
An Empirical Validation of the Benefits of
Adhering to the Law of Demeter

Yi Guo, Michael Würsch, Emanuel Giger, and Harald C. Gall
s.e.a.l. – software evolution & architecture lab

University of Zürich, Department of Informatics

Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

{guoyi,wuersch,giger,gall}@ifi.uzh.ch

Abstract—The Law of Demeter formulates the rule-of-thumb
that modules in object-oriented program code should “only talk
to their immediate friends”. While it is said to foster information
hiding for object-oriented software, solid empirical evidence
confirming the positive effects of following the Law of Demeter
is still lacking. In this paper, we conduct an empirical study
to confirm that violating the Law of Demeter has a negative
impact on software quality, in particular that it leads to more
bugs. We implement an Eclipse plugin to calculate the amount
of violations of both the strong and the weak form of the law
in five Eclipse sub-projects. Then we discover the correlation
between violations of the law and the bug-proneness and perform
a logistic regression analysis of three sub-projects. We also
combine the violations with other OO metrics to build up a model
for predicting the bug-proneness for a given class. Empirical
results show that violations of the Law of Demeter indeed highly
correlate with the number of bugs and are early predictor of
the software quality. Based on this evidence, we conclude that
obeying the Law of Demeter is a straight-forward approach for
developers to reduce the number of bugs in their software.

I. INTRODUCTION

One of the crucial questions in software engineering is how

to lower software maintenance costs, which can make up as

much as 67% of the total development costs of a software

system [1]. Maintainability of software strongly depends on

the quality of its source code, i.e., whether or not it is well-

structured and easily understandable by its developers and

maintainers. Several design principles and heuristics, have

been proposed to guide software developers towards better

code.

The most fundamental principles are to encapsulate data

properly and to aim for low coupling and high cohesion for

any given module. While the importance of these principles

is beyond controversy, many different heuristics have been

formulated that break down the difficult task of writing “good”

code to a simple set of rules which developers can follow.

One of those rules-of-thumb is the Law of Demeter (LoD),
formulated by Lieberherr and Holland in 1989 [2], [3], [4]. Its

intent is to achieve loose coupling by limiting the knowledge

that one unit of source code has about other units in the

system. In particular units should, if at all, “only talk to their
immediate friends.”

There are few studies which focus on the relationship

between the number of LoD violations and the number of

bugs. Moreover, empirical evidence of the LoD benefits is still

missing. To address this issue, we design a set of experiments

to validate the consequence of violating LoD with regard to

their significance to predict the occurrence of bugs on the class

level. We then report on the correlations found and we show

how effective LoD violations are for bug prediction compared

to other predictors such as lines of code(LOC).

For the experiment, we formulate two hypotheses and

design our empirical study to test them:

H1 – The number of violations of the Law of Demeter
correlate positively with the number of bugs
H2 – The number of violations of the Law of Demeter
improves prediction models

Five sub-projects are analyzed in our experiments. For each

of them, we obtain the source code of each class for the most

recent release and link them to bug reports. We then conduct

a correlation analysis to empirically validate the relationship

between the strong and the weak form of the LoD violations

and the bug-proneness. We also investigate the impact of

the LoD violations on bug proneness and compare it to the

Chidamber & Kemerer metrics suite(C&K metrics) and LOC

in three of sub-projects, which have more than 500 classes.

Using both forms of the LoD violations with these metrics as

independent variables(IVs), we then build prediction models

of bug-proneness for the software systems under investigation.

II. THE LAW OF DEMETER

The Law of Demeter (LoD) [2] was introduced as a heuris-

tic for object-oriented programmers to improve information
hiding, i.e., to encapsulate minimal information in modules

and make as little use of public knowledge as possible [5].

The LoD states, “Only talk to your immediate friends,” which

implies that each unit of source code should only have limited

knowledge about other units, and only about their so called

friends. The LoD is an application of the low coupling
principle by making the notion of bad coupling explicit and

checkable by tools [4]. The LoD comes in two forms: The

object form and the class form. Only the latter is designed to

be able to statically enforced and checked by tools. Therefore,

2011 18th Working Conference on Reverse Engineering

1095-1350/11 $26.00 © 2011 IEEE

DOI 10.1109/WCRE.2011.36

239

we focus on the class form of LoD in our research. The class

form of LoD is defined as follows:

• In the class form of the LoD, a method M of a class C
can only send messages to the objects of the following

classes:

– instance variables of C,

– the argument class(es) of M,

– any classes of the instances created within M,

– any direct properties/fields of C
The violation of the class form of LoD can be further

categorized into the Weak LoD and the Strong LoD. We

abbreviate violations of the Weak LoD as WVLoD and the ones

of the Strong LoD as SVLoD. The Strong LoD excludes the

inherited instance variables from the set of friends, whereas the

weak LoD includes the inherited instance variables. Formally,

in the weak form of LoD, a friend set Cw
f is a set of friend

classes for the Class C

Cw
f = Cthis ∪ Cfields ∪ Cparameters ∪ Cov ∪ Civ (1)

whereas in the strong form of LoD, a friend set Cs
f is a set

of friend classes for class C

Cs
f = Cthis ∪ Cfields ∪ Cparameters ∪ Cov (2)

where Cov represents the own variables of C and Civ repre-

sents the inherited variables of C.

Each category has some implications. On the one hand,

adhering to the Strong LoD guarantees that any change to the

underlying data structure will only affect methods declared

by the classes that were changed, and methods of unchanged

classes will not require modifications. On the other hand, if

software development adheres to the Weak LoD, any change

to the underlying data structure will affect the methods of

the changed class, as well as any class which that is derived

from them. Our hypotheses H1 and H2 are proposed based on

public void persistLineSeparatorPositions(){
if (this.scanner.recordLineSeparator){

this.compilationUnit
.compilationResult
.lineSeparatorPositions
= this.scanner.getLineEnds(); //...(1)

}
}

Listing 1: An example of LoD violation in JDT core

observations we made in production code, namely that there

are method invocations in certain classes, which apparently

violate the LoD and then later lead to bugs issued in the

bug repositories. For example, Listing 1 shows a method

declaration fragment in the JDT core source code. One of

its statements (1) clearly violates the LoD. When developers

change this code—for example when implementing a new

feature or fixing a bug—they need to investigate three distinct

objects to set the fields correctly: compilationResult, compi-
lationUnit, and lineSeparatorPositions. This puts additional

Bug 49908 Renaming of DefaultCodeFormatterConstants.java
Bug 49968 [formatter] Alignment API
Bug 48489 [DCR] AST support for a single expression (vs. CU)
Bug 49327 formatter can return null TextEdit when parsing valid java

TABLE I: Reported bugs related to the statements in Listing 1

bug-prone Not bug-prone

jdt.core 1067 114
pde 375 58
jface 331 41

TABLE III: Results of the classification of bug-proneness

cognitive load on them because they cannot only focus on

local changes but also have to investigate their potential impact

in other source code locations. In fact, looking at the version

history of the code given in this example, we found that there

are changes that developers specifically made for fixing bugs

Table I, most likely resulting from improper encapsulation.

Based on this observation, we are curious to see whether we

can find empirical evidence that too many statements violating

the Law of Demeter in a class go hand in hand with an

increased number of bugs occurring.

III. EMPIRICAL STUDY

A. Data Collection

A summary about the sub-systems under analysis is given

in Table II. The sub-projects we have chosen cover plug-ins

of various size, ranging from 12k LOC to 290k LOC.

We use EVOLIZER [6] to obtain a complete, query-able his-

tory of the systems. In particular, we import the version history

by retrieving the CVS logs from Eclipse CVS and by parsing

all the CVS commit messages. Next we run EVOLIZER’s bug-

to-revision linking strategy and labels class changes with bug

numbers: Commit messages including terms that indicate that

the commit is a bug fix for the previous revision are labeled by

an explicit bug id. Next, we calculated the bug-proneness for

each class. Bug-proneness is the probability that a compilation

unit in our study will be reported to link to an issued bug. For

each compilation unit i, we conduct the linear transformation

[0,1] to calculate the bug-proneness P (xi) as:

P (xi) =
xi −min(X)

max(X)−min(X)
(3)

where xi is the number of bugs in class i, X represents

the set of the number of bugs in each project, min(X) and

max(X) represent the minimum and the maximum of the

number of bugs in each project respectively. Following the

approach in [7], we define a statistical lower-confidence-bound

on all bugs for each project and set it to 0.001. Classes with

fewer bugs than the lower-confidence-bound are classified as

not bug-prone, whereas other classes as bug-prone.

With regard to the computation of the violation metrics,

we develop an Eclipse plug-in called Violation Detector to

240

Plugins Last Release #Files LOC #Bugs #Violations Max # of Violations

eclipse.jdt.core May 11, 2010 1181 290,656 18834 35920 1882
eclipse.pde May 07, 2010 519 50,690 2226 6499 363
eclipse.jface May 18, 2010 381 43,202 3127 2519 144
eclipse.compare June 15, 2009 154 20,574 1402 1712 495
eclipse.debug.core June 20, 2010 188 12,511 1703 1476 255

TABLE II: Plugins collected from the Eclipse project

calculate the SLoD and WLoD. Violation Detector traverses

the Abstract Syntax Tree for each compilation unit using

the visitor pattern [8]. To detect violations, it investigates

expressions including method invocations and field access, and

validates whether the message will be sent to the objects which

are instances of either Cw
f or Cs

f . If the class of a message

target is not included in either Cw
f or Cs

f , then we count the

expression carrying the message as an occurrence of violation

of LoD. We aggregate the occurrence of violation expressions

of the Weak LoD in WVLoD and the one of the Strong LoD

in SVLoD. The results are then stored in EVOLIZER’s RHDB

for later retrieval in the empirical analysis step.

B. Empirical Analysis

We calculate Spearman’s rank correlations between the

number of bugs of each compilation unit and all of these

measures (including the violations of LoD, Chidamber &

Kemerer (C&K) OO metrics, and LOC), which are a set of

theoretically-grounded metrics of OO softwares. These metrics

are empirical validated and are well recognized in the OO

research field. Table IV shows that both the SVLoD and

WVLoD positively correlate with the number of bugs. In

jdt.core, the ρ value of SVLoD (0.67) and the one of WVLoD

(0.59) rank third and fifth among all measures respectively;

whereas in compare, the ρ value of SVLoD (0.70) and the

one of WVLoD (0.62) rank second only to LOC and fourth.

It is interesting to observe that the ρ value of the SVLoD and

the WVLoD do not differentiate themselves with some metrics

in C&K metrics suite, such as CBO, WMC and RFC in all

projects. The p value for corresponding ρ is 0.000098, which

shows a significant positive correlation between violations and

number of bugs. Therefore, we can accept our hypothesis H1.

To explore the LoD violations’ ability to predict the bug-

proneness for each class, we perform the univariate logistic

regression analysis for each metric (known as Independent
Variables(IVs)) against the bug-proneness. Since logistic re-

gression overestimates odds ratios and β coefficients in studies

with small samples size (less than 500), we only consider three

plug-ins whose sample size is more than, or close to 500.

Table V shows the univariate logistic regression models for

each metric.

The univariate logistic regression result can be consid-

ered first indicators to build prediction models for the bug-

proneness. In order to build an optimal prediction model,

we conduct a multivariate logistic regression model using

significant metrics as IVs and then solve the multicollinearity

problem using Principal Component Analysis (PCA) because

Metrics Coefficient(β) Deviance σβ

SVLoD 0.19 639.23 0.0369
WVLoD 0.42 671.24 0.1087
CBO 0.34 605.34 0.0481
NOC 0.02 749.51 0.0443
WMC 0.22 632.18 0.0291
RFC 0.03 663.67 0.0046
LOC 0.03 598.57 0.0040
DIT 0.31 726.62 0.0703
LCOM 0.02 697.20 0.0029

dfe=1171

(a) jdt.core

Metrics Coefficient(β) Deviance σβ

SVLoD 0.08 315.41 0.0282
WVLoD 0.13 315.47 0.0439
CBO 0.11 327.73 0.0380
NOC -0.02 340.93 0.0688
WMC 0.08 324.96 0.0266
RFC 0.01 340.35 0.0064
LOC 0.01 313.80 0.0035
DIT -0.11 339.39 0.0817
LCOM -0.00 341.04 0.0035

dfe=423

(b) pde.core

Metrics Coefficient(β) Deviance σβ

SVLoD 1.22 208.18 0.4555
WVLoD 1.07 224.73 0.4362
CBO 0.63 227.55 0.1673
NOC -0.09 255.75 0.0599
WMC 0.33 202.71 0.0733
RFC 0.12 211.77 0.0317
LOC 0.07 189.17 0.0194
DIT 0.62 242.52 0.1786
LCOM 0.03 224.65 0.0061

dfe=362

(c) jface

TABLE V: Summary of univariate logistic regression

it does not rely on any assumptions of distribution types. To

further ease interpretation of the principle components, we

show the PCA result as the table of rotated components that

show a clearer pattern of loadings, where the variables either

have a very low or high loading, thus showing either a negli-

gible or a significant impact on the principle components [9].

Table VI shows the rotated components obtained from our

selected metrics applied to the corresponding plug-in projects.

We select orthogonal dimensions which capture over 98% of

the variance in jdt, pde, and jface. Note that SVLoD exhibits

241

Plugins SVLOD WVLOD CBO NOC WMC RFC LOC DIT LCOM

jdt.core 0.67 0.59 0.71 0.05 0.66 0.44 0.76 0.14 0.51
pde.core 0.61 0.61 0.56 -0.17 0.50 0.21 0.64 -0.08 0.15

jface 0.73 0.67 0.62 -0.04 0.75 0.65 0.82 0.40 0.65
debug.core 0.43 0.42 0.57 -0.20 0.58 0.54 0.62 0.30 0.55

compare 0.70 0.62 0.60 -0.21 0.65 0.62 0.72 0.39 0.59

TABLE IV: Results of Spearman’s rank correlation (ρ)

PC1 PC2

EigenValue: 4.4872 0.0470
CumPercent: 0.9760 0.9862
SVLoD: 0.1302 -0.3354
WVLoD: 0.0542 -0.2247
CBO: 0.0193 0.0342
WMC: 0.0360 0.1319
RFC: 0.0425 0.9009
LOC: 0.9881 0.0110
DIT: -0.0002 0.0118
LCOM: 0.0155 0.0812

β 0.0148 0.0051
p 0.0000 0.0021

(a) jdt

PC1 PC2 PC3

EigenValue: 2.3706 0.1539 0.0375
CumPercent: 0.9029 0.9615 0.9814
SVLoD: 0.2126 0.1407 0.5994
WVLoD: 0.1627 0.1211 0.5396
CBO: 0.0362 0.0081 -0.0248
WMC: 0.0575 -0.0616 -0.1419
RFC: 0.0577 -0.1956 -0.4708
LOC: 0.9556 0.0483 -0.2095
DIT: -0.0001 -0.0132 -0.0222
LCOM: 0.0846 -0.9596 0.2506

β 0.0141 0.0084 0.0053
p 0.0003 0.0350 0.6454

(b) pde.core

PC1 PC2 PC3

EigenValue: 3.3988 0.1648 0.1062
CumPercent: 0.9214 0.9661 0.9949
SVLoD: 0.2675 -0.0128 -0.0182
WVLoD: 0.0466 -0.0082 -0.0283
CBO: 0.0178 0.0065 0.0055
WMC: 0.0677 0.0514 0.0223
RFC: 0.1627 0.9538 -0.2452
LOC: 0.9740 -0.1885 -0.0717
DIT: 0.0026 0.0217 -0.0014
LCOM: 0.1146 0.2265 0.9660

β 0.0441 0.0214 -0.0077
p 0.0000 0.1275 0.1827

(c) jface

TABLE VI: PCA summary: Rotated components for violations and OO metrics

the second highest metric in PC1, which p value is lower than

the 5% significance level. It provides us with the intuitive

evidence that SVLoD could be a complementary indicator

when building up bug-proneness prediction models. Therefore,

H2 could be accepted.

C. Prediction Quality

To measure the performance of prediction models, we calcu-

late precision, recall and the area under the receiver operating

characteristics curve(AUC) to provide a prior-independent

approach for comparing the quality of prediction models.

Table VII compares the PCA prediction results with the

univariate prediction using solely LOC. We set the threshold

equal to the prior probability of each project, because the

bug-proneness class distributions of three projects are highly

skewed. For example, in jdt, we have 1067 bug-prone classes

and 114 ones that are not bug-prone. According to the confu-

sion matrix shown in Table III, the prior probability is skewed

as 90.34%. We get the precision and recall values of both

prediction models on the threshold of the prior probability.

The dominance of the ROC curve of PCA is reflected by a

larger AUC. The AUC of jdt.core increases from 0.8311 to

0.8546; the AUC of pde increases from 0.6638 to 0.7152; and

the AUC of jface increases from 0.8546 to 0.8590. As a result,

H2 can be accepted.

In a nutshell, according to the Table VII, the prediction

quality improves when we build up the multivariate logistic

regression predictors and conduct PCA. The key principle

components, which cover more than 98% of variance, are

composed of LOC, SVLoD, WVLoD, and some C&K OO

metrics. Moreover, SVLoD weighs second only next to LOC

in the first principle component. Therefore, it can be used to

compose the first principle component as a predictor for the

bug-proneness at the compilation unit level.

IV. RELATED WORK

In 1996, Pal and Minsky [10] discussed how to impose

the LoD on a system developed under Darwin-E. Lieberherr

defined a stronger form of the LoD: the Law of Demeter for

Concerns (LoDC). For that, he restricted the term “friends”

further. Each communication should be restricted to those

preferred supplier objects only that contribute to the current

concerns among all concerns in play. They concluded that both

Aspect-Oriented and Adaptive Programming would benefit

from observing the LoDC to find a proper decomposition. In

2003, Lieberherr et al. defined a generic join point model for

checking the LoD and illustrate how the joint point form is

mapped to the object and class form of LoD [11].

A large number of research papers empirically investigated

the relationship between design properties and external soft-

ware quality. Basili et al. [12] demonstrated that several of

Chidamber and Kemerer’s Object-Oriented metrics appeared

to be useful to predict class fault-proneness during the early

phases of the life-cycle based on their empirical and quanti-

tative analysis. In their dataset, Object-Oriented metrics are

better predictors than “traditional” code metrics, which can

242

Univariate Logistic LOC PCA Prior Probability (threshold)
precision recall AUC precision recall AUC

jdt.core 0.9764 0.6317 0.8311 0.9825 0.6982 0.8546 0.9034
pde 0.9439 0.4933 0.6638 0.9468 0.6747 0.7152 0.8661
jface 0.9822 0.6677 0.8546 0.9912 0.6767 0.8590 0.8898

TABLE VII: Results of the univariate model and the PCA models for bug-proneness prediction

only be collected at a later phase of the software development

processes. Gyimóthy et al. [13] analyzed Mozilla source code

employing logical and linear regression and decision tree

and neutral network methods to assess the applicability of

the Chidamber and Kemerer’s Object-Oriented metrics. Later,

Zimmermann et al. [14] investigated the Eclipse bug data

set and showed that the combination of complexity metrics

can predict defects and suggested that more complex code

it, the more defects it has. Lessmann et al. [15] compared

different classification models for software defect prediction

using AUC as benchmark, while Giger et al. [16] used similar

analysis and performance evaluation criteria but, instead of

focussing on failure-proneness, aim at providing models to

predict the fix time of bugs. Recently Bird et al. [17] found

evidence that there is a systematic bias in bug datasets. This

may effect prediction models relying on such biased datasets.

Therefore, they pursued two approaches to reduce the bias

effect: Manually create links for unlinked bugs, or switch to

commercial datasets that have nearly 100% linking to conduct

Monte-Carlo simulations [17].

V. CONCLUSION AND FUTURE WORK

In our study, we collected the source code and repository

history of five well-known Eclipse projects to explore the

relationship between the violation of the Law of Demeter

(LoD) and the bug-proneness of classes and designed an

empirical studying to explore the relationship between the vio-

lations and the bug-proneness in the class level. The empirical

validation results shows that violations of LoD can be used

as early indicators for software’s bug-proneness. Moreover,

our results show that they are substitute predictors for other

coupling-concerned OO metrics in prediction models. We also

noticed that the predictive quality improves when we combine

violations of LoD with other metrics to generate principle

components.

Our future research will continue the search for effective

prediction models using violations of LoD as indicators. We

plan to label LoD violations based on their severities, and then

dig into the consequences of each label on the software quality

perspective. Moreover, we will improve the violation detection

algorithms to eliminate the bias generated by some harmless

violations, which do not have much impact on the software

quality.

REFERENCES

[1] M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon, Principles of Soft-
ware Engineering and Design. Prentice Hall Professional Technical
Reference, 1979.

[2] K. J. Lieberherr and I. M. Holland, “Assuring good style for object-
oriented programs,” Computer, vol. 22, no. 9, pp. 38–44, Sep. 1989.

[3] K. J. Lienberherr, “Formulations and benefits of the law of demeter,”
SIGPLAN Not., vol. 24, pp. 67–78, March 1989. [Online]. Available:
http://doi.acm.org/10.1145/66083.66089

[4] K. J. Lieberherr, “Controlling the complexity of software
design,” in ICSE. IEEE Computer Society, 2004, pp. 2–
11. [Online]. Available: http://csdl.computer.org/comp/proceedings/icse/
2004/2163/00/21630002abs.htm

[5] D. L. Parnas, “A technique for software module specification with
examples,” CACM, vol. 15, no. 5, pp. 330–336, May 1972.

[6] H. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer
and changedistiller,” IEEE Software, vol. 26, no. 1, pp. 26–33, 2009.
[Online]. Available: http://dx.doi.org/10.1109/MS.2009.6

[7] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, ser. ESEC/FSE
’09. New York, NY, USA: ACM, 2009, pp. 91–100. [Online].
Available: http://doi.acm.org/10.1145/1595696.1595713

[8] R. J. Gamma Erich, Richard Helm and J. Vissides, Design Patterns:
Elments of Resuable Object-Oriented Software. Addison-Wesley, 1995.

[9] L. C. Briand and J. Wüst, “Empirical studies of quality models in object-
oriented systems,” Advances in Computers, vol. 56, pp. 98–167, 2002.

[10] P. pratim Pal and N. H. Minsky, “Imposing the law of demeter and its
variations,” 1996.

[11] K. J. Lieberherr, D. H. Lorenz, and P. Wu, “A case for
statically executable advice: checking the law of demeter with
aspectJ,” in AOSD, 2003, pp. 40–49. [Online]. Available: http:
//doi.acm.org/10.1145/643603.643608

[12] V. Basili, L. Briand, and W. Melo, “A validation of object-oriented
design metrics as quality indicators,” IEEE Transactions on Software
Engineering, vol. 22, no. 10, pp. 751–761, October 1996.

[13] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE
Trans. Software Eng, vol. 31, no. 10, pp. 897–910, 2005. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/TSE.2005.112

[14] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings of the Third International Workshop on Pre-
dictor Models in Software Engineering, Minneapolis, MN, May 2007,
to appear.

[15] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Trans. Software Eng, vol. 34,
no. 4, pp. 485–496, 2008. [Online]. Available: http://dx.doi.org/10.
1109/TSE.2008.35

[16] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time
of bugs,” in Proceedings of the 2nd International Workshop on
Recommendation Systems for Software Engineering, ser. RSSE ’10.
New York, NY, USA: ACM, 2010, pp. 52–56. [Online]. Available:
http://doi.acm.org/10.1145/1808920.1808933

[17] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced?: bias in bug-fix datasets,” in
Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ser. ESEC/FSE ’09. New
York, NY, USA: ACM, 2009, pp. 121–130. [Online]. Available:
http://doi.acm.org/10.1145/1595696.1595716

243

