
Using Dynamic Analysis and Clustering
for Implementing Services
by Reusing Legacy Code

Andreas Fuhr, Tassilo Horn, Volker Riediger
Institute for Software Technology

University of Koblenz-Landau
Koblenz, Germany

Email: {afuhr,horn,riediger}@uni-koblenz.de

Abstract—Migrating legacy systems towards Service-Oriented
Architectures requires the identification of legacy code that is able
to implement the new services. This paper proposes an approach
combining dynamic analysis and data mining techniques to map
legacy code to business processes and to identify code for service
implementations based on this mapping. Validating the clustering
solution in a first case study resulted in values of 70,6% in
precision and 83,5% in recall.

I. MOTIVATION

According to a study in 2010 [1], the greatest future
challenge for companies is managing complexity. Markets are
becoming more volatile, more uncertain and more complex,
forcing companies to react to market changes rapidly. CEOs
come up against these threats by enabling their companies
to quickly react to these changes. In addition, the company’s
software systems must be enabled to catch up to the fast
changes, too.

In recent years, Service-Oriented Architectures (SOAs) have
been emerging as one possible software paradigm providing
flexibility for fast software changes. SOAs are viewed as
an abstract, business-driven approach decomposing software
into loosely-coupled services enabling the reuse of existing
software assets for rapidly changing business needs [2]. A
service is an encapsulated, reusable and business-aligned asset
with a well-defined service specification providing an inter-
face description of the requested functionality. The service
specification is implemented by a service component which
is provided by a service provider. Its functionality is used by
service consumers [3].

To keep costs low for switching to SOAs, companies aim
at reusing their existing systems (“legacy systems”) as much
as possible. Migrating legacy systems – that is, transferring
software systems to a new environment without changing the
functionality [4] – enables already proven applications to stay
on stream instead of passing away after some suspensive
servicing [5]. Migrating to services enables both, the reuse
of already established and proven software components and
the integration with new services to support changing business
needs.

One key issue in migrating legacy systems towards SOAs
is the identification of legacy code that is able to implement

the services. Functionality that should be provided by one
service may be scattered across the legacy system. Hence,
it is difficult to identify the pieces of code that belong to
one service. Matters are complicated further by the fact that
legacy code is often not documented and identifiers are often
not named appropriately. Therefore, techniques are needed to
identify legacy code that is able to provide the functionality
of services, without relying on any naming convention or
documentation.

A. Contribution of the Paper

This paper introduces an approach to identify legacy code
for service implementation by using dynamic analysis and
clustering techniques. We exploit a mapping of legacy code
to business processes established during dynamic analysis, to
identify clusters of classes able to implement services.

The remainder of this paper is organized as follows. Sec-
tion II describes how we mapped legacy code to business
processes by using dynamic analysis. Section III introduces
clustering techniques leveraging this mapping to identify le-
gacy code able to implement services. Section IV reports on
the application of the approach to a first proof-of-concept
case study. Section VI summarizes the paper and provides an
outlook on open research issues.

II. GATHERING DATA: DYNAMIC ANALYSIS

In our approach, we aimed at mapping legacy code to busi-
ness processes. As precondition, we therefore need a business
process model of the customer’s business. This model might
already exist from previous business engineering activities.
However, in most cases, such a model does not exist and must
be created at the beginning of the migration project.

For identifying legacy code that is executed during a
business process, we used the dynamic analysis environment
shown in Fig. 1 [6].

For mapping legacy code to business processes, the business
process steps (called activities) were recorded (1) and simu-
lated on the legacy system which had been instrumented to log
all code execution (2). Both pieces of information were stored



Repository

Load
business

processes

Instrument legacy system

Log execution of business processes

Log behavior of legacy system

Create trace links

2

1

3

4

Trace
Analyzer

Log
server

Instrumented
legacy
system

Business
Process
Tracer

Create workflow

Log file
AspectJ
traces

Fig. 1. Dynamic analysis set-up

synchronously to a log server (3). The information was post-
processed (4) and was written back to an integrated repository
storing models for business processes, code and the mapping.

a) The integrated repository: To connect business pro-
cesses and code, both pieces of information are stored as
models in an integrated repository. Entities of both models are
connected via a tracing model. All models conform to special-
ized metamodels which together form the overall repository
metamodel.

b) The Business Process Tracer: The Business Process
Tracer is a graphic tool reading the modeled business processes
from the repository and visualizing them as UML 2.0 activity
diagrams.

During execution, a user operates the tracer in parallel to
the legacy system. In the tracer, an activity is selected and
activated and then the user requests the functionality from the
legacy system by using its user interface.

Whenever an activity is activated or deactivated in the tracer,
a message containing a timestamp and that activity’s name is
sent to the log server.

c) The instrumented legacy system: The legacy system is
instrumented (for example using aspect-oriented approaches).
Before and after each code execution (for example a method
invocation or object instantiation), a BEGIN or END message
is sent to the Log Server. This message contains a timestamp,
the name of the current thread and an identifier of the code
that has been invoked.

d) The log server: The log server receives the messages
sent from the Business Process Tracer and the instrumented
legacy system and stores them in log files. It provides a
synchronization mechanism which guarantees the correct order
of the logged messages, even though the legacy system and
the tracer may be running on different machines with clocks
ticking asynchronously.

e) The Trace Analyzer: So far, all components of the
dynamic analysis framework dealt with recording the sequence
of activity (de)activations in an executed business process and
the corresponding low-level actions which were executed in
the legacy system in response to that.

Fig. 2. Service types and usage of code in activities

The Trace Analyzer’s job is to identify the correct model
entities corresponding to the identifier names in the log files
and to connect the entities via trace links.

It iterates over the log file entries. From the begin/end-
activity entries, it determines the activity in the business
process model which was executed at that time. Between the
begin and end entry for an activity, there are code calls,
which were executed in the legacy system while performing
this activity. Therefore, a mapping is created connecting the
activity in the business process model to the code in the legacy
source code model.

The following section describes how this mapping was
processed by clustering techniques to identify legacy code able
to implement services.

III. IDENTIFYING LEGACY CODE FOR SERVICE
IMPLEMENTATION: CLUSTERING TECHNIQUES

Clustering techniques divide heterogeneous data into more
homogeneous subgroups so that items in the same cluster are
“similar”. For computing how “similar” items are, similarity
or dissimilarity measures like the Euclidean distance are used.

Section III-A introduces our core concept of clustering
legacy code according to its usage in business processes.
Section III-B briefly introduces which clustering algorithms
we used and Section III-C describes how we identified the
best fitting clustering solution. Section IV will then present
the results of this approach applied to a first case study.

A. Core Concepts

By using clustering techniques, we aimed at grouping legacy
code (at the class-level1) such that one cluster contains classes
that implement one service. We distinguished three types of
services [7]:

1) business services,
2) utility services and
3) helper services.

Fig. 2 sketches the relation between legacy code usage during
activities and the type of services.

1In this first proof-of-concept, we grouped legacy code at the level of
classes. However, other levels of granularity (like method-level) could be used,
too.



Fig. 3. Clustering of classes by usage in activities

Business services implement specialized business function-
ality of an activity. Therefore, they are used almost exclusively
by one activity. As a consequence, legacy code that is used
in only one activity may be suited to implement a business
service supporting that activity.

Utility services provide specialized functionality used by
more than one service. Legacy code that can be reused to
implement utility services is characterized in a way that it is
used during multiple, but not most of the activities.

Helper services provide general functionality that is used
by most of the other services. Legacy code for implementing
helper services is used during almost all activities.

In order to identify these three types of services, we looked
at how often each legacy class was used during each activity
of the business processes. Based on how often code was
used during the activities, clustering techniques were used to
identify groups of code forming one of the three service types.

Fig. 3 exemplifies, how clustering was used to identify the
three types of services. The figure shows a clustering of classes
that have been used in three activities. Classes that have been
used almost exclusively in one of the activities form business
services. Classes that have been used in two of the activities
form utility services. And the class that has been used equally
in all three activities forms a helper service.

B. Clustering Algorithms

In our approach, we used the TwoStep algorithm to ap-
proximate the number of clusters and the k-means algorithm
to compute additional clustering solutions with given numbers
of clusters.

The TwoStep algorithm [8] is a hierarchical clustering
algorithm based on the Log-Likelihood distance measure. The
algorithm provides capabilities to approximate the best number

of clusters. The range to look for the optimal number of clus-
ters was considered to be around the number of activities. The
k-means algorithm [9] is a partitioning clustering algorithm
using the Euclidean distance measure. It divides a dataset
into a given number of clusters. The number of clusters was
approximated by the TwoStep algorithm, first.

We used both algorithms to calculate multiple clustering so-
lutions varying in number of clusters and training parameters.
The most challenging part was then to identify the “right”
clustering solution.

C. Identifying the Best Fitting Clustering Solution

To narrow down the clustering solutions, we filtered the
solutions by their Silhouette Coefficient. The Silhouette Co-
efficient combines measures for the cohesion (intra-cluster
distances) and the coupling (inter-cluster distances) of clusters.
Ideal clustering solutions should provide high cohesion (all
items in a cluster strongly belong together) and low coupling
(items in other clusters do not belong to the given cluster).
The Silhouette Coefficient of a clustering solution is near to 1
if all clusters have high cohesion and low coupling. According
to [10], values below 0.51 potentially indicate an artificial
solution. Therefore, clustering solutions with a silhouette co-
efficient below 0.51 were removed from the solution space.

The remaining clustering solutions were interpreted man-
ually. Each cluster was analyzed to identify which activities
where supported by the legacy classes belonging to the cluster.
A meaning like “This cluster represents a business service
supporting the LoadGraph activity” was given to each cluster.
The most intuitive solution (a reasonable but subjective de-
cision during the interpretation process) was selected as final
clustering solution.

IV. CASE STUDY: SOAMIGEXTRACTOR

The identification of legacy code for service implemen-
tation by dynamic analysis and clustering techniques has
been evaluated on one business process of the SOAMIG2

project: the manual extraction of legacy code in order to
implement a service. The CodeExtraction business process
(Fig. 4) was re-documented by interviewing project members
and was modeled as BPMN activity diagram. The business
process contains the five activities (that is, steps of the business
process) (1) Load graph, (2) Select elements, (3) Refactor
elements, (4) Extract elements and (5) Save graph.

These activities are supported by the SoamigExtractor tool.
The SoamigExtractor is a Java/Swing-based tool for the man-
ual extraction of legacy code in order to form new modules.
The tool supports the visualization of package and inheritance
structure of a given legacy system, the selection of elements
and their dependent code (using slicing techniques), some
refactorings and the extraction of the selected elements.

2The SOAMIG project addressed the semi-automatic migration of legacy
software systems to Service-Oriented Architectures, based on model-driven
techniques and code transformation. See http://www.soamig.de for further
information.



Fig. 4. BPMN model for the CodeExtraction business process

A. Rating the clustering solution

To rate the quality of the clustering solutions, an expert (the
original developer of the system) allocated the classes of the
SoamigExtractor to services manually. This “true allocation”
was defined as the reference allocation that the clustering
solution should match. The expert defined seven services for
the SoamigExtractor: 1) LoadGraph, 2) SaveGraph, 3) Extrac-
tXml, 4) SelectCode, 5) RefactorCode, 6) DataPersistence and
7) Visualization

Given the true allocation, the quality of a clustering solution
was measured by computing a contingency table for clustering
solutions: Let A be the true allocation of the data and C be
the solution computed by a clustering technique [11]. Then,
(i) N11 is the number of pairs of items which are in the same
cluster in C and in the same cluster in A. (ii) N10 is the
number of pairs of items which are in the same cluster in C
but in different clusters in A. (iii) N01 is the number of pairs
of items which are in different clusters in C but in the same
cluster in A. (iv) N00 is the number of pairs of items which
are in different clusters in C and in different clusters in A.
The precision of a clustering solution is then defined as the
ratio of items a clustering technique has computed right [12]:

P =
N11

N11 +N10
(1)

The recall is defined as the ratio of items the clustering
technique matched against the items expected by the true
allocation:

R =
N11

N11 +N01
(2)

In the following, two clustering solutions are evaluated
and compared. Section IV-B describes a clustering solution
based only on the usage of legacy classes during activities.
Section IV-C presents an adapted solution based on a dataset
including information about the classes’ package.

B. First Results: Clustering on Usage Only

For the first approach, the TwoStep algorithm approximated
6 clusters (services) as the optimal number, matching the
expert’s intuition quite well. To find the best clustering so-
lution, the parameters of the TwoStep algorithm have been

varied. Various k-Means solutions have been computed, too.
The solutions differed in the number of clusters (6± 2). This
first approach resulted in three clustering solutions meeting
the threshold criterion of a Silhouette Coefficient higher than
0.51. The three solutions were interpreted manually and the
most intuitive solution was chosen.

The final clustering solution (k-Means with 6 clusters)
reached a Silhouette coefficient of 0.883, attesting a strong,
non-artificial, clustering solution. The six clusters were inter-
preted as five business services supporting the five activities
and one utility service supporting the activities Select elements,
Refactor elements and Load graph .

Comparing this solution to the true allocation defined by
the expert, the clustering by usage values only resulted in a
precision of 62,9% and a recall of 80,3%. Further analysis
revealed, that most of the classes of the DataPersistence
service were used almost exclusively in one of the activities.
Therefore, they are put correctly into the service supporting
the respective activity.

To force the clustering algorithms to put classes of the
DataPersistence service into an own cluster, an additional
parameter was added to the input: the qualified name of the
package of the classes.

C. Adapted Results: Including Package Information

A clustering with additional information about the package
of a legacy class resulted in 70,6% precision and 83,5% recall.
Fig. 5 visualizes the distribution of the classes to the clusters.
The classes implementing the service DataPersistence and
Visualization were put into one cluster and three classes of
the DataPersistence classes were associated to the SelectCode
cluster. All other classes are allocated to clusters perfectly
matching the expert’s true allocation.

V. RELATED WORK

Identification of legacy code able to implement services is
still an open research issue and not yet explored very well [13].
However, some inspiring work has been done in disciplines
relating to our approach.

In the context of research on feature location, some
approaches identifying legacy code implementing features



Visualization
DataPersistence
RefactorCode
SelectCode
ExtractXml
SaveGraph
LoadGraph
True allocation

12,5

10,0

7,5

5,0

2,5

0,0

Q
u

an
ti

ty

Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5 Cluster-6
K-Means Solution

Fig. 5. Distribiution of classes to the clusters

(which are similar to services) have been developed [14], [15].
These approaches were quite inspiring for our work. However,
they are missing the focus on business processes as the basis
for dynamic analysis scenarios.

In research on software clustering, much work has been
done in developing various clustering techniques and tools
supporting the extraction of system parts (see for example
[16]). However, the approaches do not account for the impor-
tance of business processes in the implementation of services,
too.

In the context of identifying legacy code able to implement
services, some work has been done, too. IBM analyzes names
of operations and comment lines in order to find services [17].
They use information retrieval techniques to extract informa-
tion from names and comments. Therefore, the approach fails
as soon as naming conventions are not met or code is not
documented well. Zhang et al. [18] identify legacy code able
to implement services based on the recovered architecture of a
legacy system. Marchetto and Ricca [19] use dynamic analysis
for identifying legacy code able to implement services, too.
However, they use test cases instead of business processes for
their dynamic analysis scenario and they do not use clustering
techniques to post-process the dynamic trace logs.

VI. CONCLUSION

In this paper, we presented an approach exploiting the
mapping of legacy code to activities of a business process.
The mapping was derived by dynamic analysis. We clustered
legacy classes according to their usage during activities, form-
ing clusters that gave hints which classes can be reused to
implement services.

The clustering without including information about pack-
ages already lead to satisfying results. As advantage, this ap-
proach is independent of any naming conventions or semantics
that have been tried to extract from the legacy code. Including
package information in the clustering process lead to results
better matching the expert’s intuition. However, this approach
relies on well-defined package structures.

In future research, this approach must be verified on
enterprise-scale systems. In more complex systems, it will be
much harder to identify well-interpretable clusters. In addition,
estimating the right number of clusters was lead by subjective
intuition; a well-defined technique to identify this number must
be invented in future projects. Moreover, the approach must
be verified on other legacy languages and on a different level
of granularity (that is, for example, clustering on method level
instead of class level).

However, the results of this first proof-of-concept shows a
promising approach for identifying legacy code that is able to
implement services.

REFERENCES

[1] IBM, “Capitalizing on complexity: Insights from the global chief exec-
utive officer study,” 2010.

[2] N. Gold, C. Knight, A. Mohan, and M. Munro, “Understanding service-
oriented software,” IEEE Softw., vol. 21, no. 2, pp. 71–77, 2004.

[3] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and
K. Holley, “Soma: A method for developing service-oriented solutions,”
IBM Syst J, vol. 47, no. 3, pp. 377–396, 2008.

[4] H. M. Sneed, E. Wolf, and H. Heilmann, Softwaremigration in der
Praxis: Übertragung alter Softwaresysteme in eine moderne Umgebung,
1st ed. Heidelberg: dpunkt.Verl., 2010.

[5] V. T. Rajlich and K. H. Bennett, “A staged model for the software life
cycle,” IEEE Comput, vol. 33, no. 7, pp. 66–71, 2000.

[6] A. Fuhr, T. Horn, and V. Riediger, “Dynamic analysis for model
integration (extended abstract),” ST-Trends, vol. 30, no. 2, pp. 70–71,
2010.

[7] S. Alahmari, E. Zaluska, and D. De Roure, “A service identification
framework for legacy system migration into soa,” in IEEE Seventh
International Conference on Services Computing. IEEE Computer
Society, 2010, pp. 614–617.

[8] T. Chiu, D. Fang, J. Chen, Y. Wang, and C. Jeris, “A robust and
scalable clustering algorithm for mixed type attributes in large database
environment,” in KDD, 2001, pp. 263–268.

[9] J. A. Hartigan and M. A. Wong, “A k-means clustering algorithm,” Appl
Stat-J Roy St C, vol. 28, pp. 100–108, 1979.

[10] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Intro-
duction to Cluster Analysis. Wiley-Interscience, 2009.

[11] G. Gan, C. Ma, and J. Wu, Data clustering: Theory, algorithms, and
applications. Philadelphia: SIAM, 2007.

[12] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining,
1st ed. Boston: Pearson Addison Wesley, 2005.

[13] K. Kontogiannis, G. A. Lewis, D. B. Smith, M. Litoiu, H. Müller,
S. Schuster, and E. Stroulia, “The landscape of service-oriented systems:
A research perspective,” in Proceedings of the International Workshop
on Systems Development in SOA Environments. IEEE Computer
Society, 2007.

[14] O. Greevy, S. Ducasse, and T. Gı̂rba, “Analyzing software evolution
through feature views,” J Softw Maint Evol-R, vol. 18, no. 6, pp. 425–
456, 2006.

[15] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source
code,” IEEE Trans. Software Eng., vol. 29, no. 3, pp. 210–224, 2003.

[16] B. Mitchell and S. Mancoridis, “On the automatic modularization of
software systems using the bunch tool,” IEEE Trans. Software Eng.,
vol. 32, no. 3, pp. 193–208, 2006.

[17] I. Ronen, N. Aizenbud, and K. Kveler, “Service identification in legacy
code using structured and unstructured analysis,” presented at the
IBM Programming Languages and Development Environments Seminar,
Haifa, 2007.

[18] Z. Zhang, R. Liu, and H. Yang, “Service identification and packaging
in service oriented reengineering,” in Proceedings of the 7th Interna-
tional Conference on Software Engineering and Knowledge Engineering
(SEKE), 2005, pp. 241–249.

[19] A. Marchetto and F. Ricca, “From objects to services: toward a stepwise
migration approach for java applications,” Int J Softw Tools Technol
Transfer, vol. 11, no. 6, pp. 427–440, 2009.


