
Architectural Analysis of Systems based on the Publisher-Subscriber Style

Dharrnalingam Ganesan, Mikael Lindvall
F°aunhofer° CESE, College Park, Maryland

{dganesan, mlindvall)Wc-md.umd.edu

Abstract

Architectural styles impose constraints on both the
topology and the interaction behavior of involved
parties. In this paper, we propose an approach for
analyzing implemented systems based on the publisher-
subscriber architectural style. From the style definition,
we derive a set of reusable questions and show that
some of them can be answered statically whereas others
are best answered rasing dynamic analysis. The paper
explains how the results of static anal ysis can be used to
orchestrate dynamic analysis. The proposed method was
successfully applied on the NASA's Goddard Mission
Services Evolution Center (GMSEC) software product
line. The results show that the GMSEC has a) a novel
reusable vendor-independent middleware abstraction
layer- that allows the NASA's missions to configure the
middleware of interest without changing the publishers'
or subscribers' source code, and b) some high priority
bugs due to behavioral discrepancies, which were
eluded during testing and code reviews, among different
implementations of the same APIs for- different vendors.

Keywords: Architectural Styles, Middleware, Vendors,
Static and Dynanuc Analysis, Component-Connector
Views, Colored Petri Nets.

1 Introduction

Architectural styles are abstract "high-level" concepts
offering reusable solutions to recurring design problems.
Equivalently, architectural styles define the roles, the
topology, and the interaction behavior of involved
components [20]. The publisher-subscriber architectural
style is one of the most prominent styles, in which
different components communicate in an indirect
fashion by publishing and subscribin g to messages
managed by an intermediate communication bus (or
broker) [3]. This indirect connnunication makes the
architecture flexible because it facilitates adding and
removing components. This style is thus an attractive
option, for example, when one wants to develop a
family of similar products in a disciplined way. For
example, in a previous case study [6], we reported that
the NASA's flight software product line was developed

Lamont Ruley, Robert Wiegand, Vuong Ly,
Tina Tsui

NASA Goddard Space Flight Center,
Greenbelt, Maryland

{ lamont.t.ruley, robert. e. wiegand,
Vuong.T.Ly, Tina.Tsuil@nasa.gov

in a flexible way by adding or removing
publisher/subscribers, based on the needs of missions.

However, this increased flexibility of the publisher-
subscriber architectural style is also a curse because it
makes it difficult to predict the emerging behavior and
to prove the correctness of the integrated system even
though each individual component passed testing and
was demonstrated to be correct on its own. Thus, while
flexibility increased, analyzability decreased. One
example of problems that cannot be detected by
analyzing individual components is inter-component
oriented timing issues. Such issues emerge only when
several components are using the bus.

Several researchers have analyzed the publisher-
subscriber architectural style at an early stage (i.e.,
before the implementation) (e.g. [8, 9]). They construct
rigorous fornial models of the publisher-subscriber style
and prove correctness using model-checking techniques.
Unfortunately, many existing systems were developed
without such a rigorous architectural phase. Also, even
if there was such a phase, experience reminds us that the
implementation could deviate from the specified
architecture (e. g ., [16, 7]). Therefore, it is instructive to
reverse engineer the implemented architecture and
analyze the behavioral properties and constraints of the
publisher-subscriber style.

We developed a practical approach for analyzing
implementations based on the publisher-subscriber style.
Our key activity is to derive a set of reusable questions
from the definition of the style. These questions drive
the analysis and the answers to them constitute evidence
regarding the compliance of the implementation to the
style constraints and overall design quality. We will
show that some questions are possible to answer
statically, whereas others are better answered by
monitoring the running system. In the static analysis
phase, we bridge the gap between "high-level" concepts
such as publish, subscribe, unsubscribe, and
comnnunication bus, and the source code concepts. That
is, we locate key interfaces, methods, and data structures
used for implementing the publisher-subscriber style.
Our static analysis is guided by analyzing dependencies
to external entities (e.g., Middleware vendors' APIs and
progranuning language libraries) which are stored in our

experience repository, based on more than 10 years of
analysis of several commercial systems at Fraunhofer.

In order to conduct complementary dynamic analysis,
we use the results of the static analysis to a) define and
automatically insert probes at the right location for
collecting run-time events (e.g., call events), and b) store
and/or forward run-time events to various tools that we
use to analyze data. Our technical set-up for dynamic
analysis takes advantage of the publisher-subscriber
style by introducing a run-time event collector
component (RECD) into the software architecture. Our
probes emit run-time events as messages into the
communication bus, which deliver them to the RECD.
In a sense, dynamic analysis is seamlessly integrated
into the publisher-subscriber style. By monitoring the
running system, we interpret the run-time events for
discovering a) component-connector (C-C) views of the
publisher-subscriber style including components, ports
and connections between ports as well as b) sequence
diagrams including messages exchanged between
different components indirectly using the intermediate
bus or directly between components with the bus
hidden. We also discuss how we detect violations of
behavioral style properties. Our dynamic analysis is
facilitated by the construction of Colored Petri Nets
(CP-nets) [4]. CP-nets are useful for recognizing pre-
planned patterns in interleaved events. We used CP-nets
because run-time events of a publisher-subscriber
architectural style are highly interleaved. For example,
when one component is emitting subscribe events the
other component could be in the middle of creating a
connection to the communication bus.

The system under study is NASA's GMSEC system,
whose team has developed a software product line based
on the publisher-subscriber architectural style. The
proposed approach was followed for an independent
analysis of the GMSEC implementation. We discovered
a) a middleware abstraction layer that offers vendors'
independent abstract interfaces to interact with the
communication bus of different vendors, b) C-C views,
c) sequence dia grams, and d) some behavioral violations
resultin g in hi gh-priority bugs due to inconsistencies
between the implementations of the same interface for
different vendors.
Contributions of the paper: We have found little
discussion on the topic of analyzing structure and
behavioral constraints of architectural styles in the
reverse engineering community. To this end, we hope
the paper contributes the following:
1. A practical approach for analyzing the publisher-

subscriber style using a combination of static and
dynamic analysis. The technical set-up and analysis
questions are also reusable on other systems based
on the same style.

2. The reverse engineered GMSEC architecture is also
reusable, offering novel insights on how to design

and implement middleware abstraction layer, which
frees organizations from being vendor-locked.

2. Approach

In this section, we will introduce the "high-level"
concepts of the publisher-subscriber style, which will be
used to derive a set of questions for the architecture
analysis. In order to answer the questions, we will
present the approach for discovering a set of views,
using both the static and dynamic analysis.

2.1. Concepts of the Publisher-Subscriber Style

In the Publisher-Subscriber style, each participant can
play the role of a publisher of message, a subscriber of
messages, or both. Messages are key entities in this
style. Typically, each message has a subject (a.k.a.
topic) as well as a structure containing a number of
fields and values that carry the data to be sent [3]. The
central artifact is the broker or the bus (a.k.a. software
bus). A typical bus has elements for connection
management, subscription management, message buffer
and routing management, as well as interfaces for
publishing and subscribing, as shown in Figure 1. The
connection	 management	 is	 used	 by	 the
publishers/subscribers for connecting to and
disconnecting from the bus. Subscribers use the
interfaces of the bus to subscribe to messages of interest.
Similarly, publishers use the interfaces of the bus to
publish messages, which are stored in an internal buffer,
often created and managed by the software bus [3]. The
subscription management is used by the bus to manage
the list of subscribers. One important job of the bus is to
route the messages to appropriate subscribers, thus it
needs to have message routing management concepts.
Note that the bus can also play a role of publisher and/or
subscribers by using its own interfaces.

There are several implementations of software buses
on the market; typically based on middleware. Systems
that make use of a middleware may want to hide/wrap
and even generalize the interfaces of the middleware in
order to avoid being dependent on a particular
middleware from a particular vendor. To provide true
flexibility, the programming language used to
implement the bus should not dictate the programming
language to be used by the subscribers and publishers.

Connection Message Buffer Interfacesfor
Mana gement Management Rib lishulaand

SubscRbin
Subscliption MessageRouting

Mana gement Manaaenlent

Figure 1 Typical elements of a software bus

2.2. Deri-,ping Analysis Questions from the Style
In order to understand and assess the implementation of
systems based on the publisher-subscriber style, we now
derive a set of typical questions based on the high-level
concepts of this style, introduced above.

1. Are there any middleware used for implementing a
software bus?

2. If middleware is used, is there any middleware
abstraction layer that hides the knowledge of a
particular middleware API?

3. Can publishers and subscribers be implemented in
different progratiutung languages? If yes; how are
the variants in the languages managed?

4. Can publishers and subscribers come-and-go
dynamically at nin-time?

5. Can publishers, subscribers, and the software bus
run on different machines?

6. Which subscribers receive messages from which
publishers and in what order?

7. Do subscribers receive messages that are not
subscribed by them?

8. Can subscribers subscribe to the same message
more than once without an intermediate
unsubscribe?

9. Can subscribers unsubscribe to messages that are
not subscribed by them?

10. Are there timing delays in delivering messages to
subscribers?

The above set of questions is concerned with both the
structural and the behavioral aspects of
implementations. For instance, questions 1-5 deal with
the module-structure of the system, whereas questions 6-
10 deal with behaviors. Therefore, our approach has a
static and a dynamic analysis phase. In the static
analysis phase, we discover key header files, classes,
interfaces, and routines related to the software bus
concepts. In addition, we create "box-and-lines" views
of modules related to the software bus concepts that we
have discovered. In the dynamic analysis phase, we use
the results from the static analysis in order to a) create
probes that monitor the running system, and b) for
pattern recognition of run-time events. The data from
the probes is used to discover components and
connectors and are documented as component-connector
views and sequence diagrams. The discovered
relationships depicted in component-connector views
offer insights related to the run-time structure of the
software, which are difficult to obtain using static
analysis techniques. The views are used to understand
the implemented architecture and to draw conclusions
on the systems' implementation quality. Now, we
explain how we perform static and dynamic analysis to
answer these questions.

2.3. Static Analysis Strategies
Our goal of the static analysis step is to locate "high-
level" concepts of the publisher-subscriber style in the
source code. We automatically extract dependency
models (e.g., include relations, call relations) from the
source code and analyze them semi-automatically. Our
static analysis strategy is based on observations that
systems typically do not implement the publisher-
subscriber style from scratch; instead they build on top
of external entities such as middleware frameworks
offered by cotntnercial or open source vendors.

For the analysis, we use a set of tools and other
resources that have been developed during the past 10
years at Fraunhofer. For example, we stored the names
of header files, classes, and methods/functions of
frameworks and progratmning language libraries that are
architecturally-significant for each architectural style.
For example, Table 1 shows a small snippet of the
stored data for two middleware vendors, namely the
Tibco and the Apache Active MQ. We store this data in
a relation database model, and use it in conjunction with
dependency models in order to locate the files that are
involved in the implementation of the software bus
concept. For querying the dependency model, we use the
relation partition algebra (RPA) [5]. The search result is
used to a) discover the presence of any abstraction
layers or wrappers to such vendor libraries, and b) detect
potential architecture issues. For example, if the system
under study uses vendor libraries directly without any
intermediate wrappers then it indicates a potential
design issue, because the system is now vendor-locked,
impeding switching to another vendor's solution.

Table 1 an excerpt of middleware vendors' APIs.

Vendor Method Name Purpose
Tibco SSConnection::SSConnection Initializes
Smart connection to
Sockets the
(SS) middleware
Tibco SS SntartSockets::TipcSrv::send Publishes the

eiven message
Tibco SS SntartSockets::TipcSrv::setStibscribe Subscribes to

the given
mesa e

Apache CMSCrntuection::CMSConnection Initialize
Active connection to
MQ the

middleware
Apache erns:: Session::createProducer Publishes the
Active eiven message
MQ
Apache ciiis::MessageCoiisumer::setMessageLi Subscribes to
Active stener the given
MQ I message

In order to reason about how the system handles
programming language variants, we locate dependencies
to common header files and trace backwards. For
example, JNI [15] and XS [14] are respectively used for

communication between Java to C++, and Perl to C++.
Using this knowledge, we can locate files that are
dealing with more than one programming language. We
attempt to understand how the language-to-language
translation is separated from other concerns.

We also keep track of typical variable and routine
names developers use for implementing different
architectural styles of systems. For example, in a
previous case study, programmers used "publish",
"subscribe", "sendMsg", "rcvMsg", and "unsubscribe"
to implement the publisher subscriber style in the C
language [6]. We use these sets of keywords to search
the code base and/or the extracted dependency models to
recognize the presence of potential architectural styles in
the source code. To facilitate searching, we developed a
robust implementation of the vector space model ; based
on [18]. which allows us to search the source code base
and outputs a ranked list of files similar to a given list of
such keywords. This search technology also facilitates
the static analysis of systems that support different
programming languages for implementing the publisher
and subscriber style. For example, we can select the
Java implementation of the software bus and request for
files "similar" to the given set of files, which might
implement the software bus for other prograrnrning
languages.

We stop the static analysis after getting answers to
questions 1-5. Since discovery is an iterative process, we
often conduct more static analysis as dynamic analysis
raises new questions. The output of the static analysis is
the discovery of the presence (or absence) of significant
components as well as key header filers and/or
interfaces corresponding to the "high-level" concepts
shown in Figure 1. This output feeds into the dynamic
analysis activities.

2.4. Dynamic Analysis Strategies

Our goal of the dynamic analysis is twofold. First, to
discover components and connectors in the
implementation, and create corresponding component-
connector views of the publisher-subscriber style.
Second, to create sequence diagrams, showing messages
exchanged among the publishers and subscribers,
including the support for hiding the intermediate
software bus. We need dynamic analysis because a)
there is an inherent dynamism in the publisher-
subscriber style, meaning that publishers/subscribers can
connect and disconnect as each individual component
feels necessary. Thus, the actual architectural
configuration of the system is often only known at run-
time, and b) questions related to ordering of messages
and timing are not easy to answer statically, if not
impossible. The correctness of systems based on the
publisher-subscriber style depends on the correct
functioning of the software bus, and also depends on the

publishers and subscribers using the software bus in the
right way. A misbehaving component could easily
prevent it from functioning properly.

In several cases, we observed that the software bus
and the publisher/subscribers are developed by different
teams, who may even belong to different organizations.
Thus the developers never meet in person and build
components solely based on interface control documents
and similar information. Therefore, it is often not
possible to statically check the correctness of the
behavior of the resulting system, and verify that the
publishers/subscribers and software bus are all "safe".
Thus, we need to monitor the running system and be
able to check the correctness at run-time so that
constructive actions can be taken. For example,
notifying the misbehaviors for further investigations by
system administrators, triggering requests for removing
misbehaving parties, etc.

Now, we will enumerate a few key challenges related
to such analysis and how we address them in dynamic
analysis of the publisher-subscriber style.

First, in order to minimize both the overhead of
injected monitoring code and the amount of run-time
data, we need to locate the right spots where the sought
for data can be collected. We address this challenge by
inserting probes that monitor the usages of the interfaces
of the software bus that were discovered using static
analysis. Depending on the context factors (e.g.,
software architecture, programming languages, and
organizational boundaries), we choose the most
appropriate instrumentation strategy for defining and
inserting probes. In [7], we used run-time weaving using
Aspect-J for Ricoh's photocopy machine. In the context
of the publisher-subscriber style, we can design probes
to emit run-time events, as messages with the special
subject "trace", into the software bus itself.

Second, we need to collect the emitted run-time
events and forward them to analyzers. In our approach,
we introduce and integrate a special component called
the Run-time Event Collector (RECO) into the
publisher-subscriber architecture, which subscribes to all
messages with "trace" as the subject.

Third, we need to systematically handle interleaved
run-time events of the publishers and subscribers for
discovering component-connector views and sequence
diagrams. For instance, when one publisher is in the
process of creating a connection to the software bus,
another subscriber might already have subscribed to
another or the same message, and at the same moment,
another subscriber mi ght be waiting for other set of
messages to come in. Note that publishers and
subscribers could run on different machines, processes
and threads. As a consequence, the emitted run-time
events are highly interleaved and difficult to analyze.

We tackle the challenge of analyzing interleaved
events by using Colored Petri Nets (CP-nets), which are

shown to be a useful executable formal language for
handling asynchronous systems behavior [4]. CP-nets
are well-elaborated in [7]. Basically, a CP-net is a graph
with two types of nodes called places and transitions.
Tokens are entities with data attributes/fields, associated
with places. Each transition can have one or more input
places and one or more output places. Every transition
has a precondition which is a Boolean expression
associated with input places. A transition fires if there is
at least one token in each of the input places that satisfy
the precondition. If a transition fires, it removes one
input token from each of the input places. Every
transition has an action, which is a sequence of
assignment statements that assign tokens to output
places when transition fires. We developed a prototype
implementation of CP-nets that is described in [12].

Based on the publisher-subscriber style and its
implementation concepts, which was discovered during
static analysis, we constructed CP-nets that process the
incoming run-time events and recognize pre-planned
patterns, and produce the data necessary for constructing
C-C views and sequence diagrams. By pre-planned
patterns, we mean the implementation constructs
corresponding to architectural constructs. For example;
calls to the "publish" method of the Connection class
correspond to the abstract publishing concept in the
style. The output of CP-nets is used to visualize both C-
C views and sequence diagrams that hide the software
bus. If we do not hide the software bus, all
conununication will be between a component and the
software bus. We developed Dyn-SAVE to
automatically create and visualize sequence diagrams
based on output from such CP-nets [1 31.

It is worth noting that CP-nets run in parallel to the
system under study and analyses the run-time events at
run-time. Thus, it is a novel formalism for building
architectural monitoring and compliance checking at
run-time for dynamically reconfigurable systems. In our
approach, we also use CP-nets for checking behavioral
constraints at run-time. For example, we can check
whether a subscriber receives any message other than
what was subscribed as follows: One transition of the
CP-net can wait for subscribed events and output, to one
of its output places, the list of subscribed messages by
subscribers. The second transition of the CP-net can
wait for events that read messages from the software bus
to occur, and output, to one of its output places, the list
of messages read by each subscriber. The third transition
of the CP-net, designed to consume the output of the
above two transitions, can output to its one of the output
places, the list of unwanted messages wrongly routed by
the software bus. Figure 2 summarizes the conceptual
elements of our dynamic analysis environnnent for
analyzing systems based on the publisher-subscriber
style. It is worth noting that the RECO component is in
fact plugged into the running system — just like other

components — probes can also be injected into the
RECO component in order to make sure this trace
collection component uses the software bus in the right
way.

GUI -mg
Dyn-SAVE

stv_ le Constraints Checker

Abstraction Builder	 usntg CP-nets

using CP-nets

Ruu-tune Events	 Bnn-time;went^¢]kctor

(e. g., Call Event)	 (RECO) component
.nblished on the bus

Probes using
static analysis

System
0

Figure 2 Conceptual Elements of Dynamic Analysis.
Arrows denote the direction of data flow.

3. Analysis of the NASA's GMSEC

3.1. Objectives of the Case Study
The NASA's GMSEC branch has developed the
GMSEC software architectures as a reusable framework
for missions inside and outside the NASA. In addition to
their rigorous reviews and testing, they also prefer an
independent organization to review the implementation
quality, and report to them architecture/design issues as
well as behavioral problems that could lead to failures.

3.2. General Process for the Analysis
In the first part of the analysis, the NASA's GMSEC
team provided the GMSEC framework 2.6 as well as
some example applications that illustrate the publisher-
subscriber architectural style. The Fraunhofer team then
analyzed this version statically from the point of view of
product lines and software architectures. This analysis
led us to understand the implemented software
architecture of the GMSEC framework. After the
analysis, the Fraunhofer team presented the discovered
architectural issues to the GMSEC team, which
addressed some of the high-priority issues in versions
3.0 and 3.1. The GMSEC team then provided the 3.1
version and a set of real applications for analysis. The
Fraunhofer team set up a test-bed for running and
performing dynamic analysis of the GMSEC, which
added to the results in this paper. This fruitful process,
which is supported by NASA IV&V's Software
Assurance Research Program (SARP), has been going-
on for a year.

3.3. Static Analysis of the GMSEC
The GMSEC source code contains several programming
languages (C, C++, Java, and some Perl). We extracted

code-level dependency models (e.g., include, import,
call relations) and stored them as binary relations for
querying using the RPA. We briefly explain how the
dependency models were used to discover the software
bus and the middleware abstraction layer in GMSEC.

Our approach was a combination of bottom-up and
top-down strategies. Recall that we stored a list of
middleware frameworks and the names of header files,
classes, function/methods that deal with concept such as
connecting to the middleware, sending, and receiving
messages, etc., (see Table 1). In the bottom-up strategy,
we queried the dependency models for all usages of
cornrnercial middleware frameworks and sockets. This
led us to locate the directories and files of the GMSEC
framework that implement the concepts of the publisher-
subscriber style. We lifted the file-level dependencies to
directory-level dependencies using the RPA's lift
operator. Our conclusion is that the GMSEC framework
has a clean implementation that separates the concerns
of using and supporting several conunercial nddleware
from providing software bus services to subscribers and
publishers. The separation of concerns is implemented
using a set of wrappers, one for each external
middleware framework, as well as for the standard
socket library. Each wrapper provides the same set of
services to publishers and subscribers, thus hiding the
differences between different rniddlewares. Thus, usages
of external vendors' libraries are only allowed through a
wrapper. For example, the ICE (Internet Communication
Engine) is a commercial middleware that offers APIs for
developing systems based on the publisher-subscriber
style. The GMSEC framework offers a wrapper called
ice that accesses the ICE APIs. All vendor libraries
supported by the GMSEC framework are wrapped in the
same way, see Figure 3.

Connection

GMSEC/Wrapper

ti bco_ry I	 I websphere7 I	 I tibco_ss

ice	 I	 I mb I	 I I	 soap	 I I activemq

External I I	 MQSeries 1 1	 Active MQ

ICE	 I	 I socket.h I	 I stdsoap2.h

ICEStorm

ICEUtiI I	 I 7bco Rv I	
I Tibcosmart

Figure 3 A slice of the GMSEC from the viewpoint of
dependencies to external middleware and socket

libraries. Boxes are directories (except socket.h and
stdsoap2.h and Connection). Arrows denote the
direction of module dependencies. The filled arrow
denotes that each module within the wrapper folder
ifflierits from the Connection class, which offers
interfaces for publishing, subscribing, etc.

All wrappers are fully implemented in C++. Each
wrapper inherits from the abstract base class called
Connection which contains interfaces for connecting to
the middleware, publishing, subscribing, etc. In addition
to commercial middleware, the GMSEC team also
implemented their own middleware, which is called the
softvi^are message bits (inb); based on standard sockets.
We queried the dependency models to understand who
uses each wrapper of the middleware vendors, which
showed that there are no static dependencies to the
wrapper folder. In order to understand this design, we
also used a top-down strategy using the simple example
applications offered as part of the GMSEC distribution.
The examples clarified that there is a class called
ConnectionFactory, which is responsible for
dynamically loading the wrapper of a vendor at run-time
based on configuration settings. The build process of the
wrapper showed that there is a dynamically loaded
library (dll) for each vendor. For example, the wrapper
implementation of the ActiveMq middleware is
compiled into gmsec_activemq.dll for Windows, and
gmsee_activemq.so for Linux. The source code of the
ConnectionFactory class revealed that each wrapper
implements standardized interfaces (e.g.,
CreateConnection), which are called by the
ConnectionFactory at run-time to initialize the wrapper
by loading the corresponding dll. The CreateConnection
method of the loaded dll creates an instance of the
corresponding nvddleware's connection class.

As discussed above, the core of the GMSEC is
implemented in C++. However, the GMSEC also
supports other publishers and subscribers being
implemented in lan guages such as C, Java. and Perl. We
analyzed the implementation of the core in order to
understand how it handles variability due to
programming languages. We used our text-based
similarity tool for this purpose, and it revealed that there
is an equivalent of Connection and ConnectionFactory
class for each progrannning language. This was possible
to discover automatically because the GMSEC team
used the same method, variable names, and signatures in
all prograrnrning languages. Since the GMSEC uses the
` jni.h" file, which supports connnunication between
Java and C++, it became clear that all calls to the Java
implementation of the Connection, ConnectionFactory
are redirected to respective C++ method calls using JNI
[15]. Similarly, all calls to the Perl version of the
Connection, ConnectionFactory are redirected to C++
method calls using the XS Perl to C++ interface [14].

To sum up the results from the static analysis, an
attractive aspect of the GMSEC framework is that
flexibility is built into the architecture, meaning that a)
missions can easily add new middleware vendor of their
interest by inheriting and implementing the abstract base
class (Connection), b) missions can switch between
different middleware using configuration settings and
without	 changing	 the	 source	 code;	 the

ConnectionFactory class will take care of loading and
binding to the selected middleware wrapper, c)
applications (i.e., publishers/subscribers) are agnostic to
middleware vendor's API because they program to the
vendor independent abstract base class, d) applications
can be programmed in different languages, and e)
applications can freely enter at run-time by connecting
to the runningring software bus. From the static analysis, we
understood the structure of the GMSEC, key interfaces,
and classes involved in the publisher-subscriber style.
We will now use this knowledge to analyze behavioral
aspects of the style using dynamic analysis_

3.4. Dynamic Analysis of the GMSEC
During the static analysis, we observed that
dependencies among applications of the GMSEC are
impossible to extract statically because all
communication is indirect using the intermediate
software bus using middleware. Thus, it is difficult to
determine exactly which application sends and receives
messages. Therefore, we also conducted dynamic
analysis, and customize Figure 2 to the GMSEC.

3.4.1. Defining Probes of the GMSEC Application
All "real" applications given to us are implemented in
Java. Therefore, we have chosen AspectJ as the
language for inserting probes [11]. Because the static
analysis showed us that the Connection class is the core
class for connecting to the middleware, publishing,
subscribing messages, etc., we injected probes before
and after the invocation of the methods of the
Connection class in each application. We inserted
probes "before" and "after" so that a) we could calculate
the execution time of each method, and b) we could
capture parameter values, which mi ght be updated due
to call-by-reference. We weaved our probes into the
compiled binary class files of the GMSEC applications,
which use the framework. Our probes emit run-time
events as messages (with subjects "trace -before" or
"trace. after") using the APIs of the Connection class,
resulting in the publication of nm-time events usin g the
software bus itself It is worth noting that we can use
any middleware, for example a middleware, different
from the one used for publishing/subscribing "real"
messages, to send out trace messages. We use different
middleware for "trace" and "real" messages in order to
avoid any communication conflicts, see Figure 4.

3.4.2. Developing the RECO component
We developed the RECO component using the GMSEC
APIs, and thus it can be plugged into the GMSEC run-
time environment like any other GMSEC compliant
application. The RECO plays the role of a subscriber by
subscribing to all messages with the subject
"trace.before" or "trace. after". One precondition for the
RECO component is that it should use the same
middleware that was used by the probes, otherwise, the
trace messages will not be delivered to it by the GMSEC
software bus (see Figure 4). We nm the RECO
component in monitoring mode in order to verify that it
follows the behavioral constraints of the publisher-
subscriber style and that it works well with all
configurations of the middleware type. This is why there
is a bidirectional arrow between the RECO component
and the software bus for trace message. The RECO
component reads traces of other applications and
publishes its own traces (see Figure 4). Note also that
the RECO component can be configured and deployed
to run on a different machine. similar to other GMSEC
applications.

Software BUS (for "trace" messages)

L— ----^ ------r------
i

GEDAT	 CAT	 SA	 RECD

I
Software Bus (for "real" messages)

Figure 4 an overview of the environment for the
dynamic analysis of the GMSEC. Each filled bubble is a
GMSEC application. Two software buses are
respectively used for publishing "trace" and "real"
messages. RECO is the component for collecting traces
enutted by other applications, including its own traces.
Arrows denote data-flow.

3.4.3. Discovering C-C views and Sequence Diagrams

Readers who are unfanuliar with the concepts of CP-
nets are requested to [7], which offers an in-depth
discussion on how CP-nets were used for analyzing the
Pipe-and-Filter architectural style of Ricoh's photocopy
machine software. We used the same concept to perform
analyses of the Publisher-Subscriber architectural style
below. Here, we informally explain the design of CP-
nets for discovering the C-C view of the publisher-
subscriber style. We designed our CP-nets in a modular
fashion, meaning that it was a composition of several
CP-nets such as a) One CP-net for recognizing the
creation of a connection to the software bus by

monitoring call events to the `Create' method of the
GMSEC API (Le., to the ConnectionFactory class
explained in static analysis), b) One CP-net for creating
the connection port used for publishing messages on the
software bus. The CP-net implements this capability by
monitoring call events to the `publish' method of the
Connection class, c) One CP-net for creating the
connection port used for subscribing messages on the
software bus. The CP-net implements this capability by
monitorine call events to the `subscribe' method of the
Connection class, and d) One CP-net for attaching the
ports of publishers with subscribers. Two ports are
attached if one party consumes the messages published
by the other party. Matching the subject of the published
message with the subscribed message is the key activity
of this CP-net.

In order to discover the C-C view, we ran the
constructed CP-nets on events emitted by the running
system. We used the RECO component, which places
each run-time event into the different places that are
responsible for holding call-events. Different parts of the
CP-net processed the call-events, as explained above,
and produced the C-C view as a collection of tokens.
Here, we have manually drawn the C-C view by using
the discovered high level events, see Figure 5 for an
example. In addition, we can see all connections to the
software bus that are created by each application and
can determine how many they are, for example.

Pid-7024(RECO)

rf	 , I
Pid 7720(SA)	 Pid 7252 (CAT)

Pid 4704(CATGUI)

Pid-3804 (GEOAT)

^ Connection port for publishing tothe software bus

0 Connection port for subscribing to the software bus

Figure 5 An example C-C view discovered using run-
time events. Each box is a run-time process and the
naives of applications are placed in brackets.

All applications communicate with the RECD
component because it consumes the run-time events that
are published by the other applications. When we
showed Figure 5 to the GMSEC team, they mentioned
that this view is very useful as it nicely captures inter-
communication among different applications at a high
level of abstraction, a view that is normally difficult to
create. The good news is that there are no surprising
dependencies between the applications. However, one of
the developers mentioned that he did not know the fact
that the CAT has 3 connections to the GMSEC bus for
publishing messages to other GMSEC applications.

Thus, this view can be also used by developers to
understand exactly the dynamic architecture of a
complex system. In order to understand hoe r messages
are exchanged among different parties of the publisher-
subscriber style, our CP-nets used the subjects of the
messages that were subscribed by the subscribers and
the subjects of the messages published by the publishers.
If the subjects of the messages match, then our CP-nets
store the connection between publishers and subscribers,
the messages, and sending and receiving time of the
messages. We visualized that output using the Dyn-
SAVE tool, as shown Figure 6 for example. We can
visualize messages and their data fields, too.

d 725:

152467 rns

85 ms

92 ms

153267 rns

153907 rns

153255 rns

154797 rns

154806 ms

Figure 6 A snippet of the sequence diagram showing
messages exchanged among publishers and subscribers.
It also shows the time at which messages are sent
received. Contents of messages can also be visualized.

3.4.4. Detection of a High-Priority Bug
Here we briefly explain one of the bugs in the GMSEC
framework, which is due to inconsistencies in the
implementation of the same abstract interface
(Connection) by different wrappers of middleware
vendors, see Figure 3. We developed three CP-nets that
check constraints of the publisher-subscriber style. One
CP-net keeps track of all calls to the "subscribe" method
of the Connection class, another CP-net keeps track of
all calls to the "unsubscribe" method of the Connection
class. A third CP-net detects multiple calls to the
subscribe event, without an intermediate unsubscribe.

The CP-nets reported that the RECO component
subscribed to the same message more than once. The
GMSEC API has a feature that allows applications to
have a call-back capability when a message arrives from
other applications. We used that feature and subscribed
to the same message three times, because we wanted to
print "trace" messages in three different formats using
three different call-backs. When we used the GMSEC's

software bus (i.e., "nib" in Figure 3) to send and receive
"trace" messages, the return code of all three calls to the
"subscribe" method was NO ERROR. We tested how
activemq behave for the scenario and switched from the
nib to the activemq middleware wrapper. Its "subscribe"
method returned MIDDLEWARE_ERROR reporting
that the RECO component makes multiple subscriptions
to the same message.

We showed the RECO implementation to the
GMSEC team; and discussed the behavioral
inconsistency between the two middleware wrapper
implementations of the same abstract interface (i.e., the
Connection class, Figure 3), which caused the RECO to
fail when we switched from one middleware wrapper to
another wrapper. They agreed that this is an important
bug and will fix so that all middleware wrappers will
behave in an equivalent way with respect to their return
code. Otherwise, applications cannot reliably choose
and/or switch between different middleware wrappers.
We would not have detected this important bug unless
we modeled and verified the run-time behavioral
properties of the publisher-subscriber style.

3.5. Answering the Questions

Question Answers/Comments
1. Are there any middleware used Yes. The GMSEC software bus is
for implementing a software bus? implemented using middleware

technology.
2. If middleware is used. is there Yes. There is air 	 layer
any middleware abstraction layer that	 "hides"	 vendor-specific
that hides the knowledge of a APIs.

articular middleware API?
3. Carl 	 and subscribers Yes. The core of the GMSEC is
be	 implemented	 in	 different implemented in C++. However,
programming languages? If yes, there are interfaces for C, Java,
how	 are	 the	 variants	 in	 the and Perl. Language variants are
languages managed? managed using JNI [15] and XS

[14].
4. Can publishers and subscribers Yes.	 Publishers	 and/or
come-and-go dynamically at nut- subscribers can freely enter/leave
time? the running system.

5.	 Carl 	 subscribers, Yes. Publishers and subscribers
and the software bus run on just need the IP address and the
different machines? port number of the software bus.
6.	 Which	 subscribers	 receive The	 discovered	 sequence
messages from which publishers diagrams answers this question
and in what order? for	 the	 scenarios	 we	 have

executed.
.	 Do	 subscribers	 receive No.	 However,	 we	 cannot

messages from connections that extrapolate	 because	 dynamic
are not subscribed by them? analysis	 results	 are	 not

generalizable.
8.	 Carl 	 subscribe to Yes and No. This is a bu g the
the same message more than GMSEC team is currently fixing
once	 without	 air it.
unsubscribe?
9. Carl 	 unsubscribe to No, not for the execution traces
messages that are not subscribed we analyzed.
by them?
10. Are there timing delays in Currently..	 we	 are	 analyzing
delivering	 messages	 to timing	 aspect	 for	 different

subscribers?	 middleware configurations using
the	 discovered	 sequence
diagrams.

3.6. Connecting the GMSEC's Business Goals
with Implemented Architectural Decisions

In order to understand the relationship between the
GMSEC's business goals and the implemented high-
level architectural decisions, we discussed with the
GMSEC project manager, the product leader, and senior
engineers. Based on this discussion, we were able to
explicitly link the business goals and software
architectural decisions (see Figure 7).

High-level Goals	 The GMSECApproach

Simplifydevel1p-1t, integration
and testing GMSEC does not dictate

components, butletsusers
choose

Facilitate technology infusion
overtime

Provide publisher-subscriber
Support evolving development interfaces
and operational concepts

Provide multiple language
Allow for mix of heritage, COTS bindings
and new comporre nts

Avoid Vendor lock-in Provide a middleware abstraction
layer

Allow developers to carry their
GMSEC knowledge between Standardize interfaces—not
projects/components components

Figure 7 Relationships between business goals and
supporting architectural decisions.

It is interesting to note from this study that important
architectural decisions were primarily influenced by
business goals. Therefore, it is advisable that the
implemented architecture needs to consistent with the
specified architecture, as shown to be true for the
GMSEC with some exceptions mentioned above.

4. Brief Comparison to Existing Work

We will first list a few related articles and then highlight
countnon differences to our work. Riva et al. extract both
the module-structure and sequence diagrams by
respectively using static and dynamic analysis [17].
Wendehals and Orso extract automata using execution
traces [22]. Giannakopoulou et al. use LTL to verify
behavioral properties of execution traces [10]. Schmerl
et al. use the pair of architecture and implementation
styles to discover C-C views of a running system [19].
Stroulia and Systa [21], and Cornelissen et al. provide
an in-depth survey on other dynamic analysis techniques
[1]. Dong et al. review methods and research tools for
recognition of desi gn patterns from the source code [2].

Key differences between our work and the existing
work are: We extracted component-connector views,
which showed the run-time structure of the software.

We used CP-nets to systematically tackle the
interleaving of runtime events with respect to the
software architecture. We discussed several adaptations
of the DiscoTect method in [7]. Our sequence diagrams
can a) hide the software bus for analyzing the publisher-
subscriber style, and b) show attributes/parameters of
messages exchanged between parties. If we exclude
parameters, like in many existing work, we cannot
distinguish calls to the subscribe method on two
different message subjects, for example. Cornelissen et
al. mentioned that there is a short-coming of research, in
reverse engineering, on systems that evolve at run-time
like the GMSEC. Regarding design pattern discovery;
our focus was on bridging the abstraction gap between
run-time events and the publisher-subscriber style.

5. Conclusion and Future Work

We presented a practical approach for analyzing systems
based on the publisher-subscriber architectural style. We
derived a set of analysis questions, which focused on
both the structural and behavioral constraints of the
style. First, we performed the static analysis to answer
the questions related to the structural constraints.
Second, we used the results of the static analysis to
organize the dynamic analysis for answering behavioral
constraints. We discovered component-connector views
and sequence diagrams using execution traces, which
were fed into our Colored Petri Nets, for tackling the
challenge of interleaving of run-time events. Using this
approach on the NASA's GMSEC, we discovered that
the GMSEC has a) a good middleware abstraction layer,
which helps in avoiding vendor lock-in, and b) has some
high-priority bugs due to behavioral discrepancies
among different middleware wrapper implementation.
Our future work will focus on analyzing timing aspects
of different middleware wrappers.

References

1. B. Cornelissen, A. Zaidman, A. Deursen, L.
Moonen, and R. Koschke. A Systematic Survey of
Program Comprehension through Dynamic
Analysis. In IEEE TSE, 35(5), 2009.

2. J. Dona, Y. Zhao, and T. Peng. Architecture and
Design Pattern Discovery Techniques - A Review.
International Conference on Software Engineering
Research and Practice. 2007.

3. P. Eugster; P. Felber, R. Guerraoui, and A.
Kernnarrec. The Many Faces of Publish./Subscribe.
ACM Computing Surveys, 35(2), 2003.

4. K. Jensen, Coloured Petri Nets, Basic Concepts,
Analysis Methods and Practical Use, Springer
Verlag, 1993.

5. L. Feijs, R. Krikhaar, and R. Van Ommering. A
Relational Approach to Support Software

Architecture Analysis. Software Practice and
Experience, 28(4), 1998-

6. D. Ganesan, M. Lindvall, D. McComas, and M.
Bartholomew. Verifying Architectural Design Rules
of the Fli ght Software Product Line. In Software
Product Line Conference (SPLC), 2009.

7. D. Ganesan, T. Kueler, and Y. Nishimura.
Architecture compliance checking at run-time-
Journal of Information and Software Technology
(IST). 51, (2009).

S. D. Garlan, S. Khersonsky, and J. S. Kim. Model
checking publish-subscribe systems. International
conference on Model checking software, 2003.

9. B. L. Ghezzi and C. L. Mottola. On Accurate
Automatic Verification of Publish-Subscribe
Architectures. In ICSE, 2007.

10. D. Giannakopoulou and K. Havelund. Runtime
Analysis of Linear Temporal Logic Specifications.
In ASE, 2001.

11. G. Kiczales, J. Lamping, A. Mendhekar, C. Maedar,
C. Lopes, J.-F. Loinatier, J. Irwin, Aspect-Oriented
Programming, ECOOP, 1997.

12. O. Lehr. A Framework for the Detection and
Analysis of Software Connectors. University of
Mannheim, Master Thesis, 2010.

13. M. Lindvall. Using sequence diagrams to detect
cominunication problems between systems. In IEEE
Aerospace Conference; 2008-

14. XS Module. http://en.wikipedia.org/wiki/XS (Perl).
15. JNI. http://java.sun.com/j2se/1.42/docs/miide/jni.
16. A. Postma. A method for module verification and

its application on a large component-based system.
In IST 45, 2003.

17. C. Riva, J. Rodriguez. Combining static and
dynamic views for architecture reconstruction. In
CSMR, 2002-

18. G. Salton, A. Wong, and C. S. Yang. A Vector
Space Model for Automatic Indexing.
Cornmunications of the ACM. 18, 613-620, 1975-

19. B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and
Y. Hong, Discovering architectures from Waning
systems, IEEE Transactions on Software
Engineering 32 (7), (2006).

20. M. Shaw and P. Clements. A field guide to
boxology: Preliminary classification of architectural
styles for software systems. In COMPSAC, 1997-

21. E. Stroulia and T. Systa. Dynamic Analysis For
Reverse Engineerin g and Program Understanding,
Applied Computing Review, ACM, 10(1), 2002-

22. L. Wendehals and A. Orso. Recognizing Behavioral
Patterns at Runtime using Finite Automata. In
WODA, 2006.

Acknowledgements. Lisa Montgomery and her
NASA IV&V team and Sally Godfrey NASA GSFC for
supporting this work.

