Modeling Software Execution Environment

Dawei Qif William N. Sumner?

TDept. of Computer Science

Feng Qin*

National University of Singapore

Abstract—

Software execution environment, interfaced with software
through library functions and system calls, constitutes an impor-
tant aspect of the software’s semantics. Software analysis ought
to take the execution environment into consideration. However,
due to lack of source code and the inherent implementation
complexity of these functions, it is quite difficult to co-analyze
software and its environment. In this paper, we propose to extend
program synthesis techniques to construct models for system and
library functions. The technique samples the behavior of the
original implementation of a function. The samples are used as
the specification to synthesize the model, which is a C program.
The generated model is iteratively refined. We have developed
a prototype that can successfully construct models for a pool of
system and library calls from their real world complex binary
implementations. Moreover, our experiments have shown that
the constructed models can improve dynamic test generation and
failure tolerance.

I. INTRODUCTION

Software interacts with its environment through library
functions and system calls. On one hand, part of software
functionality is fulfilled by these functions; files and databases
stored in external resources constitute an important part of
program execution state. On the other hand, inputs from the
environment, such as network messages, values from input
devices, and signals indicating various exceptional states (e.g.
file-system-full), affect software execution. As such, tech-
niques that analyze programs should consider environment a
cohesive part of program semantics and reason about behavior
of a program in its proper environmental context.

Many program analysis, including both static and dynamic
analysis, require proper reasoning about environment. For ex-
ample, dynamic program slicing [1] and taint analysis [2] need
to know the dependencies between input and output variables
for a library/system function. A naive approximation that
assumes each output relies on all inputs leads to exponential
growth in the size of slices or the number of tainted variables.
Symbolic execution engines [3], [4] need to have appropriate
models for library and system calls in order to construct correct
symbolic constraints. Without such models, the underlying
SMT solver may produce solutions that are infeasible at run-
time. Additionally, program environment can make a program
vulnerable to security attacks, e.g., giving away permissions
to confidential files, as evidenced in a recent study [5]. In this
scenario, neither the program nor the system call implemen-
tations are buggy on their own, whereas the combination of
both leads to the vulnerabilities. Without a proper model of
environment, an analysis cannot draw a definite conclusion
about the safety of a program. Recently, techniques were

Mai Zheng*
iDept‘ of Computer Science

Purdue University

Abhik Roychoudhury!

*Dept. of Computer Science and Engineering
The Ohio State University

Xiangyu Zhang?

proposed to survive software failures, especially for those
long running critical server programs [6]. The effectiveness
of such techniques hinges on precise environmental models.
For example, one of the ideas is to enlarge an application’s
memory allocation request by padding additional bytes to
survive buffer overflows. Without knowing the behavior of the
underlying memory allocator, it is difficult to achieve effective
and optimal padding.

Despite its importance, modeling environment is challeng-
ing. First, it is often difficult to acquire the source code of
system and library functions. Without source code, it is hard to
reason about the semantics of those functions. Moreover, even
if source code is available, the code base is often prohibitively
large and complex, making the modeling task substantially
challenging. For example, Linux-2.6.38 contains 341 system
calls with more than 14 millions lines of source code and
glibc-2.8 provides 1234 functions with more than 1.3 millions
lines of code. Also, library and system call implementations
tend to be complex as they have gone through substantial
optimizations in pursuit of performance.

Currently, environment models in most existing program
analysis are manually constructed by either tool developers or
users [3], [4]. Due to the scale and complexity of library and
system call implementations, only a very small portion of all
these calls are modeled, and only a single aspect, usually the
most basic functional aspect, of a call is modeled. For example,
a model for a file system read in [3], [4] only contains the
logic for retrieving file content but lacks the logic for setting
the error code. However, different analysis may be interested
in different aspects of a library/system call. Furthermore, since
these models are manually constructed, they lack flexibility. If
a different version of a library or kernel is used, it is difficult to
adjust the underlying models. For environment functions that
are not well documented, it is almost impossible to construct
their models manually.

Our goal is to develop an automated technique that can
construct models for library and system call functions from the
executables of these functions. Our models are essentially C
programs that provide the same functionalities of the functions
being modeled, yet substantially simplified. Such programs
can be directly included as part of the application to enable
program-environment co-analysis. We make the key observa-
tion that in many cases, the complexity of library and system
functions is due to optimizations and the necessity of handling
architecture dependent issues and exceptional signals. Most of
this complexity can be suppressed in a high level behavioral
model.



As the first step towards this goal, we show its feasibility by
extending the oracle guided program synthesis technique [7] to
model library and system functions. In particular, the original
executable of a function is used as the oracle. By running the
oracle with a set of inputs, we acquire a behavioral specifi-
cation of the function, consisting of a set of inputs and the
corresponding outputs. After this, a C program is synthesized
to satisfy the specification via the following steps. From the
description of a system/library function, we first speculate the
possible data structures that can be used to construct its model.
Then the primitive statements related to manipulating such
data structures are provided as the building blocks of synthesis.
Finally, the orderings of these building blocks are modeled as
constraints, a solution to which produces a candidate program.

Our contributions are highlighted as follows.

« We propose a novel and practical application of program
synthesis. It generates substantially simplified C code that
models the behavior of system and library functions. It
is one step towards automatic co-analysis of applications
and their environment as the model code can be included
as part of the user code and directly subject to various
analysis.

o We identify the technical challenges and propose solu-
tions. In particular, we identify a set of primitive compo-
nents that are specific to the commonly used data struc-
tures for system and library functions, and develop their
synthesis encodings. They are the fundamental building
blocks of the models.

o« We propose solutions to modeling loops. Expressive
primitives are proposed to abstract the iterative semantics
such that in many cases we can avoid synthesizing
loops. For other cases, we formulate loops as high order
functions that repeatedly apply a loop-free function to
a sequence of inputs. The problem is hence reduced to
modeling the loop-free function.

o To reduce the search space, we propose to explicitly
encode type constraints so that we can avoid constructing
models that are not well typed.

« We have implemented a prototype. It is able to model
a pool of real world system and library calls, including
those in file system. We also use the generated models
in two analysis: dynamic test generation and failure
tolerance. Our experiments have shown that the generated
models can improve the analysis results.

II. MOTIVATING EXAMPLES

In this section, we show two examples that motivate the
importance of modeling environment.

A. Program Dependence Analysis

Program dependence analysis detects data and control de-
pendences between statements. Being either static or dynamic,
it is the core technique for program slicing [8], information
flow tracking [9], and taint analysis [2]. Handling library and
system calls is a prominent challenge in dependence analysis.
First, the source code of these calls is often missing. Even if

the source code is available, it is often too complex to analyze,
due to the underlying optimizations, engineering tricks, and the
correlations between functions. For example, many libc func-
tions are optimized using bit operations, which require bit level
dependence tracking. As a result, the dependences exercised in
the bodies of these calls are invisible to the analysis. However,
such dependences are important as statements in the user space
may transitively depend on each other through these invisible
dependences in the library/kernel space.

Consider the example in Fig. 1. The program first writes 40
values to the buffer i_buf. It then outputs the buffer through
a file write service call (line 3). Later, it makes two fgets ()
calls at lines 5 and 9. The first invocation retrieves 20 bytes
from the file and the second invocation retrieves the rest.
Therefore, at line 10, the first byte in the buffer retrieved by the
second invocation, o_buf [0], is dependent on the definition
of the 21st element of i_buf at line 3. Such dependence
cannot be determined by most existing program dependence
analysis engines without modeling file operations fwrite ()
and fgets (). Note that, a simple approach that assumes each
output byte dependent on all input bytes would conclude that
the use of o_bug[0] is dependent on the definitions of all
the array elements, and even the file descriptor and the size
(arguments of fgets ()).

Moreover, if an error code is returned for the first fgets ()
invocation at line 5, the analysis cannot determine the precise
dependence of the error code without the models. In contrast,
from the desired model of fgets () shown in Fig. 1, it
can be precisely determined that if the error code is -22, the
dependence is on the size at line 5; if the error code is -
9, the dependence is on the buffer pointer. Note that although
the models are simple, the corresponding real implementations
are substantially more complex, with the file buffer control and
caching logic being the dominant factors of the code bodies.

B. Software Failure Tolerance

Software failure tolerance mechanisms are designed to
survive software failures during production runs, which is
very important for many applications (e.g., critical process
control or on-line transaction monitoring) that demand high
availability [10]. Rx [6] and FirstAid [11] are recent advances
on surviving failures that are caused by deterministic bugs,
such as buffer overflows and double frees. They do so by re-
executing the failed program from previous checkpoints and
exploiting execution environment changes.

Fig. 2 shows a buffer overflow bug in a stable version
of Squid [12], which is a popular proxy server. In func-
tion ftpBuildTitleUrl, t is a heap buffer storing an
input request. Line 4 calculates the expected buffer length
len, which is incorrect since it does not consider special
http characters [13]. Line 7 allocates the buffer based on
len. As a result, buffer t can be overflowed at line 9
since rfcl738_escape_part may return a longer-than-
expected string.

Both Rx and FirstAid attempt to survive the buffer overflow
by using a fixed-size padding. They implicitly assume a simple



int fgets (char * buf, int s, FILE* f)
{ if (s<0) return -22;

f buf=hashmap_buf.get(f);

if (!f_buf) return -9;

f pos=hashmap_pos.get(f);

i=0;

while (f_buf[f pos] && i<s)
buf[i]=f buf[f pos + i++];

returni; }

if (r<=0)

— O 00 N L B W —

Fig. 1.

// squid-2.3.STABLES/src/fip.c
1 static void ftpBuildTitleUrl(ftpState)

void * calloc(int n, int s) i {
{ B o €3 4 size_tlen = strlen(ftpState);
req _size=n *s; S char *t
@ size = align (req_size); 6 ’
addr = find_buf (size); ; thczi‘(ltl‘{?f(:;f;’,,l)?;
PSS B3 // buffer overflow in next line
;e.turn addr; 9 streal(t,
) ? rfc1738_escape_part(ftpState));
10 ...

1}

Fig. 2. Simplified code snippet from squid-2.3.STABLES.

model of the memory management library, i.e., calloc adds
no extra space to the requested buffer. This assumption may
not hold. For example, glibc allocates memory blocks in the
size of a multiple of eight (or sixteen on 64-bit systems) [14],
as shown at @ in the model in Fig. 2. Furthermore, some cus-
tomized memory management libraries (e.g., [15], [16]) may
append larger space to the user-requested memory for various
reasons. In these scenarios, if not large enough, the padding
added by Rx and FirstAid may be masked by the default
padding from the underlying memory management library,
rendering Rx and FirstAid ineffective. Additionally, the fact
that padding cannot survive a failure may mislead developers
in understanding the root causes since they may eliminate the
possibility of a buffer overflow. Note while larger paddings
increase the probability of surviving failures, they incur more
resource consumption and/or larger runtime overhead. Similar
situations apply to other environmental changes, such as
determining the delay of recycling freed buffers for handling
dangling pointers and double frees. Therefore, it is imperative
to model the behavior of underlying memory management
libraries to provide scientific basis for the effectiveness of Rx
and FirstAid.

III. OVERVIEW AND TECHNICAL CHALLENGES

In this paper we focus on solving the following problem.
Given the executable of a library/system function, denoted
as f., we aim to synthesize its model fs, which is a simple
program that has the same observable behavior as f.. We do
not require the source code of f., but rather its binary form.
Models are in C language so that they can be compiled and
executed. They can also be included as part of the application

for (t=0;t<40;t++)
i buf[t]=..
fwrite (i_buf, strlen(i_buf), 1, f1);

r=fgets (unused_buf, 20, f1);
{/* exception handling*/}

else fgets(o_buf, 256, f1);
0 ...=o0_bufl0];

fwrite (char * buf, int s, int n, FILE* f)
{ f buf=hashmap_buf.get(f);
f pos=hashmap_pos.get(f);
f buflf pos, f posts*n]=
bufl0, s*n];
hashmap_pos.set(f, f pos+s*n);

oo §

Models are needed for precise program dependence analysis. Shaded boxes are the desired models.

TABLE 1
PRIMITIVE COMPONENTS

Primitive | Explanation

input” the nth input.

const’ represents constant c.

ge ge(x1,x2) returns true is x1 is greater than or
equal to x2, otherwise false

ite ite(x1,x2,x3) returns x2 if x1 is true, otherwise x3

subarray | subarray(in_array_len,in_array,pos,len,out)
returns the length of the output array, the length
is “len” if pos+len < in_array_len, otherwise
the length is in_array_len — pos. The output
array is put in “out”.

minus minus(x1, x2) represents x1-x2

to allow various application-environment co-analysis, without
substantial extension of existing analysis.

Given f., we first acquire an initial set of input and
output pairs, each pair describing the observable output when
executing f. with an input. We then try to construct a model
that manifests the same input/output behavior.

Consider the glibc file read function. It takes as inputs the
file content, file position and the length of data to be read.
Its outputs include the data and a return value. If the read
operation succeeds, the return value is the length of the data
that has been read. If it fails, the return value is -1. The
signature of the function we expect to synthesize is as follows.

int read(int file_len, const char
«file_content, int file_pos,

int return_value,
The first four arguments represent inputs and the last two
represent outputs.

We extend the oracle-guided program synthesis tech-
nique [7] to model system and library calls. In particular, a set
of primitive operations, or so called components, are provided.
These components are the building blocks of models. The
derivation of a model is essentially the process of searching for
an order of these components such that the ordered sequence
composes a program that manifests the specified input/output
behavior. The primitive components include basic arithmetic
operations, assignment statements, conditional statements, and
more importantly, data structure operations. For example, the
components for file read are presented and explained in Table
L.

The search is conducted through an SMT solver. Specif-
ically, variables are introduced to explicitly represent the
location of each primitive component, called the location
variables. The correlations between these location variables

char xout_buf);



are encoded as constraints. For example, the location of a
primitive that defines a variable z must precede the location
of a primitive that uses z.

Consider the file read example. Assume a primitive com-
ponent is the minus operation z = y — x. A variable [, is
introduced to represent the location of the primitive. The solver
resolves [, = 9, indicating the primitive should be put at line
9. The synthesized model for file read is shown in Fig. 3. Note
that it precisely captures the behavior of file read with only
10 lines of code, whereas the real implementation of file read
has over 700 lines of code, involving complex file buffer/cache
control and memory management logic.

00 = input’
ol = input!
02 = input?
03 = input®

04 = const™

05 = ge(04,03)

06 = ite(05,04,03)

07 = subarray(00,01,02,06,08)
09 = minus(00,02)

return o7 o8

IR RN Q

Fig. 3. Synthesized program for “read”, this synthesized program puts the
right data into the read buffer if the parameters are valid. When the read
length provided is a negative integer, it returns -1. Line 9 is dead code.

Technical Challenges. The existing oracle-guided program
synthesis technique [7] is insufficient for modeling complex
system and library calls. In particular, it handles very small
code bodies. It only considers simple primitives such as
arithmetic and bit operations as their goal was to synthe-
size computational cores, e.g. encoder/decoder, whereas the
functionalities of system and library calls are mostly realized
through data structures. It does not handle programs with
loops. In this paper, we focus on solving the following
technical challenges.

e System and library calls often have complex implemen-
tations, using a large volume of instructions with various
kinds. On one hand, it is impossible and unnecessary to
provide all such instructions as the initial primitives for
model construction. On the other hand, it is insufficient
to use only arithmetic and bit operations as primitive
components. We need to identify the set of primitives
that is specific for environment functions and develop
their synthesis encodings.

o As the volume and complexity of the primitive compo-
nents increases, the search space is enlarged. We need to
develop techniques that help reduce the search space.

o Loops are heavily used in system and library calls. We
need to develop solutions for loops.

o Although a constructed model must manifest the same
observable behavior regarding the given set of input and
output pairs. It remains uncertain if the generated model
has the same behavior for all inputs. For system and
library calls, it is unrealistic to assume the presence of a
validator (a human expert or a theorem prover) that can

prove the equivalence of the two. We have to develop
solutions to mitigate such uncertainty.

IV. NOTATIONS

We use f. and f; to denote the original complex function
and its simplified model, respectively. Both f; and f. have
the same function signature._)We denote the input variables and
output variable for fs/f. as I and O respectively. Without loss
of generality, each primitive component ﬁ}mction is assumed to
have only one output variable. We use I; to represent the list
o_f> input variables for component g;. The k' input variable in
I; is denoted as I; [k]. We use O; to represent the only output
variil?le for g;. The formal specification of g; is denoted as
¢i( I4,0;).

We use @ to represent all input variables for the primitive
component functions, and we use R to represent all output
variables for the primitive component functions.

N N
Q= U I;, R= U{Oz}
i=1 i=1
N
For each variable z in Q U RU I U {O}, we declare a
location variable I,. A location variable is interpreted in the
following way: 1) if z € R, then the primitive whose output is
x is placed at line [, and ii) if z € @, then z is the same as the
output from line /., denoting x is used as, input in a primitive
and its definition is at [, and iii) if x € I, then output at line
l; is the same as input variable x of the synthesized function
fs, and iv) if z == O, then the output of f, is the same as
the output from line /,. We use L to represent the set of all
location variables.
We use E to represent all the input-output pairs that we have
observed from the original function f.. For each input-output

pair (a;, 3;) in E, 8; == f.(a;).
E = {(c0, Bo), (1, B1), s (Ctms Bm) }
V. BASIC DESIGN

Similar to oracle-guided program synthesis [7], the basic
design of our modeling technique is to encode the correlations
between location variables and the input-output specification
as constraints. A solution to these variables denotes a compo-
sition for the primitive components corresponding to f5. This
section describes the basic design. In the next two sections, we
will describe our innovations over the basic design to handle
practical challenges, i.e., identifying and encoding expressive
primitives, providing the initial set of primitives, reducing
search space, supporting loops, and validating models.

We first encode a type of constraints dictating the well-
formedness of fs. A well-formed program should satisfy the
following constraints.

The inputs of any component function should always be
defined before they are used, and there should be no two
primitives placed on the same line,

N
=N\ N <l A N L#L

i=1 lef7y501 z,yER,x £y



The first a few lines of the synthesized program are reserved
for input variables. Therefore, all the location variables for
inputs are fixed. All the other location variz)ibles should be
within the correct range. Let M = N + | I |, N being the
number of primitives. The following two formula encode the
constraints on the range of location variables.

T|-1
Yo= NO<l<MANITI<SL<MA N L=k
T€Q z€R k=0
Constraint ¢,,r, defines the well-formedness of a program.
¢’wfp = ¢1 A ¢2

The following constraint establishes the equality between
variables across multiple components to denote data flow
correlations.

(rbdataflmu = /\

N
z,y€EQURU I U{O}

le=ly=2=y

For example, assume two primitives 0; = g1(i1) and o2 =
g2(i2). Formula [;, = I,, implies that the output variable o,
should be unified with the input variable 75, and hence the
second component becomes 02 = g2(01), suggesting the data
flow between the two primitives.

The following constraint requires that the specification of
each primitive component is satisfied.

N
N
din = N\ 6:(1;,0,)
i=1
With the aforedefined constraints, the following 6 defines the
synthesis constraint. A valuation of L that satisfies 6 defines
a function equivalent to the original complex function f,
regarding the given input-output samples.

Sfunc(L, T,0) =3Q, R, dusp(L) A drin(Q, R)A
Sdatafion(L, T,0,Q,R)AO = fu(I)

0=3L N Srunc(L, . )
a;,B€E

There may be multiple models that can manifest the specified
input-output behavior. Iterative refinement is used to remove
bogus solutions. The idea is to use the SMT solver to generate
new inputs (inputs that are not in £) such that there exist
multiple f;’s producing different outputs from the same new
inputs. The new inputs are then added to E and the synthesis
process is repeated. The following congaint Orefine is used
to generate new inputs. A valuation of I is added to E. The
whole process terminates when 6,.. rine cannot be satisfied.

Orefine = 3L, L', T,0,0',6(L) A O(L)A
¢func(L7 7}7 O) A ¢func(L/7 77 OI) AN O 7é O/
VI. MODELING ENVIRONMENT

In this section, we present the details of addressing various
practical challenges in modeling environment. These are our
contributions over [7].

A. Providing Expressive Primitive Components

System and library function implementations are often
complex. Their models cannot be sufficiently constructed
from simple arithmetic operations and statements. We need
to provide more expressive primitive components.

1) Primitives for Data Structures.: System and library
functions make heavy use of data structures. For the con-
sideration of performance, data structure operations are often
highly optimized, e.g. bit operations may be used to replace
regular operations, software caches may be used to reduce
response time. It is unnecessary to model the details of such
optimized operations. We can effectively mask the unnecessary
complexity if we abstract data structure operations to primitive
components.

Recall the glibc file read example in Section III. Although
the original implementation has over 700 lines of code ' and
it contains complex logic on file buffer control, caching, and
memory management, it can be effectively modeled as array
manipulations.

We observe that many system and library calls can be
modeled using a few abstract data structures such as arrays,
hash tables, and sets. For example, a pipe is essentially an
array that is being accessed in a specific order. Abstracting
the operations on these data structures to first-class primitives
can substantially simplify the modeling process. SMT solvers
do not explicitly support all these data structures. We hence
leverage the build-in support for the Array theory and project
concrete data structures to the abstract Array type. In partic-
ular, the SMT Array type is of the form (Array typeA typeB),
where typeA is the type of the index and typeB is the type of
the value. They can be customized to any types supported by
the solver.

Array In C. We use Array to refer to arrays in SMT language
and C_Array to refer to arrays in C language. To model array
type in C, we instantiate typeA to Int. Therefore, the type de-
scriptor of C_Array is (Array Int typeB). We show in Table II
three modeled operations of C_Array: subarray, concat,
and indexof. These operations are provided as primitive
components for synthesis. Their constraints (specifications)
contribute to the synthesis formula 6 (Section V) through ¢;;3.
Operation subarray was used in the model for the glibc file
read example.

Hash Table. Real world hash table and hash map implemen-
tations vary a lot, depending on the underlying hash functions,
the implementation of hash buckets, and the logic for handling
hash conflicts. We observe that at the behavioral level, all these
implementations realize the same functionality of maintaining
a one-to-one mapping of a key and a value, which can be
directly described by the SMT Array theory. In particular, the
type descriptor for hash tables is (Array typeA typeB), without
instantiating typeA or typeB. The specification is omitted due
to lack of space.

IThe number includes those being called by glibc read to realize its
functionality, down to the call depth of 3.



TABLE II
SPECIFICATION OF C_ARRAY.

Operation Description Constraint
outarr = subarray(inarr, | Extracting a sub-array. The parameter (len(outarr) = min(len(inarr) — pos, size))A\
pos, size) pos denotes where to start extraction. (Vk,0 < k < len(outarr) = outarr[k] = inarr[pos + k)
len(outarr) = len(arrA) + len(arrB)A
outarr = concat (arra, The outarr is the concatenation of (Vk,0 < k < len(arrA) = outarr[k] = arr A[k])A
arrB) arrA and arrB.
(Vk,len(arrA) < k < len(outarr) = outarr|k] = arrBIk])
out = indexof (arr, i) The out is the ith element in arr. out = arr]i]
TABLE III
SPECIFICATION OF SET.
Operation Description Constraint
, . Vk, k = element = setB[k] = trueA
setB = insert (setA, element) Insert one element into the set.
k # element = setB[k] = setAlk]
setB = remove (setA, element) Remove one element from the set. Vk, k = element = setB[k] = false/
k # element = setB[k] = setAlk]
out = contains (setA, element) Check whether the set contains element. out = setA[element]

Set and Linked List. Linked lists are another widely used type
of data structure in system and library functions. Most linked
list related behavior, e.g. inserting an element and looking for
an element, can be modeled as set manipulation. We model
a set as a mapping from a value to a boolean representing
whether the value is an element of the set. Therefore, we
instantiate typeB as Bool and the type descriptor for Set as
(Array typeA Bool). The full specification of set operations is
presented in Table III.

2) Higher Order Functions: We observe that many system
and library functions can be modeled as high order functions
that repeatedly apply a given function on the input. Exam-
ples include atoi () and gsort (). To synthesize these
functions, we provide the following two high order function
templates, and then reduce the problem to synthesizing the
function that is provided to the high order function. We use
h and f to denote the high order function and the provided
function, respectively.

Higher Order Function Template (1): Transformation
h(f,arr) ={
for(i = 0; 1 < len(arr); i++){
outarr[i] = f(arr[il]);

}
return outarr;
}
Higher Order Function Template (11): Accumulation
h(f,arr) ={
//setting accl[0],
for(i = 0; 1 < len(arr);
accl[i+l] = f(acc[i],

to be synthesized
14++) {
arr[i]);

}

return accllen(arr)];

In {he first template, f is a function that transforms in-
dividual elements in the input arr to the output outarr. In
the second template, each output element is the accumulation
of the input subsequence up to the current input element.
To synthesize function f, we acquire input-output pairs of
f as follows. In the case of transformation, each arr[i] and
outarr[i] constitute an input-output pair of f. For accumula-

tion, (h(f,arr[0 : i—1]),arr[i]) and h(f, arr[0 : i]) constitute
an input-output pair of f. Given the original function f. and
i, h(f,arr[0 : i — 1]) can be obtained by executing f. with
input arr[0 : ¢ — 1]. We have synthesized atoi using the
accumulation template. The synthesized input function f is
f(z,y) = x %10+ (y — 48) (48 is the decimal ASCII code of
character ’0’), with = the previously accumulated value and y
the current input element.

3) Parameterized Primitives.: So far we have assumed that
we know the precise functionality of each primitive such that
the modeling process is merely to resolve the location variables
in L. However, in many cases, we only know the form of the
functionality but not the precise coefficients in the form. For
example, when synthesizing the error code logic in file system
calls, we know constant assignments need to be provided as
the primitives (because error codes must be set through such
assignments), but we do not know what are those constants.
In some cases, we know a variable ought to be updated, but
we do not know if the update primitive is a plus one or a
minus one operation. Similar examples include comparisons
with constants.

We address the issue by parameterizing primitive compo-
nents. Each primitive component has a set of parameters,
depending on which the precise functionality of the component
varies. Note that a parameter of a primitive g; is different from
an input of g;. The parameters of g; determine what function
g; actually is. The inputs of g; determine the correspond-
ing outputs with the specific functionality. For example, an
addition-with-constant primitive denoted as o = add®(i) means
o = 1 + c with ¢ being the input and c being the parameter.
More examples of parameterized primitives can be found in
Table I, with superscripts representing the parameters.

Let P be the set of all parameters for the primitives. The
modeling process now is to resolve both L and P. The
essence of introducing P is to leverage the SMT solver to
search for the precise form of a primitive. An alternative
is to explicitly provide all the possible instantiations of a



parameterized primitive. However, such an approach requires
prior knowledge of all instantiations and it results in a very
large set of primitives.

B. Reducing Search Space with Type Constraints

With the non-trivial set of primitive components and the
introduction of parameterization, the search space is large. We
develop an optimization that helps reduce the search space.
Specifically, we leverage type checking by explicitly gncoding
type constraints. For each variable = in PUQURU I U{O},
we use type(x) to represent the type of 2. A valid program
should have consistent types for each variable in the program.
We have the following type constraint.

Q/Jtype = /\

z,y€ PUQURU T U{O}

type(z) # type(y) = l. # 1,

Intuitively, it dictates variables with different types cannot be
unified. A more complex type lattice could be adopted, but we
have not seen the necessity. The type constraint now becomes
part of the synthesis constraint.

C. Handling Loops

Loops are heavily used in system and library functions.
However, it is known to be difficult to directly synthesize
loops [17] due to the fact that the underlying SMT solver
cannot reason about loops. We handle loops in two ways.
The first one is similar to handling higher order functions. We
provide pre-defined loop templates and reduce the problem to
synthesizing the loop body.

In many cases, we are able to avoid synthesizing loops by
abstracting the iterative semantics to data structure primitives.
One example is the glibc file read function. Even though its
implementation contains loops, the subarray () primitive
abstracts away such loops. Similarly, with our hash table
primitives, we abstract away all the loops related to hash value
computation and hash bucket traversal, etc.

D. Selecting Primitive Components

The basic synthesis procedure introduced in Section V
requires a set of primitive components to begin with, which are
provided by the user based on their domain knowledge. The
set determines the search space of the synthesis procedure. If
the provided primitive components are insufficient, synthesis
will fail. On the other hand, providing too many primitive
components reduces efficiency.

We propose Algorithm 1 to select primitive components.
Initially we only provide the very basic components: add,
const, greater-than, if-else. These components are
most commonly used in environment functions. If the syn-
thesis procedure fails with the provided component set P,
one additional primitive component is randomly selected and
added. This process continues until the synthesis procedure
succeeds or time runs out. Note that providing excessive
primitives does not affect the capability of synthesizing correct
models. Unused primitives become dead code. One example
is line 9 in Fig. 3. We currently do not eliminate dead code.

We also use the signature of the synthesized function to
determine whether data structure primitives are considered
when additional primitive components are required (see Al-
gorithm 1).

Algorithm 1 may not always succeed. If that happens, users
have to interfere the selection of primitive components. More
discussion will be presented in Section VIII. Note that in
Algorithm 1, P and A are multisets, which could contain
multiple instances of the same primitive component.

Algorithm 1 Modeling Environment

1: let multiset P be {add, const, greater-than, ifelse}
2: let multiset A be {add, minus, const, greater-than, less-than, equal, ifelse,

3: let Sig be the signature of the synthesized function

4: if Sig uses T » where T is a primitive type (e.g. char, int) then
5: put array primitive components into A

6: end if

7: if Sig uses U * where U is a user-defined type then

8: put set and hashtable primitive components into A
9: end if

10: while not successful and not timeout do

11: try to synthesize the program with P

12: if successful then

13: break

14: end if

15: Randomly choose one component from A and put into P

16: end while

E. An Example of Iterative Modeling
Next we use an example to illustrate the iterative modeling
process. The original function f. is shown below.
int f(int x) {
1f (x<10)
return -1;
else
return 0;

The provided primitives include parameterized constant as-
signments and conditional statements. The initial input-output
specification E contains only one pair {(11,0)}. Table IV
presents the modeling process. The first column shows the
iteration number. The (L,P) and (L', P’) columns show
the solution to the iterative refinement constraint ;. ¢ip. in
Section V. Note that we add in P and P’ to denote the
parameters that need to be synthesized. Intuitively, in each
iteration, two programs are constructed, both satisfying the
input-output specification, but having different behavior on
some input. The input that distinguishes the two constructed
programs is added to E and another iteration starts. For
each program, the ordering column represents the raw
solution from the solver, and the program column shows the
corresponding C code. Observe that after two iterations, the
process terminates at the final solution (that is, (L', P’) cannot
be resolved). Even though the final program is syntactically
different from the original one, it is semantically equivalent.

VII. VALIDATING MODELS

After acquiring the synthesized function fs, we need to
check whether f; indeed conforms with the real-world im-



TABLE IV
THE ITERATIVE SYNTHESIS OF A SAMPLE PROGRAM. PRIMITIVE
0 = CONST® DENOTES A PARAMETERIZED CONSTANT ASSIGNMENT THAT
ASSIGNS ¢ TO o.

Iter| E L L)
ordering program ordering program
00 = input int f(int x){ | o0=input int f(int x) {
ol = const’ if (x<9) ol=const’ if (9 <x)
1 |10 02 = const'™) return -1; | 02=lIt(o1,00) return 0;
771 03 =1t(00,01) else 03=const’ else
04 = const’ return 0; o4=constc™" return -1;
05 =ite(03,02,04)| } o5=ite(02,03,04)| }
return 05 return 05
o0=input int f(int x){ | o0=input int f(int x){
ol=const'’ if (x<10) | ol=const’ if (10<x)
2 |10 02:1t(00,011) return -1; 02:const('nl) return 0;
©,-1) 03=const™ else 03=const' else
o4=const’ return 0; | 04=I1t(03,00) return -1;
05=ite(02,03,04) | } o5=ite(04,01,02)| }
return 05 return 05
o0=input int f{int x){
ol=const’ if (9 <x)
3 |(11,0)| 02=lIt(01,00) return 0;
9, -1) 03=const’ else
(10,0)| o4=constc"™” return -1;
05=ite(02,03,04) | }
return o5

plementation f.. Due to the complexity of f., it is often
impractical to perform any manual or automated theorem
proving. In this paper, we resort to testing. We perform black-
box testing by generating inputs from the description of f,.
Such description is available from the documentation of f..
We apply equivalence class partitioning [18] and pair-wise
testing [19] during test generation. The generated inputs are
executed in both f, and f.. If there is any input ¢ that produces
different outputs in the two functions, we enhance FE with
(t, fo(t)) and perform another iteration of modeling. Note
that validation is different from refinement, which tries to
converge on a single program that conforms to the given I/O
pairs. However, the converged version could be incorrect. The
validation step hence validates results after convergence.
Potentially, we would be able to perform more thorough
testing by white-box approaches. We have tried dynamic test
generation for f.. Unfortunately, the engines we have tried [3],
[4] failed to perform symbolic execution inside system calls.
We leave it as our future work to further investigate this issue.

VIII. EVALUATION

We have implemented a prototype using Perl. Z3 [20]
is the underlying SMT solver, which supports integer and
bitvector arithmetics as well as array. The SMT2 language
that Z3 supports also extends first-order logic with if-then-else
function.

A. Synthesis results

The first set of functions we synthesized are from Linux
system calls. In particular, we focus on system calls that are

TABLE V
SYNTHESIS RESULTS.

. . . #10 pairs LOC in C Manual
Function #prim | Time init/fl;nal fs fe interference
read 8 10s 2/13 15 782% subarray

write 11 1s 2/4 21 650* replacearray
stat 4 1s 2/3 4 588%* n/a
seek 8 8s 2/8 11 200* equal
chmod 5 1s 2/7 8 571%* n/a
chown 6 2s 2/7 9 1059%* n/a
atoi 8 | 77m | 24 | 11| 307 | looptemplaie
multiply
malloc 5 1.5m 3/6 10 | 431* rem
max 6 3s 2/8 9 48 n/a
min 6 2s 2/5 9 48 n/a
sign 8 8m 2/5 13 48 n/a
absolute 5 2s 2/5 8 38 n/a

*Since they call many other functions to realize their functionality, we include the
lines of code of those functions down to call depth of 3. 8These functions are
implemented in bitwise operations.

used in coreutils-6.11 2. They are largely file system related,
including read, write, seek, chmod, chown, stat and
a few variations of these system calls’.

We further look into the most commonly used glibc [21]
library functions in coreutil. A large portion of these functions
are system call wrappers. They can be synthesized in the
same way as synthesizing raw system call functions and thus
not presented. Apart from these wrapper functions, we also
synthesize atoi and the real allocated size of malloc.

Lastly, we experiment on some highly optimized functions.
In particular, we choose functions from [22]. These functions
are implemented using bitwise operations. While being very
efficient, these functions cause difficulty for both human
understanding and program analysis. Using these highly opti-
mized functions as reference, we synthesize equivalent func-
tions that are easier to understand and analyze. In this category,
we have synthesized max, min, sign and absolute.

The results of our synthesis experiment are shown in Table
V. The second column shows the number of primitives in
the synthesized fs. The third column shows the time and the
fourth shows the size of input-output pairs at the beginning and
after the iterative refinement process terminates. Note that the
difference between the two sizes is the number of refinement
iterations. The next two columns show the lines of code of
the generated C programs and the original C implementations.
The last column shows manual interference. When specified,
we need to manually select these components for successful
synthesis.

Among the 12 functions in Table V, 7 functions are auto-
matically synthesized using Algorithm 1 without any manual
interference. For the other 5 functions, we have to manually
provide primitive components for the synthesis procedure to
succeed. For example, we need to provide multiply to
synthesize atoi function. We prefer not to include these
primitives into the default set because using them in synthesis
is expensive compared to others.

Observe that even though many of the original implementa-

Zhttp://www.gnu.org/s/coreutils/
3We do not present results for such variations due to similarity.



tions are complex (i.e. mostly a few hundred lines), we are able
to acquire very simple models (i.e. mostly less than 20 lines).
We perform both testing and manual inspection to validate
the correctness of the generated models. Also observe that the
technique does not require a large initial input-output set. It
is able to generate new inputs through refinement and quickly
converges. The initial input-output set is randomly generated.

The current timeout for the synthesis algorithm is 10
minutes. If the algorithm fails to generate a model in 10
minutes, we manually add some more primitives according
to our understanding of the functions. We never needed to
add more than two primitives. For those that needed manual
interference, the third column of Table V shows the synthesis
time after we manually added the primitives. For atoi (), we
have to set the timeout to 2 hours after adding the multiply
primitive as reasoning about multiplication constraints is very
expensive for the SMT solver. Furthermore, the constant used
in multiplication is not known a priori and is synthesized.

B. Improving symbolic execution with synthesized models

Symbolic execution has been successfully used to explore
program paths and automatically generate test inputs. Due
to the complexity of system call code, none of the existing
engines can symbolically execute system calls together with
the application program. When a system call is encountered in
symbolic execution, some approximation has to be introduced.
The approximation can be avoided using our synthesized
system call models.

We use KLEE [4] as the symbolic execution engine for our
experiment. The authors of KLEE have manually written some
models for system calls. We do two sets of comparison. First,
we examine whether our synthesized system call models could
help symbolic execution in KLEE. We compare the instruction
coverage results between KLEE with no system call models
and KLEE with our synthesized models. Second, we examine
the quality of our synthesized models by comparing them with
KLEE’s manually written models.

We use coreutils-6.11 as our subject programs. As KLEE
could continuously run for a long time, trying to explore all
program paths, we set a time-out at 10 minutes for each
program. The comparison results between no-model and the
synthesized models are shown in Table VI. As shown in Table
VI, with the help of our synthesized models, KLEE gets
better instruction coverage for most of these programs. The
maximum improvement is 43%. The average improvement
over the entire set of programs used (71) is 2.7%. There
are a few cases where the instruction coverage is worse with
the synthesized models. The reason is that given the same
time bound, symbolic execution could focus more on the
application program when there are no system call models,
leading to better instruction coverage.

We have also compared our synthesized models with
KLEE'’s original models. Out of the 71 programs we have run,
our models get better results in 23 programs. KLEE’s models
perform better in 27 programs. For the rest 21 programs,
our models perform exactly the same as KLEE’s models.

TABLE VI
INSTRUCTION COVERAGE RESULT ON COREUTILS-6.11 (KLEE WITH OUR
SYNTHESIZED MODEL VS. KLEE WITH NO SYSTEM CALL MODEL)

Instruction coverage difference

(synthesized model - no model) #Programs

> 30% 1

20% ~ 30% 4

10% ~ 20% 6

2% ~ 10% 18

—2% ~ 2% 27

—10% ~ —2% 10

—20% ~ —10% 3
—30% ~ —20% 2

< —30% 0

The average difference is negligible. That is to say, our
models are as good as the manual models. We argue that
potentially our analytical system can be deployed on different
environments and generate the models automatically, reducing
human efforts.

C. Enhancing failure surviving with our synthesized models

We have modeled the real allocated size of glibc malloc
and evaluated the effectiveness of Rx with and without the
model. Without the model, Rx adds a fixed-size padding (4
bytes by default and the size can be configured by users).
With the model, Rx dynamically queries it to determine the
proper padding size. The core of the model generated is as
follows with x the requested size.

if (x<12)
else return

return 16;

(x+11) & Oxfffffffsg;

It means if the size is smaller than 12, malloc returns 16
bytes. Otherwise, it increases the size by 11 bytes and then
masks off the least 3 bits.

We evaluate Rx with a buffer overflow bug in bc, a numeric
processing program with more than 8,000 lines of code. The
overflowed array stores four pointers with four bytes each.
When bc requests 16 bytes for the array, the glibc library
allocates 24 bytes, including the 8 bytes padding according to
the model. The program crashes once the array is overflowed
for more than 8 bytes. With the default 4-byte padding, Rx
fails to recover from the failure since glibc still returns 24
bytes due to the implicit byte alignment. By consulting the
model, Rx selects a 8-byte padding, which makes difference
on the real size of allocated memory, and successfully survives
the failure.

IX. RELATED WORK

Our basic synthesis constraints encoding is based on the
oracle-based program synthesis work in [17], [7]. However,
many challenges arise when applying the basic approach in
[17] to synthesize real world library/system calls. In this paper,
we have focused on solving these challenges.

Apart from [17], [7], many other work have applied program
synthesis to different application domains. In [23], the authors
synthesize string processing functions in spreadsheets. In
[24], the authors construct program inversions using inductive



program synthesis. In [25], Gulwani et. al. have also applied
program synthesis to geometry constructions.

There have been few works on automatic environment
modeling. Instead, manually crafted models for system calls
and common library calls are used in some symbolic execution
engines [4], [3], [26]. On the other hand, DART [27] and
CUTE [28] perform unit testing and over-approximate the
effects generated by environment. An input from environment
may take any value within its domain. In model checking,
Tkachuk and Dwyer [29] generate over-approximated envi-
ronment models by analyzing the environment source code.
Under-approximation by simply executing the environment
code has also been used in previous research on symbolic
execution [30].

In unit testing, mock objects [31], [32] are widely used to
simulate the execution environment of the unit being tested.
There also exist some mocking frameworks [33], [34] that can
partially automate the task of creating mock objects. However,
manual effort is still required to create mock objects that
implement more than dummy interfaces. The manual effort
in creating mock objects can be mitigated using our synthesis
technique.

In [35], function summaries are generated and reused in
symbolic execution. However, this approach cannot be applied
to system call code due to the high complexity of system calls.
Moreover, symbolic execution, as a whitebox approach, can
hardly abstract away any optimization code in the implemen-
tation. The work in [36] and [37] infer behavior models of
functions in the form of constraints. These constraints serve
as loose specifications of the modeled functions but do not
express exact input-output relationship.

X. CONCLUSION

We propose a technique that shows the feasibility of model-
ing software environment, including system and library func-
tions used by a program. Given the binary implementations
of these functions, it first acquires input-output specification
by sampling their executions. An SMT solver is used to
construct the model, a simple C program, that satisfies the
specification. The model is iteratively refined though automat-
ically generated counter-examples. The technique addresses
problems specific to modeling environment, such as modeling
data structures, reducing search space, and handling loops.
The experiments show that a number of commonly used file-
system-related functions can be precisely modeled. Library
functions, including atoi () and malloc (), are also mod-
eled. It is also shown that the generated models can be used
to improve symbolic execution and failure tolerance.

ACKNOWLEDGEMENT

This work was partially supported by National Science
Foundation (NSF) grants CCF-0953759 (CAREER Award),
CCF-0845870, CCF-1218358, CCF-1218993, and a Ministry
of Education research grant MOE2010-T2-2-073 (R-252-000-
456-112 and R-252-100-456-112) from Singapore.

(1]
[2]

[3]

[4]

[5]
[6]
[7]

[8]
[9]

[10]
(11]
[12]
[13]
[14]
[15]
(16]
(17]
[18]
[19]
[20]
[21]
(22]
(23]
[24]
[25]
[26]
(27]
(28]
[29]
[30]
(31]
[32]
[33]
[34]

[35]
(36]

(37]

REFERENCES

H. Agrawal and J. Horgan, “Dynamic program slicing,” in PLDI, 1990.
J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software,” in NDSS, 2005.

D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new
approach to computer security via binary analysis,” in /CISS, 2008.

C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
0SDI, 2008.

J. Wei, “Improving operating systems security: Two case studies,” PhD
Dissertation, Georgia Institute of Technology, 2009.

F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: treating bugs as
allergies—a safe method to survive software failures,” in SOSP, 2005.
S. Jha, S. Gulwani, S. Seshia, and A. Tiwari, “Oracle-guided component-
based program synthesis,” in /CSE, 2010.

M. Weiser, “Program slicing,” in ICSE, 1981.

A. Myers, “JFLow: Practical mostly-static information flow control,” in
POPL, 1999.

J. Gray, “Why do computers stop and what can be done about it?” in
SRDS, 1986.

Q. Gao, W. Zhang, Y. Tang, and F. Qin, “First-aid: surviving and pre-
venting memory management bugs during production runs,” in EuroSys,
2009.

“Squid,” http://www.squid-cache.org/, 2011.

“HTTP Specification,” http://www.w3.org/Protocols/Specs.html, 2011.
“The GNU C Library,” http://www.delorie.com/gnu/docs/glibc/libc_31.
html, 2011.

V. Lvin, G. Novark, E. Berger, and B. Zorn, “Archipelago: trading
address space for reliability and security,” in ASPLOS, 2008.

C. Lattner and V. Adve, “Automatic pool allocation: improving perfor-
mance by controlling data structure layout in the heap,” in PLDI, 2005.
S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of loop-
free programs,” in PLDI, 2011.

E. Weyuker and B. Jeng, “Analyzing partition testing strategies,” [EEE
Transactions on Software Engineering, vol. 17, no. 7, 1991.

Y. Lei and K. Tai, “In-parameter-order: a test generation strategy for
pairwise testing,” in HASE, 1998.

L. De Moura and N. Bjgrner, “Z3: An efficient smt solver,” in TACAS,
2008.

“GNU C library,” http://www.gnu.org/s/libc/, 2011.

H. Warren, Hacker’s delight. Addison-Wesley Professional, 2003.

S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in POPL, 2011.

S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster, “Path-based
inductive synthesis for program inversion,” in PLDI, 2011.

S. Gulwani, V. Korthikanti, and A. Tiwari, “Synthesizing geometry
constructions,” in PLDI, 2011.

K. Havelund and T. Pressburger, “Model checking java programs using
java pathfinder,” STTT, vol. 2, no. 4, 2000.

P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in PLDI, 2005.

K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in ESEC/FSE, 2005.

O. Tkachuk and M. B. Dwyer, “Adapting side effects analysis for
modular program model checking,” in ESEC/FSE, 2003.

C. S. Pasdreanu, N. Rungta, and W. Visser, “Symbolic execution with
mixed concrete-symbolic solving,” in ISSTA, 2011.

T. Mackinnon, S. Freeman, and P. Craig, “Endo-testing: unit testing with
mock objects,” Extreme programming examined, 2001.

S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes, “Mock roles, not
objects,” in OOPLSA, 2004.

“Google C++ Mocking Framework,”
googlemock/, 2011.

“Easymock,” http://easymock.org/, 2011.

P. Godefroid, “Compositional dynamic test generation,” in POPL, 2007.
M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco, M. Tschantz,
and C. Xiao, “The Daikon system for dynamic detection of likely
invariants,” Science of Computer Programming, vol. 69, no. 1-3, 2007.
L. Mariani and M. Pezze, “Dynamic detection of cots component
incompatibility,” IEEE Software, vol. 24, no. 5, 2007.

http://code.google.com/p/



