
An Android Security Case Study with Bauhaus
Bernhard J. Berger, Michaela Bunke, and Karsten Sohr

Center for Computing Technologies (TZI), Universität Bremen, Germany
{berber|mbunke|sohr}@tzi.de

Abstract—Software security has made great progress; code
analysis tools are widely-used in industry for detecting common
implementation-level security bugs. However, given the fact
that we must deal with legacy code we plead to employ the
techniques long been developed in the research area of program
comprehension for software security. In cooperation with a
security expert, we carried out a case study with the mobile
phone platform Android, and employed the reverse engineering
tool-suite Bauhaus for this security assessment. During the
investigation we found some inconsistencies in the implementation
of the Android security concepts. Based on the lessons learned
from the case study, we propose several research topics in the
area of reverse engineering that would support a security analyst
during security assessments.

Index Terms—program comprehension, security assessment,
software security, Android

I. INTRODUCTION

Over the last years, static code analysis for security has
made great progress. Commercial available tools are employed
by software vendors to detect implementation-level security
bugs, such as buffer overflows and injections vulnerabilities.
Certainly, employing these tools is only the first step towards
secure software as it is restricted to common bug classes.

More seriously are design-level flaws, since literature states
that the later a change must be applied to the design of
an application, the more costs will arise [1]. Methods such
as Microsoft’s threat modeling [2] or the architectural risk
analysis proposed by McGraw [3] should help to discover
security problems already during the software-design phase. In
academia, more formal approaches to dealing with software
security have been established, notably, language-based security
[4], model-driven security [5], and stepwise refinement [6].
Although these approaches are promising, they can just be
applied when software is developed from scratch, which is
rarely the case.

Owing to the fact that our work is focused more on the
aspect of program understanding we expect that program com-
prehension tools can help a security analyst detecting security
flaws in code, such as divergences between documentation
and code. We imply that none of such flaws can be detected
in a fully automated way, and a security analyst must assess
the situation by her own. What we yet can expect is that
the tool helps us to assess the risks of the software and, for
example, pinpoints security-critical areas of the code. Therefore,
we chose a reverse-engineering tool-suite, called Bauhaus [7],
to analyse a well-known security aspect, in the open-source
software system Android. We compared the implementation of
permission enforcement to the official Android documentation

and discovered a divergence.
The rest of the paper is structured as follows. In Section II,

we give an overview of related research. Thereafter, our
motivation for the conducted case study is given in Section III,
followed by a brief description of Android concepts. In
Section V, we describe the case study focusing on a security
assessment of permission mechanisms. Based on the experience
gained by the case study, we discuss further research problems
in Section VI. Afterwards, we conclude and give an outlook
in Section VII.

II. RELATED WORK

Software security is an emerging research area with a strong
practical impact. For example, we have static analysis tools, that
focus on common implementation-level bugs which are mostly
related to improper input validation [8]–[11]. Nevertheless,
these tools do not help one to understand the security aspects.

To our knowledge, only a few works deal with reverse
engineering the security architecture out of code. Karppinen et
al. use the Software Architecture Visualization and Evaluation
tool to detect a security back door— they completely removed
the security check —that they added for the case study. To
detect the back door they used static as well as dynamic
information and compared the resulting information with the
results of the correct implementation [12].

Mancoridis reports about common bug classes and names
techniques a software maintenance-engineer can use to improve
the security of a software. Moreover, he emphasizes several
techniques that must be developed to tackle these problems
properly. He stresses that it is necessary to develop formal
notations and tools to allow the specification of software-
security architectures. Mancoridis assumes that the developer
has the security architecture of her software in her mind, what
is not necessarily the case [13].

Sometimes literature on static code analysis treats program
comprehension as a side topic, for example, Chess and West
briefly mention program comprehension tools such as CAST
[14] and Fujaba [15] in their book on static analysis for software
security, but do not give further details of how they might help
one to address the problem of software security [16].

III. MOTIVATION FOR THE CASE STUDY

It is expected that Android will become one of the major
mobile phone platforms in the future [17] and is used for other
devices as well. As it gains a lot of market share and is open
source, it is an interesting target for security analyses. For this
reason, we started a security assessment project. During the

analysis, we faced several challenges, mostly related to the
lacking documentation of Android’s security concepts and the
complexity of the code.

We started our review of the Android platform with the as-
sumption that not only the Linux kernel is security-critical, but
also the Android middleware (the Android framework classes).
For example, the permission enforcement and the reference
monitor, which mediates the access to Android components,
is implemented within the Java-based middleware, although
the kernel is accessed to retrieve data for security decisions.
We aimed to explore and understand the implementation of
Android’s security mechanisms.

Due to the fact that the structure of the code and specifically
the software architecture are unknown to us at the beginning,
we used a reverse engineering tool-suite called Bauhaus, to
gain a better insight into the code. Other tools such as Fujaba
or CAST could have been used, too. The reason for employing
Bauhaus was that the tool is available at our institute and
hence had experience with it. Generally, tools for program
comprehension contain functionality to represent information
about the program, which can be gathered statically as well
as dynamically. With the help of these tools, one can obtain
information on the components, modules, classes, methods,
and member variables, as well as relationships between these
elements, such as call relations or member accesses.

We focus our analyzes on permission checking and enforce-
ment because access control is a basic security concept for
IT systems and applications, going back to Lampson’s access
control matrix [18]. Further literature on authorization can be
found in standard works on computer security (see [19]).

IV. THE ANDROID CONCEPTS

We first describe Android’s main concepts, before presenting
the challenges related to analyzing the platform with respect
to security. Note that there does not exist a comprehensive
document on Android’s security concepts. The information is
scattered throughout the Android developer’s website.

1) Android Components: An Android application consists
of different parts, called components, having, according to its
task, one of four basic component types. Activities are the
presentation layer of an application, allowing a user to interact
with the application. Services represent background processes
without a user interface. Content providers are data stores
that allow developers to share databases across application
boundaries. Finally, broadcast receivers are components that
receive and react to broadcast messages, for example, the
Android OS itself sends such a broadcast message if the battery
is low. Each component of an application runs as a separate
task, making an Android device to a large distributed system,
even if all processes are running on the same device.

2) Inter-Process Communication: The Android platform
supports inter-process communication (IPC) for communication
between components [20]. One foundation for this IPC is the
Binder, an Android-specific kernel device that allows efficient
but safe communication.

A way to communicate with components not known at the

development time, are messages, which may include arbitrary
data, called intents. An intent is an abstract description of an
operation to be performed on the platform [21]. For example, an
intent can start a new activity or service, or communicate with
background services. An advantage of this technique is that
a client application is no longer linked to a specific program,
but can access any possible service for the specified need.

3) Android Security Mechanisms: Android has two basic
methods of security enforcement. Firstly, applications run as
Linux processes with their own user IDs and thus are separated
from each other. This way, a vulnerability in one application
does not affect other applications. In contrast to Java, the virtual
machine is not a security barrier because the Linux kernel takes
over the task of separating processes.

Since Android provides IPC mechanisms, which need to be
secured, a second enforcement mechanism comes into play.
Android implements a reference monitor to mediate access
to application components based on permission labels. If an
application intends to access another component, the end user
must grant the appropriate permissions at installation time.
Furthermore, the security model has several refinements that
increase the model’s complexity [20].

V. ANDROID CASE STUDY

We conducted our security assessment along with a security
expert, the third author, to understand the implementation of
some aspects of the Android security mechanism with the help
of the Bauhaus tool-suite.

1) Issues: Starting from the documentation, we planned
to focus on several aspects related to the implementation of
permission checking. The process of permission enforcement
consists of different steps, which we aimed to understand. After
reading the security documentation, available at the Android
website, we picked the Bluetooth API for further investigation.
Other functionality of the platform could have been analyzed
in a similar way.

The Bluetooth API documentation states that an application
needs at least the BLUETOOTH permission to use the Bluetooth
device. If a program wants to administer the Bluetooth device,
it needs the BLUETOOTH_ADMIN permission in addition. It
is explicitly noted that one needs the former permission, to
use the latter [22].

During the security assessment we wanted to answer several
questions the security expert had. We will discuss these in the
following:

Question 1 Where are permissions enforced within the
Bluetooth API (enforcement points)?

Question 2 Which permissions are enforced within the
Bluetooth API (access control policy)?

Question 3 Can we check whether an application needs the
BLUETOOTH permission, in order to use the BLUETOOTH_AD-
MIN permission?

Question 4 Can we identify the permission enforcement bun-
dled with the IPC mechanism, described in the Mix’n’Match
pattern [23]?

2) Policy Enforcement Points: In the beginning, the security
expert wanted to know where permissions are enforced during
the usage of a service. Therefore, we extracted in an interactive
step all public methods belonging to the Bluetooth service and
their relations to the method enforceCallingOrSelf-
Permission. It soon became clear that all public methods
implement an enforcement point to make sure that the calling
process has obtained certain permissions.

The security expert extracted the information that all public
methods are protected against unauthorized usage. This knowl-
edge leads to the next question, namely, which permissions
are enforced within the identified enforcement points.

3) Access Control Policy: The security expert was also
interested in a view that shows the specific permissions that
are enforced, which would be a visualization of the access
control policy. To extract such a view, we had to gather
additional information from the source code because the actual
representation did not contain sufficient details. The relevant
information for the desired view, the permission, which will
be enforced, is the first actual parameter passed to the method
enforceCallingOrSelfPermission. In general, it is
not always possible to determine the actual value of a parameter
of a method. In our case, it was not necessary to apply expensive
static analyses because of the constant propagation taken place
in the compiler. With these additional data, we enhanced the
data generated by our front end and added new nodes for
the permissions, which are checked, and new edges between
methods and the required permissions.

The security expert, conducting the security assessment, can
now see the implemented access control policy of the Bluetooth
service for the first time. On the basis of the generated view,
he was able to identify those methods of the service belonging
to the administrative part of the API, information that is not
documented explicitly.

4) Correctness of Documentation: Having extracted the
implemented access control policy of the Bluetooth service,
the next question to be answered was, whether the condition
mentioned in the security documentation was up-to-date, i.e.,
we wanted to check whether all methods, enforcing the
BLUETOOTH_ADMIN permission, require the BLUETOOTH
permission, too.

This check could be done manually. To automate this
process, however, we wrote a small (Python) script that
searches for the enforcement calls automatically. Since our
representation is a graph, we can simply search for methods that
are connected with the BLUETOOTH_ADMIN permission but
are not connected with the BLUETOOTH permission. In total,
we identified 14 methods that check the BLUETOOTH_ADMIN
permission, but none of them seems to check the BLUETOOTH
permission. To better understand this situation, we adapted the
script to regard method calls as well as the permissions that are
checked within the methods directly or indirectly (via called
methods). We found that four methods check the BLUETOOTH
permission indirectly and the remaining ten methods do not
check for both permissions at all.

The findings were quite surprising for the security expert

since the documentation stated that a calling process must have
both permissions. Certainly, the fact that not both permissions
are checked does not necessarily lead to a vulnerability, but
a developer may develop her code with wrong assumptions
in her mind after reading the documentation. Furthermore, it
is necessary to review those cases where the BLUETOOTH
permission is only checked indirectly if this can lead to an
inconsistent state of the Bluetooth service if a calling process
only has the BLUETOOTH_ADMIN permission.

5) Mix’n’Match Pattern: Another open question was to
check whether the IPC mechanism is tied with an enforcement
point for intents. First of all, our security expert wanted to
identify the Runtime Mix’n’Match pattern [23] which is
said to model the intent mechanism and to be used in the
Android framework. Moreover, he wanted to find clues about
the enforcement points in the architecture as they are described
in the policy enforcement security pattern [24]. This policy
pattern describes a specialized IPC mechanism to dynamically
bind different actors like activities and services. In addition, it
is said to enforce permissions “to prevent applications from
launching activities of other applications” [25].

We analyzed a small application, which opens a WebView
activity showing an assigned URL. According to the pattern
description, the concept consists of five parts: Intents,
IntentHandler, IntentResponder, IntentFilter,
and Client [23]. To start a new activity, the Client writes
the information for the activity into the intent. This intent
is sent to the IntentHandler. It routes the requirements
to the IntentFilter, which knows which requirements
can be handled by which activity or service. To generate
this knowledge base, any activity and service must define
an IntentResponder. IntentFilter prepares a list
of fitting activities and services and returns them to the
IntentHandler. It chooses one appropriate activity or
service if there exists more than one. This intent becomes
initialized and is sent back to the requesting Client.

As described in the previous sections, the communication
between components in the Android framework is secured
with enforcement points, so we wanted to detect which code
components join the Intent mechanism and enforcement points.
We used the hierarchical reflexion method [26] to model a
hypothetical pattern structure and tried to search for it iteratively
by mapping parts of the code base to this structure.

The result determines convergences and differences among
the architecture and the implementation model. It showed
that the runtime Mix’n’Match pattern could be successfully
identified by our security expert. Unfortunately, he did not
encounter any enforcement point pattern, which ought to
be connected closely to this IPC mechanism, but gained an
overview of how the components interact in the IPC mechanism.
We assume that this binding cannot be detected with static
analysis or is bundled with other patterns which partly cover
these security patterns. Furthermore, other problems concerning
security patterns were identified and must be solved prior to a
mature recognition process [27].

6) Conclusions of the Case Study: In summary, we conclude
that the Bauhaus tool helped us during the review process. The
results of our review are:

Result 1 We identified all enforcement points within the
Bluetooth service and found out that all public methods were
protected adequately.

Result 2 To identify the enforced permissions, we had
to adapt our front end to extract additional information.
Afterwards, we were able to visualize the access control policy.

Result 3 The statement that one needs the BLUETOOTH
permission in order to use the BLUETOOTH_ADMIN could not
be supported by our investigation since we found counterex-
amples.

Result 4 We were able to detect the IPC mechanism pattern,
but not the permission enforcement. We conclude that the
security documentation is imprecise at that point or we were
limited by the chosen comprehension technique.

VI. SOFTWARE-SECURITY COMPREHENSION

In the preceding section, we showed that program-
comprehension and reverse-engineering techniques can be used
in the area of software security. Now, we discuss research
topics that need to be investigated more deeply, to develop
useful techniques and tools for a security evaluator. For our
more general discussion, we also consider experience gained
in a research project called ASKS, which is currently being
carried out with enterprises that made available their business
applications, which are implemented using the Java platform,
Enterprise Edition technology [28], for a security analysis.

One conclusion that we drew from our security review is
that it is necessary to create more formal architectural security
views (see also Mancoridis’ statement [13]). These views need
to be language- and platform-independent in order to be a
common language to communicate with security experts who
are not necessarily experts for the programming language. With
the help of these views, it is easier to understand the security
architecture of an application or even of a distributed system.
In the following, we discuss some further ideas of how these
views can be created and what security aspects may be of
interest for such views.

A. Possible Architectural Views

There are many software aspects related to security. In
companion with our security expert, we identified some aspects
that are suitable to be extracted from source and be useful for
a security specialist.

1) Visualization of Trust Zones: It is helpful to group the
identified software parts into trust zones [29] based on the
criticality of the data/components accessed. With the help of
such a view, one can conduct a security-related impact analysis
of changes and identified bugs, to balance out the improvements
against the threats.

2) Visualization of Attack Surfaces: Beyond the decomposi-
tion of the code base into different zones, it is helpful to add
information about the boundaries of components (architectural
components or whole processes). Therefore, it is necessary to

identify framework means that allow communications between
processes. By means of this knowledge, it is possible to identify
data sources and sinks. In combination with a dependence graph
[30], it would be feasible to estimate the attack impact.

3) Access Control Policy: In Section V-3, we described
how to extract parts of the access control policy of Android’s
Bluetooth service. Since access control is crucial to many
platforms and applications, we can apply the task of extracting
the access control policy on other platforms. For example,
we extracted the access control policy of a Java enterprise
application and compared that policy with the documentation
employing the reflexion analysis [31].

B. Towards Automatic Extraction of Architectural Views

The aforementioned views must be created with the help of
techniques already known in the reverse-engineering commu-
nity, but that need to be tailored towards the specific security
needs to give reasonable results.

1) Abstraction: From our point of view, it is inevitable to in-
troduce graphical abstractions beyond the known visualizations,
such as UML-diagrams and implementation-level dependence
graphs, to make security comprehension easier.

The abstraction of constructs in the software which are
imposed by the framework, such as IPC mechanisms and
Java Beans, would help one to concentrate on the essential
parts of the application. Furthermore, it is common in current
frameworks that parts of the implementation are generated
automatically. During an assessment a reviewer must analyze
the generated parts to “understand” the whole application and
he cannot differentiate between handwritten and generated
source code. These technical entities hide the real intent behind
the code. Therefore, it is necessary to remove these details and
replace them with a presentation which is more meaningful to
a security analyst.

2) Component Detection: A slightly different kind of ab-
straction is the process of component detection and aggregation,
to allow a developer to build up a mental map of the system
more easily. This is useful if the architectural components are
spread over several classes and packages. The ideal case would
be a supportive mechanism to restructure the application’s
representation semi-automatically such that it resembles the
existing architecture, specified by domain experts.

Within the reverse-engineering and program-comprehension
community, there already exists experience with various
clustering techniques to extract components automatically from
code [32]. The components that are of interest for detection
are mostly domain- and implementation-specific, as well as the
aforementioned abstractions we must introduce. Therefore, it is
a necessity to involve framework experts to achieve reasonable
results.

3) Security Pattern Detection: Often, security features are
integrated into the software architecture by common and well-
known aspects like enforcement points. Some of these aspects
can be merged to security patterns which have the goal to
harden software against attacks and misuse [33].

Existing design-pattern detection approaches, however, can

only detect a few of the common design patterns [34]. Presently,
none of them supports the detection of security patterns,
although ensuring security is a significant task [35].

Due to the fact that not everybody reengineering a system
has appropriate security knowledge automated approaches of
detection are desirable. When a security pattern has been
detected, it can be highlighted in a software-architecture
representation. Such visualized security aspects can support
hardening software before it will be released or used by
different user groups to post-check a software system.

VII. SUMMARY

We conducted a case study focusing on permission checking
in the Android framework and showed that the Bauhaus
tool-suite can support a security expert during a security
assessment. We were able to enhance our understanding of
the Android framework, in particular, a divergence between
the documentation of the Bluetooth API and the framework
implementation has been found. Moreover, the comprehension
of the IPC mechanism for intents and the unexpected missing
of permission checks were other results of the case study. Based
on our experience, we discussed new challenges and research
problems for program comprehension in security assessments.

Further research must be carried out to apply the techniques
of program comprehension to the field of software security.
Our impression is that neither the security-research community
discusses this topic adequately nor is industry making use of
such techniques to better understand the security status of their
software. Using state-of-the-art tools for finding security bugs
cannot reveal logical security problems such as undesirable
interactions between components.

With the increasing complexity of software, software com-
panies need to understand the security risks of their code,
and tools employing program comprehension functionality will
support them with this challenging task. We truly believe that
“software-security comprehension” will be a fruitful research
topic for the future with also a broad practical impact.

ACKNOWLEDGMENTS

This work was supported by the German Federal Ministry of
Education and Research (BMBF) under the grant 01IS10015B
(ASKS project).

REFERENCES

[1] R. Pressman, Software Engineering – A Practioner’s Approach, 4th ed.
McGraw-Hill, 1997.

[2] F. Swiderski and W. Snyder, Threat Modeling. Microsoft Press, 2004.
[3] G. McGraw, Software Security: Building Security In. Addison-Wesley,

2006.
[4] A. Sabelfeld and A. C. Myers, “Language-based information-flow

security,” IEEE J. Sel. Areas Commun., vol. 21, no. 1, jan. 2003.
[5] M. Clavel, V. Silva, C. Braga, and M. Egea, “Model-driven security in

practice: An industrial experience,” in Proc. of the 4th European Conf.
on Model Driven Architecture: Foundations and Applications. Berlin,
Heidelberg: Springer, 2008.

[6] H. Mantel, “Preserving information flow properties under refinement,”
in IEEE Symposium on Security and Privacy, 2001.

[7] A. Raza, G. Vogel, and E. Plödereder, “Bauhaus – A tool suite for
program analysis and reverse engineering,” in Ada-Europe, ser. LNCS,
vol. 4006. Springer, 2006.

[8] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis,” in Proc. of th 14th USENIX Security
Symposium, August 2005.

[9] B. Chess, “Improving computer security using extended static checking,”
in IEEE Symposium on Security and Privacy. IEEE Computer Society,
2002.

[10] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in Proc. of the 2007 ACM
SIGPLAN Conf. on Programming Language Design and Implementation,
ser. PLDI ’07. New York, NY, USA: ACM, 2007.

[11] C. Nagy and S. Mancoridis, “Static security analysis based on input-
related software faults,” in Proc. of European Conf. on Software
Maintenance and Reengineering. IEEE Computer Society, 2009.

[12] K. Karppinen, M. Lindvall, and L. Yonkwa, “Detecting security vulner-
abilities with software architecture analysis tools,” in IEEE Intl. Conf.
on Software Testing Verification and Validation Workshop, vol. 1. Los
Alamitos, CA, USA: IEEE Computer Society, 2008.

[13] S. Mancoridis, “Software analysis for security,” in Frontiers of Software
Maintenance, 2008, oct. 2008.

[14] CAST, 2011. [Online]. Available: http://www.castsoftware.com
[15] Universität Paderborn, 2011. [Online]. Available: http://www.fujaba.de/
[16] B. Chess and J. West, Secure programming with static analysis, 1st ed.

Addison-Wesley Professional, 2007.
[17] R. Cozza, C. Milanesi, and A. Gupta, “Competitive landscape: Mobile

devices, worldwide, 3q10,” Gartner, Inc., Tech. Rep., 2011. [Online].
Available: http://www.gartner.com/it/page.jsp?id=1466313

[18] B. W. Lampson, “Protection,” ACM, vol. 8, no. 1, jan 1974.
[19] R. Anderson, Security Engineering: A Guide to Building Dependable

Distributed Systems, 2nd ed. Wiley, 2008.
[20] W. Enck, M. Ongtang, and P. McDaniel, “Understanding Android

security,” IEEE Security Privacy, vol. 7, 2009.
[21] Google Inc., “Android Development - Intent.” [Online]. Available:

http://developer.android.com/reference/android/content/Intent.html
[22] ——, “Android - Bluetooth.” [Online]. Available:

http://developer.android.com/guide/topics/wireless/bluetooth.html
[23] P. G. Austrem, “Runtime mix’n and match design pattern,” in Proc. of

the 15th Pattern Languages of Programs Conf. New York, NY, USA:
ACM, 2008.

[24] Y. Zhou, Q. Zhao, and M. Perry, “Policy enforcement pattern,” in Proc.
of the 7th Pattern Languages of Programs Conf., 2002.

[25] Google Inc., “Android - Security.” [Online]. Available:
http://developer.android.com/guide/topics/security/security.html

[26] R. Koschke and D. Simon, “Hierarchical reflexion models,” in Proc. of
Working Conf. on Reverse Engineering, 2003.

[27] M. Bunke and K. Sohr, “An architecture-centric approach to detecting
security patterns in software,” in In Proc. 3rd ESSoS, ser. LNCS, vol.
6542. Springer, 2011.

[28] Oracle, 2011. [Online]. Available:
http://www.oracle.com/technetwork/java/javaee/overview/index.html

[29] J. H. Allen, S. Barnum, R. J. Ellison, G. McGraw, and N. R. Mead,
Software Security Engineering: A Guide for Project Managers, 1st ed.
Addison-Wesley Professional, 2008.

[30] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages and
Systems, TOPLAS, vol. 12, no. 1, jan. 1990.

[31] K. Sohr and B. Berger, “Towards architecture-centric security analysis
of software,” in Engineering Secure Software and Systems. Springer,
2010.

[32] R. Koschke, “Atomic architectural component recovery for program
understanding and evolution,” Ph.D. dissertation, Institute of Software
Technology, University of Stuttgart, Germany, 1999.

[33] J. Yoder and J. Barcalow, “Architectural patterns for enabling application
security,” in Proc. of 4th Pattern Languages of Programs Conf.,
Monticello/IL, 1997.

[34] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Object-Oriented Software. Addison Wesley, 1994.

[35] M. VanHilst and E. B. Fernandez, “Reverse engineering to detect security
patterns in code,” in Proc. of 1st Intl. Workshop on Software Patterns
and Quality. Information Processing Society of Japan, December 2007.

