting metrics 
based on complementary underlying information. 

As a step toward determining the potential benefits of 
combining conceptual and evolutionary couplings, we 
analyze the orthogonality of the two standalone couplings.  
One situation where the combination of the techniques is 
beneficial is when techniques provide complementary sets of 
correct entities.  If the standalone techniques considered for 
combination provide identical or very similar information, 
combining them may not be a worthwhile effort.  In order to 
measure the degree to which the techniques could potentially 
complement one another we use the following metrics: 
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where correctmi represents the set of source code entities 
correctly identified when using coupling metric mi for IA.  

The two metrics capture the overlap between the set of 
correct source code entities and the percentage of correct 
entities identified only by mi respectively. 

The results of orthogonality metrics between the two 
metrics for the various systems are given in Table IV.  Based 
on our datasets, the overlap between the set of correct links 
for the two approaches did not exceed 46%.  Minimal 
overlap indicates potential orthogonality between the two 
techniques.  One exception is the case where virtually all 
correct entities identified by one technique make up a small 
subset of the correct entities identified by the other 
technique.  A similar scenario is where one technique 
performs inadequately and returns very few correct entities.  
Both cases are captured by our metric correctmi\mj.  Our 
results contain cases where conceptual couplings are capable 
of identifying a large portion of correct entities not identified 
by evolutionary couplings, and vice versa.  In case of 
KOffice 2.0.1 both techniques are capable of capturing a 
similar portion of correct entities.  These findings support 
our premise that combining conceptual and evolutionary 
couplings could identify a larger set of correct entities. 

Based on our datasets, conceptual and semantic 
couplings identify correct entities orthogonally.  With this 
knowledge we direct our attention to our second step towards 
demonstrating the benefits of combining the couplings.  

Table IV.   Orthogonality check for various cut points of conceptual (C), evolutionary (E), and their combination.  
The results show that conceptual and evolutionary couplings provide orthogonal information, and support a 

strong case for combining them. 
  5 10 20 30 40 50   5 10 20 30 40 50 

C\E 32 33 35 35 35 37 C\E 60 62 64 64 63 64 

E\C 39 36 28 23 20 17 E\C 26 22 16 13 12 11 Apache 

CE 29 32 37 42 45 46 

KOffice 2.0.91 

CE 14 16 20 23 24 26 

C\E 59 51 44 41 41 40 C\E 42 41 40 42 43 44 

E\C 28 26 28 25 24 22 E\C 43 38 36 35 33 32 ArgoUML 

CE 13 23 29 34 35 38 

KOffice 2.0.1  

CE 16 21 23 23 23 24 

C\E 67 65 69 70 70 70 C\E 47 48 46 47 46 46 

E\C 15 21 14 14 13 12 E\C 52 51 52 50 51 51 iBatis 
CE 18 13 16 16 17 18 

KOffice 2.0.1* 
CE 1 1 2 3 3 3 

Table V. Precision (P) and recall (R) percentages results of conceptual coupling (Conc), evolutionary coupling 
(Evol), disjunctive (Disj), and conjunctive (Conj) approaches to impact analysis for all systems using various cut 

points.  ImpC and ImpE show the improvement obtained by the disjunctive approach compared to conceptual and 
evolutionary couplings respectively.  The disjunctive approach outperforms with statistical significance. 

  5 10 20 30 40 50  5 10 20 30 40 50 
  P R P R P R P R P R P R  P R P R P R P R P R P R 

Conc 15 28 11 38 7 49 6 58 5 63 4 67 13 27 9 35 6 46 5 53 4 56 3 59 
Evol 18 38 11 43 6 48 4 51 3 53 3 54 9 19 6 22 4 24 3 26 2 28 2 28 
Disj 21 43 14 54 9 64 6 70 5 73 4 78 17 34 12 44 8 55 6 60 5 63 4 65 
Conj 16 34 10 40 6 47 4 47 3 48 2 48 8 16 5 21 3 22 2 22 2 23 1 23 
ImpC 6 15 3 16 2 15 0 12 0 10 0 11 4 7 3 9 2 9 1 7 1 7 1 6 
ImpE 
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Table V provides precision and recall results for the subject 
systems under study.  These results are obtained by using the 
various couplings for IA.  Only a subset of the cut points (μ) 
we considered are shown in Table V.  The cut points 
represent the sizes of the impact set considered with our 
combinations.  For example, a cut point of 5 indicate that the 
estimated impact set with our approach contained 5 entities. 

We considered both disjunctive and conjunctive 
approaches to combining couplings.  The disjunctive 
approach outperforms the conjunctive approach in all cases 
considered (see Table V).  Additionally, the conjunctive 
approach is generally unable to provide improvement over 
either technique.  This is somewhat expected because the 
two couplings appear complementary (see Table IV).  The 
orthogonality between the sets of correct entities identified 
by the two couplings appears to contribute to the 
performance of the conjunctive approach.  The utility of the 
conjunctive approach is probably better suited for scenarios 
where a pair of couplings identifies similar sets of correct 
entities, but varying sets of false positives.  For such a 
scenario the conjunctive approach may serve as a useful 
filtering mechanism for false positives.  The disjunctive 
approach better leverages the orthogonality between the 
couplings.  The rest of the discussion about the combinations 
of two couplings refers to the disjunctive approach. 

The prevailing pattern of our results demonstrates that 
the combination of conceptual and evolutionary couplings 
improves the performance over either standalone technique.  
Consider a case in Table V where μ = 30 for Apache httpd.  
Conceptual and evolutionary couplings in this instance yield 
recall values of 58% and 51% respectively, while the 
combination of the two increases recall to 70%.  Similar 
improvements are apparent throughout all the datasets 
considered in our evaluation.   Another example is where μ = 
50 for KOffice 2.0.1 (file-level granularity).  In this case both 
conceptual and evolutionary couplings result in recall of 37% 
while their combination gives recall of 57%.  Within our 
results a few cases surface that illustrate the importance of 
both techniques.  For example, in the case where μ = 5 for 
iBatis combining conceptual and evolutionary couplings 
does not improve accuracy.  This can be partially attributed 
to the accuracy of the evolutionary coupling metric.  In this 
case, the inadequate individual performance of a technique 
limits the gain acquired when they are combined. 

Our results for combining conceptual and evolutionary 
couplings are promising.   To further ascertain our 
conclusions on our initial dataset, we carried out a statistical 
test.  We developed four testable null hypotheses:  

H0 CP: Combining conceptual and evolutionary couplings 
does not significantly improve precision results of 
impact analysis compared to conceptual couplings. 

H0 CR: Combining conceptual and evolutionary couplings 
does not significantly improve recall results of 
impact analysis compared to conceptual couplings. 

H0 EP: Combining conceptual and evolutionary couplings 
does not significantly improve precision results of 
impact analysis compared to evolutionary 
couplings. 

H0 ER: Combining conceptual and evolutionary couplings 
does not significantly improve recall results of 
impact analysis compared to evolutionary 
couplings. 

We also developed alternative hypotheses for the cases 
where the null hypotheses can be rejected with relatively 
high confidence.  For example: 

Ha CP: Combining conceptual and evolutionary couplings 
significantly improve precision results of impact 
analysis compared to conceptual couplings. 

The remaining three alternative hypotheses are 
formulated in a similar manner and are left out for brevity.  

To test for statistical significance we used the Wilcoxon 
signed-rank test, a non-parametric paired samples test.  Our 
application of the test determines whether the improvement 
obtained using the combination of conceptual and 
evolutionary couplings compared to standalone approaches 
is statistically significant. 

Table VI presents the results of performing the Wilcoxon 
signed-rank test.  We performed the test for each of the four 
hypotheses for each system to determine whether the 
improvements for precision and recall when combining the 
techniques are statistically significant over the accuracy of 
standalone conceptual and evolutionary couplings.  In all 
cases considered for our dataset we obtained a p-value less 
than 0.05, indicating that the improvement in accuracy 
obtained is not by chance. 

2) RQ2: Does the choice of granularity (i.e., file vs. 
method) impact standalone techniques and their 
combinations? 

Our second research question focuses on the impact of 
granularity on the accuracy of the standalone techniques, as 
well as their combinations.  We examined the impact of 
different granularities on the accuracy of the couplings when 
they are used for IA.  Here, we focused on the accuracy of 
the various couplings on the system KOffice 2.0.1.  For this 
system we obtained results at both file and method levels of 
granularity.  Accuracy results of the techniques for IA are 
shown in Table V.  There is a noticeable decrease in 
accuracy when method level granularity is used.  Conceptual 
coupling is affected by the difference in granularity more 
than evolutionary coupling.  Regardless of the decrease in 
accuracy of the standalone techniques, when the two are 

Table VI. Results of Wilcoxon signed-rank test (μ = 30).  The p values indicate 
that the disjunctive approach provided improvement is not by chance. 

System H0 CP H0 CR H0 EP H0 ER Null Hypothesis 
Apache(httpd) 0.0002 0.0003 0.0001 0.0003 Rejected 

ArgoUML 0.0050 0.0039 < 0.0001 < 0.0001 Rejected 
iBatis 0.0126 0.0126 0.0001 0.0002 Rejected 

KOffice 2.0.91 < 0.0001 < 0.0001 < 0.0001 < 0.0001 Rejected 
KOffice 2.0.1 < 0.0001 < 0.0001 < 0.0001 < 0.0001 Rejected 
KOffice 2.0.1* < 0.0001 < 0.0001 < 0.0001 < 0.0001 Rejected 



 

 

combined there exists a statistically significant improvement 
in accuracy.  In certain cases the improvement achieved is 
6%.  Generally, only a small portion of correct methods 
identified by both techniques overlap, i.e., they exhibit 
orthogonality.  This allows their combination to provide an 
enriched set of correct methods. 

Our results show that the level of granularity does impact 
the accuracy of both standalone techniques and their 
combinations.  Although finer granularity decreases accuracy 
of all approaches, it does not prevent the combination of the 
two from outperforming the standalone techniques.  That is, 
the gain acquired by combining conceptual and evolutionary 
coupling exists regardless of the granularity considered in 
this study.  For both file-level and method-level granularity 
levels, combining conceptual and evolutionary information 
delivers accuracy superior to either standalone technique. 

E. Threats to validity 

We address some of the threats to validity that could 
have impacted our empirical study and results.  The uses of 
LSI and itemset mining algorithms are sensitive to a set of 
user-defined parameters.  It is a viable risk that the 
improvements gained by our approach are valid only for a 
particular set of these parameter values.  To address this risk, 
we experimented with different parameter values.  For 
example, the accuracy of evolutionary couplings decreases 
with an increase in the minimum support value; however, the 
trend of accuracy gains continued with our approach.  We 
will continue our quest to obtain the optimal values with 
other studies in the future.   

We measured the accuracy of IA with precision and 
recall metrics.  It is possible that a different accuracy metric 
may produce a different result; however, both these metrics 
are widely used and accepted in the community, including 
for IA.  We tried with F-measure, which is based on 
precision and recall, and also noticed statistically significant 
improvements with our disjunctive approach.  We 
considered (later) commits as the gold standard for 
computing our accuracy metrics.  It is reasonable to assume 
that not all the entities in a commit are related to a single 
change request, and a single commit may not capture all the 
entities related to a change request.  Therefore, they may not 
be an accurate representation of the actual change-sets and 
could have compromised our accuracy basis.  However, 
commits have been used as a basis for accuracy assessment 
previously (e.g., see Zimmerman et al. [46]).  We did some 
manual inspection and plan to conduct a user study with 
developer established actual impact sets in the future.  We 
reported our findings at the granularity of file and method 
levels.  A possible issue here could be how well our results 
hold for other granularity levels besides the two considered.  
We concur with previous studies [46] that file and method 
granularity levels provide a realistic balance of coarse and 
fine granularity levels for IA.  The accuracies of the two 
standalone techniques, however low in certain cases to raise 
a practicality concern, are comparable to other previous 
results [34, 46].  Our work shows how to improve accuracy 
by forming effective combinations. 

We evaluated on datasets from four open source systems 
that represent a wide spectrum of domains, programming 
languages (C/C++ and Java), sizes, and development 
processes.  However, we do not claim that our combined 
approach would operate with equivalent improvement in 
accuracy on other systems, including closed source. 

V. CONCLUSIONS AND FUTURE WORK 

The empirical assessment on four open source systems 
provides support for our approach with several conclusions 
in the context of change impact analysis. Combining 
conceptual and evolutionary couplings improves accuracy.  
Our findings indicate that in certain cases an improvement of 
20% in recall is achieved when conceptual and evolutionary 
coupling is combined.  The overall improvement obtained 
when combining the two techniques is statistically 
significant for the dataset used in our evaluation.  Although 
our combining methods of couplings may appear 
straightforward, it did provide promising improvements in 
accuracy.  Our findings show that the disjunctive approach 
clearly outperforms the conjunctive approach in accuracy.  
We conjecture that the difference in performance is, in part, 
an attribute of the orthogonal nature of the correct entities 
revealed by the two couplings in our empirical analysis. 

Varying granularity levels does impact accuracy; 
however, combining conceptual and evolutionary couplings 
maintains the accuracy gains.  Based on our datasets, using 
finer granularity (i.e., method-level) decreases the accuracy 
of all techniques considered.  One important point to note is 
that, regardless of the decrease in individual accuracy, the 
combination of conceptual and evolutionary coupling 
consistently outperformed both standalone techniques.  Thus, 
there is strong evidence showing the benefits of the 
combination of conceptual and evolutionary couplings at 
various levels of granularity. 

We plan to devise and empirically validate other 
combinations of conceptual and evolutionary couplings (e.g., 
weighed contributions of entities from each coupling based 
on the amount of change history considered). Another key 
future direction includes the addition of static and dynamic 
analysis information, and application of IR on multi-version 
artifacts (e.g., commit messages and bug reports) in our 
approach, and extending our approach to provide IA support 
beginning from a high-level textual change request.  We are 
also planning extensive comparative studies with other 
approaches (e.g., structural metrics).  In a previous study [3, 
34], it was reported that IR techniques performed as well as 
or better than those based on structural metrics for IA.  This 
work will serve as a guideline for our future studies.  
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