Osaka University Knowledg

On the Effectiveness of Accuracy of Automated

Title | foature Location Technique
Ishio, Takashi; Hayashi, Shinpei; Kazato,
Author(s) |7 ochi et al.
Citation

Version Type

AM

URL

https://hdl. handle.net/11094/51564

rights

© 2013 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future
media, including reprinting/republishing this
material for advertising or promotional
purposes, creating new collective works, for
resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work
in other works.

Note

Osaka

University Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

Osaka University

On the Hfectiveness of Accuracy of
Automated Feature Location Technique

Takashi Ishi6, Shinpei Hayashi Hiroshi Kazaté, Tsuyoshi Oshim&
*Osaka University, Osaka 565-0871, Japan Email: ishio@ist.osaka-u.ac.jp
TTokyo Institute of Technology, Tokyo 152—8552, Japan Email: hayashi@se.cs.titech.ac.jp
iNTT DATA INTELLILINK CORPORATION, Tokyo 104-0052, Japan Email: kazatoh@intellilink.co.jp
SNTT Software Innovation Center, Tokyo 180-8585, Japan Email: oshima.tsuyoshi@lab.ntt.co.jp

Abstract—Automated feature location techniques have been in an unfamiliar system using only its source code because an

proposed to extract program elements that are likely to be enterprise application might outlive its development team.
relevant to a given feature. A more accurate result is expected

to enable developers to perform more accurate feature location. 10 support developers locating a feature, various automated
However, several experiments assessing traceability recovery havefeature location techniques have been proposed [1]. A typical
shown that analysts cannot utilize an accurate traceability matrix technique takes keywords or a description of a feature as
for their tasks. Because feature location deals with a certain type input and extracts a list of methods that are only relevant

of traceability links, it is an important question whether the same
phenomena are visible in feature location or not. To answer that © the feature. For example, Marcwet al. [5] proposed

question, we have conducted a controlled experiment. We have @n application of latent semantic indexing (LSI) to feature
asked 20 subjects to locate features using lists of methods oflocation. Poshyvanylkt al. [6] proposed the use of execution
which the accuracy is controlled artificially. The result differs traces of a target program to improve a ranking obtained
from the traceability recovery experiments. Subjects given an by LSI. Eaddyet al. [7] combined static analysis, dynamic

accurate list would be able to locate a feature more accurately. VS d an inf fi trieval (IR) techni ¢ tract
However, subjects could not locate the complete implementation analysis and an information retrieval (IR) technique to extract a

of features in 83% of tasks. Results show that the accuracy of better ranking. Developers can investigate source code using a
automated feature location techniques is fective, but it might result of these techniques.g.the top 10 methods of a ranking.

be insufficient for perfect feature location. A more accurate result of automated feature location tech
Index Terms—feature location, impact analysis, program com-

prehension, human factor niques is expected to enable developers to perform more
accurate feature location. However, a question remains as to
whether the accuracy of automated feature location techniques
actually contributes or not to the performance of developers.

Feature location is a program understanding phase in soffis question arises from an observation reported by Cudde-
ware maintenance. featurerepresents a functionality that isPacket al. [8], Kong et al. [9] and Dekhtyaret al. [10]. They
defined by requirements and which is accessible to develop@fked analysts to do manual validation of a traceability matrix
and users [1]. Locating the current implementation of a featup§tWeen requirements and system tests. The results indicated
in source code is important for developers to perform variolf3at, whereas analysts given a less-accurate traceability matrix
maintenance tasks such as enhancement, bug fixing, &Afl identify many false positives and false negatives in the
refactoring related to the feature.dder et al. reported that matrix, analysts given an accurate traceat_)lllty matrix tend to
developers who know source files related to requirements (ffrease the overall accuracy of the matrix. If the same phe-
produce a software change moréigently [2]. Therefore, Nomenaare _\/lSlbIe mfeat.ure Iocanon,then accurate automated
feature location in this paper denotes a phase to find Cd‘g@tu.re location results might be lesEeetive for actual feature
snippets relevant to a feature to the greatest extent possiBfation performed by developers.
before source code modification. To answer the gquestion, we conducted an experiment with

Although feature location is important, locating the com20 subjects in three organizations. We asked the subjects to
plete implementation of a feature idfiftult for developers [3], locate a feature using a given list of methods by excluding
[4]. According to Wanget al. [3], given a feature, developersfalse positives from the list and by identifying false negatives
use a keyword search tool to identify “seed” methods that arethe source code. To evaluate the influence of accuracy of
likely to be relevant to the feature. For each seed methdidts, we prepared a pair of tasks that specify the same feature
developers explore its source code and related methodstddoe located but which providefirent lists of methods. The
validate whether the methods are actually relevant to thists are derived artificially from the result of a textual search
feature or not. Although each step in the process seems simpkng LSI, so that the lists havefi#irent accuracy, but have
developers must identify relevant methods before they ctre same length. The features and the result of LS| used in
ascertain the complete implementation of a feature. Furth#énis experiment are involved in the open dataset of the work
more, industrial developers are often asked to locate featubgsDit and Gethers [1], [11], although we have extended the

|. INTRODUCTION

descriptions of features. Each subject used either an accuggeelopers were able to predict only a half of classes to be
list or a less-accurate list for a feature. modified for the next maintenance release.

Consequently, we obtained the following observations. various automated feature location techniques have been
- Subjects given an accurate list located a feature mqseoposed in the literature [1]. Some are comparable in recall
accurately than subjects given a less-accurate list. and precision to manual feature location. SNIAFL [14] shows
- Subjects missed one or more relevant methods in 83 thét its precision and recall are, respectively, 91% and 99%
100 tasks. Even if an accurate list covered the compleftsr several small programs. CERBERUS [7] shows that its
implementation of a feature, several relevant metho@gecision and recall are, respectively, 75% and 73% in the
have been falsely recognized as false positives. best configuration for a particular set of concerns. Gethers
- Subjects improved precision of the final result by excludal. [11] compared several impact analysis techniques in more
ing false positives. However, the subjects did not improysractical settings. The best analysis automatically identified
recall in several features. 41-75% of methods modified for a feature request. Retlle
Differently from the experiments on traceability recoveryl. [15] manually evaluated results of several automated fea-
the result shows that developers can utilize results of autgre location techniques. They reported that the best technique
mated feature location techniques. However, developers tédéntified 3 relevant methods among the top 10 methods.
to miss methods that are relevant to a feature if its deSCfiptionMany researchers investigated whether deve|0pers can uti-
is not clear sfficient for developers. lize a result of automated techniques or not. Rewvetlal. [15]
The contributions of this paper are summarized as followsported that the authors’ and several students’ validation
« We have shown the manner in which accuracy of autcesults agreed over 90% of the time for a certain feature.
mated feature location techniques contribute to the acclihe observation is promising but not generalizable because
racy of feature location tasks performed by developersit is a single case and the authors have identified only true
- We have reported the manner in which we have preparpdsitives in the results rather than the complete implementation
feature location tasks from an existing benchmark. It iof features. In traceability research, Cuddebastkal. [8]
useful for researchers to conduct a similar experimemvestigated manual validation of the requirement traceability

using the benchmark. matrix representing links between requirements and system
. We have made our dataset freely available so that othests. They reported that analysts given an accurate traceability
researchers can replicate the experirhent matrix decreased the overall accuracy of the matrix. Kehg

The sections are organized as follows. Section Il describ@ls [9] analyzed the process of the traceability validation tasks.
related work and our research background. We state degkhtyaret al. [10] confirmed the observation by statistical
research questions in Section Ill. Section IV explains tf@halysis. The analysis indicates that developers cannot utilize
setting of our experiment. Section V shows the results of ti@curate traceability links. Based on the results described
experiment. In Section VI, we discuss the observations and #ove, Cuddebacét al. [16] discussed a means of addressing
threats to the validity of our experiment. Section VIl describé§e inaccuracy of developers. Ghaet al. [17] proposed
conclusions and future work. automated validation for traceability recovery.

In automated debugging research, Pareinal. [18] con-

) ducted a controlled experiment to evaluate the usefulness

In software maintenance, developers must understand fyea,tomated debugging techniques. The experiment used
unfamiliar source code of a target system. Ko al. [12] an artificially modified ranking derived from a result of an
reported that developers often use a keyword search toolg@omated technique. It showed that a ranking change did
identify source code relevant to their tasks. Wagtgal. [3] not gfect the performance of developers. Chattetjal. [19]
emphasized the process of manual feature location in softwqaégorted that developers were not able to use code clone
maintenance. They also observed that developers often usggbgaction for bug fixing with no training in code clones. These
keyword search tool to identify “seed” methods that are likelysearch orts also indicated the importance of human study

to be relevant to features. to evaluate the actual usefulness of automated support for
Several researchers reported that developers were ungfdgelopers.

to identify the complete implementation of fe.a.ture's. Wang In our experiment, we used LSI to extract a list of methods
al. [3] observed that each of recall and precision is less tha

75% in their feature location tasks. Egyetal. [4] conducted ®evant to a feature. LSI-based feature location was proposed

an experiment of manual recovery of re uirements—to—cogg Marcuset al.[5]. Poshyvanylet al. [6] combined dynamic
b y q analysis with LSI to improve ranking. Binklegt al. [20]

links. Compared with the correct links created by developer : o L . i
: . . . showed that identifier normalization idfective to improve
of the programs, subjects recognized 95% of irrelevant pairs 0 . .
: . . earch results. Theffectiveness of LS| was also confirmed
requirements and classes, whereas the subjects missed |nOFa¥uIt localization. Beardet al. [21] reported that LS| can
half of the relevant pairs. Lindvalket al. [13] conducted a)) P

case study of manual impact analysis. The result shows trr]%&:ommend an appropriate startmg_pomt to locate a fault in
source code for 60 out of 63 bugs in a system. To keep our

Lhitpy/sel.ist.osaka-u.ac fashig/FL/ experiment simple and easy to replicate, we have used a simple

Il. ReLateD WORK

TABLE |
FeATURES, TASKS, AND THEIR ACCURACY

System Feature (Issue ID) # methods (Type) Task (Type) Precision Recall F-measure
fio (2122926) 1 Jo (example) 033 (B) 1.00 (V1) 0.50

Jio(betten 1.00 (IpI0) 0.77 (1913) 0.87

e fa (1747300) 13 (larger) Jw (worse) 0.40 (410) 031 (413) 0.35
T (better) 0.60 (p10) 1.00 (66) 0.75

fro (2668434) 6 (smaller) Jow (worse) 030 (310) 0.50 (36) 0.38

f13 (1593464) 10 Js (goldse) — 1.00 (1@0) 1.00 (1010) 1.00

fwo (311) 2 Mo (example) 033 (B) 050 (¥2) 0.40

Mz (better) 1.00 (IpI0) 0.31 (1032) 0.48

muCommander ™1 (60) 82 (larger) My, (worse) 0.80 (810) 0.25 (§32) 0.38
Ma (better) 0.60 (gl0) 1.00 (66) 0.75

fuz (231) 6 (smaller) Moy (Worse) 030 (310) 050 (36) 0.38

LSl approach that computes similarity among methods and thelTo answer RQ4, we have analyzed the manner in which
description of a feature [11]. recall and precision are improved or degraded by validation
tasks.

lll. ResearcH QUESTIONS
IV. EXPERIMENTAL SETUP

We have conducted a controlled experiment on featufe Features

location using human subjects. We have defined a proces : -
of feature location supported by an automated technique C%jhe features for our study were prepared using an existing

follows: given aninitial list of methods produced by an au-; ange—hlsktpry—basted :egturg Iotcr:]atlpr; bentc;hma]crk h[l]' Th!s
tomated technique, a developalidatesthe list by removing enchmar Its clons IUC © us'r?g g 'E ormation odcthangelstmd
irrelevant methods (false positives) from the list and by addir} ‘l’('slor? con mtsysk_ems S“tc as ‘;] Ver?'on* a”B ‘?”re?he
missing relevant methods (false negatives) to the list. Ideal A es n |isue TZ‘C mgllstysfergs such as r?c.orl g_gm fa. t €
a validated list should include no irrelevant methods but alPS1'c'Mark provides a list ot change requests including teature
requests and bug reports. Each change request is associated

methods relevant to a feature. . ; . :

. . with a list of methods modified to implement the change, or

We formulated the following four research questions. Co .
C o a goldset For objectivity, we have used the existing dataset.

RQ1 Do better initial recall and precision engender better The seven extracted features are shown in the left columns

performance in feature location by developers? of Table 1. The symbol of a feature is used to identify the
RQ2 Which option is more important for feature locationfeature in the remaining part of the paper. The Issue ID of a

initial recall or precision? feature indicates the identifier of the feature in the benchmark.
RQ3 How do developers spend time to validate a list of \we have selected five features for the experiment from two

methods? systems:muCommander and jEdit. We extracted darger
RQ4 How does a validated list gier from its initial list? feature and asmaller feature from each system to extract

We carefully set up feature locatidasksof several types; precision-intensive and recall-intensive taskg. and fy, are
each task is validation of an initial list of methods in a limitedarger features, of which goldsets have more than 10 methods.
time. To answer RQ1, we introduced two categories of tasksz and fy are smaller features, of which goldsets have fewer
betterandworse The initial lists of better tasks are accuratethan 10 methods. The featufgs is extracted for checking the
i.e, having better precision and recall values, than worse taskgses in which subjects receive the true goldset having just 10
We compared thé=-measure of the validated lists betweemnethods.
those of better and worse tasks. In addition to these five features, we have selected two

For a response to RQ2, we also introduced two categori#dy features:fy implemented in a single method arfgho
of tasks: precision-intensiveand recall-intensive The initial implemented in two methods. These features are used to
lists of precision-intensive tasks have high precision but lo@xplain the process of feature location to subjects.
recall; they are related to little false positives and many falseTo use the benchmark for our experiment, we fixed two
negatives. In contrast, the initial lists of recall-intensive tasigoblems in the benchmark as follows:
have high recall but low precision. We compafedneasures . Curation of goldsets Some goldsets of the benchmark
of the validated lists between precision-intensive tasks and include inappropriate methods. Because a goldset of a
recall-intensive tasks. feature is generated automatically from a change set of

To answer RQ3, we have analyzed the activities of subjects. source code in a revision history, it includes methods
Each subject is asked to input their judges in our Eclipse that are irrelevant to the target feature if developers
plug-in. We have analyzed a series of judges with timestamps commit multiple intentional changes at onceg, the
to elucidate how they functioned and whether subjects had implementation of the feature together with a refactoring.
suficient time or not. Additionally, if rename refactorings are performed after

muCommander Feature #231

Short Description
“Skip all” for errors that occur during a file transfer operation

Long Description
As suggested in the [htfavww.mucommander.cofforumg (Bettertask [L T T T 1T
viewtopic.php?£2&t=938 forums]: adding a “Skip all” button =
when an error occurs in a multiple file moyecopy operation Smaller feature < (Goldset) #t‘l:l?ﬂﬁ
would be a nice feature to have. size<10 |
Feature Description | Worse task HEEEEEEN
muCommander has a feature that cofriesves files selected by a FP
user. When a user tries to execute a copy, muCommander shows a Better task T T T T T 111
dialog to specify a destination directory. Pushing the Copy button S O A
in the dialog starts a copy process. If an error occurred during the

; . . Larger feature < (Goldset) []
copying of a file, then an error dialog shows a message and asks size > 10 T111
the user to skip the file, retry to copy the file, or cancel the copy
process. Worse task | | | | L |

The new feature is “Skip All.” The dialog to specify a destination
directory has a new check box with the caption is “Skip errors.” If
a user checked the box, then muCommander automatically skips
a file if an error occurred, without showing a dialog. The error

message dialog also has a new button "Skip all." If the buttony, ¢ (5ot of subjects, every task is associated with 10 methods,
is pushed, then muCommander shows no error dialog in further

errors, as “Skip errors” is checked. except for example tasks.

Fig. 2. Generation obetter and worsetasks.

We evaluate the performance of a task using precision,
recall, andF-measure for the initial list and the validated list.
Letting g, i andt be the size of a goldset, an initial list, and

implementing the feature, then some methods in tfheue positives, respectively, thep .the_ initedmeasure is given
goldset might no longer be found in the source code. W& the harmonic mean of precisidfi and recallt/g:

Fig. 1. Descriptions of featuréys.

have manually identified renamed methods and updated Fo2 precision- recall 2t
such goldsets. It is noteworthy that the number of methods ~ precision+recall g+i’
in Table | reflects this manual refinement. By eliminatingt using 2 = F - (g+1i), precision and recall can

« Addition of extended descriptions Some descriptions pa \yritten in terms of. i andg.
in the benchmark do not describe the associated features

accurately. Because descriptions are submitted to an issue precision = F-@+) _F {1 + 9}
tracking system by a requester of the feature, a gap sepa- 2 2]
rates the description and the actually implemented feature. recall = F-g+1) Cha) = F. {1 + '_}
So that subjects can correctly understand features from 29 2 g

their descriptions, we provided an extended description the experiment, we controlleld as an independent variable
for each feature in addition to the original descriptiorand fixedi at 10. Then the tradéiobetween precision and
An example of the extended description is presentedcall is determined by, where precision gets better for larger
as “Feature Description” in Figure 1. For all extendefkatures and recall does better for smaller ones.

descriptions, we used a single paragraph to describe th&Ve have generateetterandworsetasks for each feature.
basic behavior without the associated feature and anotfiére lists in better tasks include methods relevant to the features
paragraph to describe the target feature to be located. The., gold methodsto the greatest extent possible, whereas the
extended descriptions are based on the recorded chanlgts in worse tasks include several methods that are irrelevant
in the benchmark. We tried to explain all the recordetb the featuresfélse positives A notational example is shown
changes although the original descriptions do not mentiém Figure 2 to illustrate how a pair of tasks is generated from
some of them. the goldset of a feature. In the figure, a gray box and a white

Each feature comprises the following elements: (1) a sh&igx respectively represent_a gold method and a false positive.
description in the benchmark, (2) a long description in tHgor Smaller features having fewer than 10 gold methods,

benchmark, (3) an extended description, (4) a screenshotdgherated better tasks have all the gold methods and some false
an execution, and (5) the goldset. positives. In contrast, for larger features having more than 10

gold methods, generated better tasks have 10 gold methods.

The unused gold methods are regarded as false negatives.

Generated worse tasks have some gold methods and false
From the extracted featuréasksare generated. A task is apositives. We have injected false positives into worse tasks

pair of a feature and an initial list of methods for the featureuntil their F-measures become less than the threskgldwe

The goal of a task is to validate the initial list using source codeseF+ = 0.40 to diferentiate the number of false positives in

of a system and the descriptions of the feature. To normalizetter and worse tasks clearly.

B. Tasks

TABLE || = Java - jEdit/src/org/git/sp/jedit/buffer/DefaultFoldHandlerProvider.java - Eclipse =i X
File Edit Source Refactor Mavigate Search Project Run Window Help
TASK ASSIGNMENT
M- ET R TR ree Yo & [@3ava)
Subject Organization 1st 2nd 3rd Ath 5th 1t Packa m@ ‘ = 0([) DefaultFoldHandlerProviderjav 52 i JEditTextArea.java =)= OutlmeL 22\ =@
= = . y e
1 Jib Jop Miw Moy | J3 - * Returns an array contoining the nanes of o1l & org.gitep.jedit buff
2 Jon Jiw M1p Moy | J3 4 muCommander e “= import declarations
3 Jow Jin Mz, Myw | I3 y jEdit 4.0pre6 © DefauFoldandier
4 S J J M M J public string[] EEZSPEININ() o folds: Mep<st
5 Osaka UI’]IVEI’SIty |\/1|Wb MZWb 3 1b 3 2b J3 1 . 5 (neto] .. getFoldHandler(
2) 1l 1w ow 3 return folds.keySet().toArray(new String[fo]_ o... getFoldModes()
6 M1b Mow Jon Jiw J3) 1 o addFoldHandler(
7 Maw N Jow Jip J3 ”:‘Add a new FoldHander.
8 Maw M | Jov J1b %3 * foldHandler the new foldHandler -
o Jao o Maw My | Js P‘bl Javad rwn Jaration| [Task List | FL Pk ; ; é
5l Problems| @ Javadoc |[& Declaration| g Task List| = ayer i1 =
i? jlb jaN mlw m2b 33 JEdit 1747300 (203) - Enable customization of folding presentation
1w 2b 1b 2w 3 D Relevance Name
12 Tokyo Institute of Jow J1w M1p Moy J3 I Irrelevant a org.gjt.sp.jedit.textarea.DisplayManager.foldHandlerChanged()
13 Technology M1y Moy Jow Jiw J3 2 Irrelevant o° org.gjt.sp.jedit.buffer.FoldHandler.getFoldModes()
3 o ora.git.sp.jedit buffer. DefaultFoldHandlerProvider addFoldHandler(Fold!
14 Man Maw | Jow i 3 4 Relevant o org.gjt.sp.jeditbuffer JEditBuffer.propertiesChanged()
15 Maw Mg Jiw J2n J3 5 o org.ajt.sp-jedit.buffer DefaultF oldHandierProvider.getFoldModes()
16 Miw Maw J2b Jip J3 6 o org.gjt.sp.jedit.textarea. TextArea.collapseFold() -
17 Jb Jw | M My | J3 - '
18 NTT Ja2b Jw | Maw My | I3
19 Mip Mz [v Jow | J3 i
20 Maw Miw | Jip Jon J3 Fig. 3. Screenshot dfLPlayer.
The precision, recall ané-measure of the initial lists of same system followed by the third and fourth tasks of the

the generated tasks are shown in the right columns of Table |. Other system, and ends with the goldset tas. (

The tasks generated from larger features include a few fals¢ EVery subject covers all of the five features.

positives but fail to capture many of gold methods. In contrast,* EVery subject experiences all of thefférent types of
the tasks generated from smaller features cover almost all of tasks: a better precision-intensive task, a worse precision-
their goldsets, but include many false positives. Therefore, the INtensive task, a better recall-intensive task, and a worse
former and latter tasks are regarded respectivelgrasision- recall-intensive task. .

and recall-intensive « Every task is examined by at least 10 subjects.

We have used LSI to select gold methods and false positivlss
included in the initial lists. Instead of computing LSI result .) .)))
by ourselves, we used the LSI result prepared by Getbers Subjects are given an Eclipse ID!E installed W|th.a special
al. [11], which is an extension of the benchmark for impacfiew namedFLPlayer. We chose Eclipse as our environment
analysis. In Gethers's dataset, an LSl result for a featpgcause of its publicity and familiarity to subjedt.Player is
is a ranking of methods with contents similar to the long view for validating a list of methods in Eclipse. A screenshot
description of the feature. We have selected an appropri&fethe view is presented in Figure 3. Subjects can see a list
number of gold methods and false positives from the top 8f methods as a table in the view. When they double-click a
the ranking. For exampley, includes a list of four gold method in the view, a source code editor automgtlcally opens
methods and six false positives. The gold methods have higR&fl moves to the definition of the method. After investigating
similarity than the nine other relevant methods. The faldB€ source code, they answer whether the methadlesant
positives have higher similarity than other irrelevant method@' irrelevantto the feature, using the drop-down menu in the

The generated initial lists are sorted by their LSI ranking. S&cond column of the view. For example, in the figure, at
least six methods are enumerated. Two of them are specified

C. Subjects and Task Assignment as irrelevant. In addition, subjects can add a method that is

)) o not listed in the view from the context menu of the method in
We recruited 20 subjects from three organizations of bothgq rce code editor.

academia and industry. Subjects included 16 students Ok oach task, every subject is given a printed document for
softwgre engineering anq 4 industrial developers. Their J‘f"é@ask and Eclipse environment in whiEhPlayer is showing
experience was widely distributed from zero to 16 years, Wiffjg it of methods ordered by their LSI ranking. The document

a median of three years. ~__included the descriptions of a feature, a screenshot, the same
No subject knew the target systems. This situation is COfst of methods in the same order as shown FibPlayer,

mon in software maintenance tasks. Developers might havejiqy quick reference guide of Eclipse aRdPlayer. The

update legacy software developed by other teams. subjects are not allowed to access other online materials such
Each subject examined the five assigned tasks in the orger an jssue tracking system. We did not provide the LSI

presented in Table II. We carefully assigned the tasks for eagdhres to subjects and used them just for the order of methods

subject, satisfying the following constraints: because they might reveal which methods are injected as false
. Every subject examines the first and second tasks of thesitives.

Environment

Eight laptop computers of the same model were used for 2 - -
the experiment, each equipped with Core i5 processor (Intel i ‘
Corp.), 4 GB RAM, 256 GB SSD and a 12.1-inch LCD
monitor with WXGA (1280x 800) resolution. They execute
Eclipse 3.7.2 on Windows 7 (Microsoft Corp.) and JDK 1.7. Ow -
without a network connection. Although each laptop has arE
embedded pointing device, subjects were allowed to bring thelg
favorite devices. 2

0.8

0.6
I

Validat
0.4

|

T

E. Procedure

We operated the experiment three times: once for each or-
ganization. For the convenience of the subjects, each operation
is conducted at the location where they belong, using the same ‘ ‘ ‘ ‘
instruments and procedure. M Mz Ji J2

At the beginning of the operation, subjects were given Tasks
the following introduction in an hour, using a l:)OwerPOi"llt-'ig. 4. Comparison of validateB-measure betweebetter andworsetasks.
presentation: (1) the purpose of the experiment and the goal of
feature location, (2) usage of Eclipgeg, showing hierarchies o
of method calls and class inheritance relations, searching .
references froo a method, etc., (3) introduction to the |
FLPlayer plug-in, (4) an exercise iimuCommander using
the taskMg, and (5) another exercise j&dit using the task
Jo-

Ten minutes were given for each exercise. Then the answer
and the reason were explained. A method is relevant to 5
feature if at least a single line of code in the method |s_
necessary to execute the feature, according to the deflnltlo?l
of goldsets in the benchmark. Although we initially arranged
the same configurations of the laptops for all subjects, they O Precision-intensive ‘
were allowed to change them during the exercises to fit their & - L= "= ‘ — |
preferences. They were told that we close all editors in Eclipse Better Worse
between sessions, but we do not change their preferences Accuracy of Initial Lists
settings.

Five sessions were conducted after the introduction. In eaﬁf Lintensive tasks.
session, the subjects performed a task in 30 min. At the end ‘of
the session, they filled in a questionnaire to answer whether
they were able to understand the task, were giveficent orse tasks. The task pairs are located on the horizontal axis,
time, and were confident with their answers. Between sessiofere the white and gray boxes respectively correspond to
they were asked to leave the room and have a break of abpifter and worse initiaF-measure values. For all features,
10 minutes. We set up instruments for the next session durig@ observed that manual validation of better tasks tends to
that interval. After finishing all sessions, we asked the subje@gtperform worse ones.
to fill in the questionnaire. To determine the performance of two kinds of tasks that
are significantly diferent, we performed pairetitests on
the validatedF-measure. The null hypothesHb<W and the

This section presents a discussion of the results of Offernative hypothesis®" are formulated as described below.
experiment to answer the research questions formulated in

b<w. -
Section lll. In this sectionjnitial F-measureand validated * H 0 'Tlhf avelrage tc: Va!['r? attelélf measu[e ?(f better tasks
F-measurerespectively denot&-measures of the initial lists IS equal to or [ess than that of WOrse tasks.

b>w. i N
of tasks given to the subjects and of the resultant lists validated ,:_'l K ' T he avteratgﬂ]e Oftrt]hf vfahdatdéltmekasure of better
by the subjects. asks is greater than that of worse tasks.

The p-value was 0.008876, which is fliciently small to
A. RQ1 reject Hgs‘” at the 1% significance level. We conclude that
In the experiment, each subject performed four tasks, twostatistically significant dierence exist in finaF-measure
of which start with better initial accuracy than the otherdhietween better and worse tasks. Subjects given a more accurate
We obtained 40 samples for each lmétter and worsetasks. list performed more accurate feature location.
Figure 4 is a box plot of validate-measure of better and It is noteworthy that the validateB-measure is improved

0.2
I

O Better
O Worse

0.0
I

0.8

measure

0.4

0.2

5. Comparison of validateH-measure between precision-intensive and

V. REsuLrs

Subject 3 Subject 4 Subject 5 Subject 7 Subject 10

2 4 13 - - - -
12 12
12 6 - N
© \ 3
® 4 1008 4 100 4 1 1 100 42
3475 ; 76 D
20 20 10§79 100)\ 90 ¥
2 2 : i i : i i 12345 i 5 %
H : 11 5 34 : 910 5
s 11 1P : 9 9
£ $ @ @ ABA © 11®1234567
L34 1 1 ; 1 1
50 80 80’ 80 80
o 4 : 4 ; 4 4
o
° 12345, 6’7 12 :’6
e EERY)\ 4 AN J J
T T T T T T
Subject 12 Subject 13 Subject 14 Subject 17 Subject 19
21 q i q q q
S 1234567
1265 23456
@ 90 J e’ J J 1@ J
s i 12 : 12,56
100 L\ LXNT 100 80 . 10Q 100
o @ | i 325 B ; B T 34567 B T B : 3 Ay
a2 ° : : 3 : : 173
g 1G9 90 10Q 909 20 15
80 80 90 8¢ 80
8 : 4 4 4 : 4
S
: 3456
g 2441 . . 4 ey .
I T T T 1 I T T 1 I T T 1 I T T T T 1 I T T 1
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Elapsed (min) Elapsed (min) Elapsed (min) Elapsed (min) Elapsed (min)
‘ /\ Reject FP < Reject TP O Accept TP X Accept FP @ Add FN ¥ Add TN

Fig. 6. Growth of accuracy during manual validation J,.

from the initial F-measure for all tasks except for tabky, between the categories. In other words, the initial recall is
and J;. The dfect of validation is discussed in Section V-D. more important than the initial precision.

B. RQ2 C. RQ3

We split samples of better and worse tasks into two cat- All subjects were able to classify all methods in initial lists
egories:recall-intensiveand precision-intensiveAs a result, as either relevant or irrelevant in 30 min. We have analyzed
20 samples were obtained for each combination of accurduoyw subjects spent time for their tasks using the timestamps
and size of goldset. Figure 5 shows a box plot of validatexf events recorded ifFLPlayer. As a result, no significant
F-measure that compares the two categories. In both betiéference was found among subjects because of thiéérelint
and worse tasks, we observed that tasks with recall-intensheckgrounds. No significantftierence was found among tasks.
goldsets tend to outperform those with precision-intensive ongl®st subjects finished their tasks in 20 min.
in the validatedF-measure. It is noteworthy that our results Figure 6 includes time plots showing evolution &
show that 12 participants completely identified a feature in omeeasure values for each subject performing tdgk The
or two tasks (17 tasks in total). All are recall-intensive taskaumbers shown indicate the rank of methods in the initial list.

To determine whether the performance of tasks are signifihe added methods by subjects have numbers more than 10.
cantly diferent or not, we formulated the null hypothebi§:r The goldset of this task consists of six methods. The initial
and the alternative hypothesfr!i"<r as shown below. list of methods consists of three true positives and seven false

. H(F)’:f; For the tasks with the same level of initifl- positives. Subjects must find three false positives in the source

measure, the median of validatBemeasure of precision- code. Because the median value of the goldset size in the
intensive tasks is the same as that of recall-intensive onggtaset of Gethers [11] is six, we chakg as a representative

. H{K': For the tasks with the same level of initid- task for locating feature enhancement requests. The following

measure, the median of validatBedmeasure of precision- Six kinds of symbols are put on vertices corresponding to
intensive tasks is less than that of recall-intensive one§perations of the subjects.

We performed the Wilcoxon signed-rank test to the medians 4, V: rejection of false and true positives
of validatedF-measure for the two categories of tasks. In both « O, X: acceptance of true and false positives
tasks, thep-value was $37x10°%7, which is sificiently small ~ « &, *: addition of false and true negatives
to rejectHgZr at the 1% significance level. We conclude that Although finalF-measure values varied among subjects, all
a statistically significant dlierence exists in finaF-measure obtained finalF-measure values better than those of initial

1.0

Mz, S _Js all except for a few subjects. This is true partly because the

feature is implemented by an abstract method and its many
concrete implementations. The abstract method is likely to be
suficient to achieve the feature. The subjects did not identify
all concrete implementations.

In several tasks, many subjects exhibited decreased recall.
In My, several subjects falsely recognized one or two relevant
methods as irrelevant. Because each subject has chosen dif-
ferent methods as irrelevant, voting by several subjects can
eliminate these errors. However, we have observed that a
different understanding of a feature easily prevents developers
from recognizing some true positives as follows.

In J;y and J3, many subjects falsely recognized a particular
group of relevant methods as false positives. The tagk
asked developers to locate a feature that enabled users to
choose a shape of a marker shown in a window. Whereas
the previous implementation has a triangle marker, the new

""""" Better
— Worse
Goldset

0.8

0.6
|

Recall

0.4

0.2
|

0.0

00 o2 oa 06 s 1o feature supported new shapes such as a box and circle. The
Precision feature is implemented as a new item to select a marker shape
in a preferences dialog and a new cl8hapedFoldPainter
Fig. 7. Change in precision and recall. for drawing new marker shapes. However, 7 of 10 subjects
recognized the methods in the new class as irrelevant, perhaps
ones Eimiia = 0.38) within 20 min. All of them found because they understood that the feature simply modified the

at least two gold methods in the first 15 min. In additiorPreéferences dialog. .
seven subjects (Subjects 3, 4, 5, 10, 12, 13 and 17) selectel J3. the task described that the new feature enabled
one or more false negatives. It is noteworthy that the USErs to choose file icons for a view from operating system
and® symbols tend to appear contiguously, which indicatdsons Or default icons provided biEdit. As a result, 13 of
that when the subjects find one relevant method, they cafi Subjects recognized sevetaitDefaultIcon methods as
correctly distinguish true positives around the method, afigielevant because they were likely to have been basic behavior.
can sometimes even pick up false negatives. However, the methods are involved in the goldset because the

Similarly, thea symbols tend to appear contiguously in th€oncept of “default icon” has been introduced for the feature.
time plots. The subjects identified all seven false positive® other words, the method names reflected the new feature,
except Subject 5, who missed only one. It is noteworthy th4f1ereas their source code implements the basic behavior.
few v symbols appear in the series, indicating that the subjectd” M and My, the ?r|g|nal description '_”CIUdfd
can separate false positives from the list without losing tr@ @ambiguous phrase “the preferences dialog.” It
positives. refers to classPreferenceDialog and its subclasses

A similar tendency is observed in the time plots of othefeneralPreferencesDialog and ThemeEditorDialog.

tasks, but we had to omit them from this paper because F0. 6 of 20 subjects falsely recognized a method of class
length limits. ThemeEditorDialog as a false positive because the dialog

class name diiers from the other two classes.

D. RQ4

Figure 7 shows the degrees of improvement in precision)
and recall for all treatments. Dashed, solid and dot-daén Accuracy of Automated Feature Location
lines respectively correspond to better, worse and goldsetWe have shown that a more accurate list of methods enabled
tasks. It is readily apparent that most arrows are movirsybjects to perform more accurate feature location (RQ1).
rightward, for improving precision, remarkably in worse task§ hat result emphasizes the importance of further research
This observation diers from the experiment conducted byefforts to improve the accuracy of automated feature location
Cuddebaclet al. [8], who confirmed a tendency that arrowgechniques. Although a tradfcexists between precision and
move to a diagonal lineprecision= recall. recall, developers manually improved precision rather than

Precision was retained or improved in all tasks by mostcall (RQ2). As a consequence, a feature location technique
subjects. The subjects created the precise (precision 1.@@h higher recall is a more promising direction. In traceability
result in 68 of 100 tasks. In 82 tasks, precision is greatsrcovery experiments [8], [9], [10], no significantffdirence
than 0.8. The result indicates that subjects can exclude mawvgs found between recall and precision. One possible reason
false positives from the initial lists. for this result is that subjects can understand features in detail

However, recall has not been improved so much. For eauring their tasks by reading relevant methods in initial lists.
ample, false negatives d¥l;, and My, are not identified at Because relevant methods are often connected by method call

VI. Discussion

relations, more relevant methods in an initial list might providieature location techniques such as [26], [27]. They can
a connected call graph that is easier to understand. Hogeommend methods related to a method by which developers
ever, system tests can be independently by natural langudgeus so that developers can identify more false negatives in
Therefore, validating a link in a traceability matrix might nosource code. If the tools can provide an explanation of why
provide additional information about the manner in whicmethods are recommended as relevant, then the tools might
requirements and system tests are related mutually. be dfective to avoid the accidental exclusion of true positives.
Higher recall might be achieved by a longer list of methods,
as evaluated in [11], [22]. In this experiment, developers, Threats to Validity
validated 50 methods during five sessions. In each session o]] o
developers took about 20 min to validate 10 methods. If i) Internal Validity: The flrs_t threat fto internal validity
automated feature location techniques generate a longer listofélated to the feature location technique we used for the
methods, then both learningfects and fatigue mightféect experiment. _To. obtain lists qf methods and to control their
the performance of developers. To utilize a longer list, gHeuracy aruﬁqally, we exploit the result of IR-based feature
additional support such as a keyword search for a list lgcation technique taken from the dataset of Gethers [11]. Be-

methods would be needed, as Pareinal. suggested for C2US& comparison of feature location techniques by precision
automated debugging [18]. ’ and recall is a common means of evaluation in the literature,

Although subjects located a complete implementation of %€ €xpect that the IR-based technique can be replaced with
feature in 17 of 100 tasks, many subjects falsely recogniz8gOther as long as its result has comparable precision and
relevant methods as false positives. One reason is thaf€§a!l
target feature in a program is dependent on another featuréiowever, given a feature location technique for prioritizing
in the program. The goldsets included such methods in tﬁ@thods tr_\at are flicult for developers to find, then the result
dependent feature because they are also modified to imglight be inverted. For example, De Lucia [28] conducted
ment the target feature. However, subjects showdiicdity an experiment on labeling classes and pointed out that IR-
determining whether such methods should be a part ofPgsed techniques can find information that ificlilt for
feature or not. Allowing developers to categorize methods inf¢velopers to find. Similarfeects might occur in IR-based
three categories as relevant, irrelevant, and marginal mightfgature location techniques. In fact, some feature location
effective to avoid the problem. technigues recommend relevant methods from an initial list,

An insufficient description of a feature also prevents dé9- [26], [27]. These techniques are consistent with the behav-
velopers from accurate feature location. Each description i8f Of the subjects observed in RQ3. They prevent developers
a feature request recorded in an issue tracking system oftédin missing false negatives. If these techniques are used in
excludes the basic behavior of software without the featulf@® experiment, then manual validation might work better in
because the description is written by users or developers wiffling false positives rather than removing false negatives.
know other basic features of the software. To conduct ourAnother internal validity is concern about the feature loca-
experiment, we must manually extend the description oft@n tasks we designed. To avoid feature location tasks being
feature to enable subjects to distinguish the target feature fr@grly dependent on a system, we choose feature requests from
basic features. two systems. Additionally, we took two features from each

A clearer understandable description of a feature is ifdystem: one feature has a larger goldset; the other has smaller
portant but challenging because a description might beco®fee, to avoid dependence to the size of the goldset. The task
ambiguous if developers modified source code. For exampl¢e prepared showed better and worse results for each of the
one presumes a description that explicitly refers to clasd@sir feature requests, and one task which gives the goldset
by their namese.g.PreferencesDialog instead of a phrase itself. The result of our experiment might be dependent on
“the preferences dialog.” If a developer added a new subcldBgse tasks. This threat can be decreased by adding more tasks
of the class, the developer must inspect the description a#ed by replicating the experiment because we also make the
the feature implementation to ascertain whether the descriptidfaset available online.
should be updated or not. This problem is similarfragile 2) External Validity: As for the external validity, we believe
pointcut problem[23]. A pointcut is a predicate to identify that the results of our experiment can be generalized for use
program elements in Aspect-Oriented Programming [24]. it other academic and industrial organizations. We recruited
pointcut is fragile because a change in source code accidentalipjects from two universities and an industrial company and
affects a set of program elements selected by the pointcutagked them to perform the same tasks. Because all of their
feature description might be more fragile because it is writt@rganizations are specialized in software engineering, a weak
in natural language, whereas pointcut is a formal predicatbreat exists by which the subjects might share some back-
As Maderet al. [25] proposed for analysis of developers’ acground in the discipline. We regard this threat as acceptable
tivities affecting traceability links, some technique to maintaikhecause their spectrum of programming experience ranges
consistency between feature description and source code mighm a few years to 40 years.
be very useful. We also believe that the result can be generalized to other

Another means to improve recall is the use of interactiwy/stems written in Java language. However, the result might

not be applicable in industry because the tasks are taken ornby D. Poshyvanyk, Y.-G. Géréneuc, A. Marcus, G. Antoniol, and V. Ra-
from open-sourced systems.

3) Construct Validity: The major threat related to construct
validity is that we used--measure to assess the accuracy 0{7]
both initial lists and validated lists. Although tifemeasure
captured the total improvement of precision and recall, dif-
ferent precision and recall values might result in the saml
F-measure. To avoid that problem, we analyzed precision and
recall separately in Section V-D. However, a threat remains. 5]
subjects often excluded a true positive from a list and included
a false negative in the list, then the recall value is not changed.

Such an #ect is not readily apparent in the metric.

(10]

VII. ConcLusION

As described in this paper, we have conducted a controll[elé]
experiment of feature location tasks. We have prepared lists
of methods obtained using an automated technique, but thef
accuracy is controlled artificially. We asked 20 subjects to
validate the lists manually. Consequently, the validated lists

were totally improved from the initial lists. Developers could, 5

improve precision by recognizing false positives well, but they
could not improve recall. This is true because #edent
understanding of a feature prevented the developers fréHi
recognizing true positives.

Several avenues of futurdfert remain. Due to reducing
time efort for subjects, we kept the lists of methods smal

‘15]

How large a list of methods developers can reject false pqss]
itives from the list should be investigated. Another important

guestion is whether an incomplete feature location result is
also dfective for maintenance tasks, as similar to ttiee
of full requirements-to-code traceability reported byadiéret
al. [2]. Because developers understand more about a feature

(17]

[18

during their maintenance tasks, a partially located featune)
might be stficient for developers. We are also interested in

improving the feature location benchmark. We expect that the
curation of goldsets described in Section IV can be automat[%%]
to some extent by tracing changes on gold methods in the

version history.

[21]

ACKNOWLEDGMENT

We would like to thank all the subjects who participate??]

in this study. This work was supported by KAKENHI (Nos
23680001 and 23700030).

(1]

(2]
(3]

(4]

(5]

[23]

REFERENCES

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature locatiof24]
in source code: A taxonomy and survey,” Softw.: Evol. and Prog.
vol. 25, no. 1, pp. 53-95, 2013.

P. Mader and A. Egyed, “Assessing theet of requirements traceability [25]
for software maintenance,” iRroc. ICSM 2012, pp. 171-180.

J. Wang, X. Peng, Z. Xing, and W. Zhao, “An exploratory study
of feature location process: Distinct phases, recurring patterns, aj2db]
elementary actions,” ifProc. ICSM 2011, pp. 213-222.

A. Egyed, F. Graf, and P. @nbacher, “BHort and quality of recovering [27]
requirements-to-code traces: Two exploratory experiment&tac. RE
2010, pp. 221-230.

A. Marcus, A. Sergeyev, V. Rajlich, and J. |I. Maletic, “An information
retrieval approach to concept location in source codeProc. WCRE
2004, pp. 214-223.

(28]

jlich, “Feature location using probabilistic ranking of methods based on
execution scenarios and information retrievéEE TSE vol. 33, no. 6,
pp. 420432, 2007.

M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Garéneuc, “CERBERUS:
Tracing requirements to source code using information retrieval, dy-
namic analysis, and program analysis,Rroc. ICPC 2008, pp. 53-62.

D. Cuddeback, A. Dekhtyar, and J. H. Hayes, “Automated requirements
traceability: The study of human analysts,”fmoc. RE 2010, pp. 231-
240.

W.-K. Kong, J. H. Hayes, A. Dekhtyar, and J. Holden, “How do we trace
requirements? an initial study of analyst behavior in trace validation
tasks,” inProc. CHASE 2011, pp. 32-39.

A. Dekhtyar, O. Dekhtyar, J. Holden, J. H. Hayes, D. Cuddeback, and
W.-K. Kong, “On human analyst performance in assisted requirements
tracing: Statistical analysis,” iRroc. RE 2011, pp. 111-120.

M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,Pioc. ICSE 2012, pp. 430—
440.

A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance task$£EE TSE vol. 32, no. 12, pp.
971-987, 2006.

] M. Lindvall and K. Sandahl, “How well do experienced software

developers predict software changeB$S vol. 43, no. 1, pp. 19-27,
1998.

W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “SNIAFL: Towards

a static noninteractive approach to feature locatiohCM TOSEM

vol. 15, no. 2, pp. 195-226, 2006.

M. Revelle and D. Poshyvanyk, “An exploratory study on assessing
feature location techniques,” iAroc. ICPG 2009, pp. 218-222.

D. Cuddeback, A. Dekhtyar, J. H. Hayes, J. Holden, and W.-K. Kong,
“Towards overcoming human analyst fallibility in the requirements

tracing process,” ifProc. ICSE 2011, pp. 860-863.

A. Ghabi and A. Egyed, “Code patterns for automatically validating
requirements-to-code traces,” Rroc. ASE 2012, pp. 200—209.

] C. Parnin and A. Orso, “Are automated debugging techniques actually

helping programmers?” iRroc. ISSTA2011, pp. 199-209.

D. Chatterji, J. C. Carver, B. Massengill, J. Oslin, and N. A. Kraft,
“Measuring the #icacy of code clone information in a bug localization
task: An empirical study,” irProc. ESEM 2011, pp. 20-29.

D. Binkley, D. Lawrie, and C. Uehlinger, “Vocabulary normalization
improves IR-based concept location,” Rroc. ICSM 2012, pp. 588-
591.

M. Beard, N. Kraft, L. Etzkorn, and S. Lukins, “Measuring the accuracy
of information retrieval based bug localization techniques,”Piroc.
WCRE 2011, pp. 124-128.

A. D. Eisenberg and K. D. Volder, “Dynamic feature traces: Finding
features in unfamiliar code,” iffroc. ICSM 2005, pp. 337-346.

M. S. Christian Koppen, “PCHi: Attacking the fragile pointcut
problem,” in Proc. European Interactive Workshop on Aspects in
Software 2004. [Online]. Available: httg/pp.info.uni-karlsruhe.de
uploadgpublikationeristoerzerO4eiwas.pdf

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J. Loingtier, and J. Irwin, “Aspect oriented programming,” fvoc.
ECOOR 1997, pp. 220-242.

P. Mader, O. Gotel, and I. Philippow, “Enabling automated traceability
maintenance by recognizing development activities applied to models,”
in Proc. ASE 2008, pp. 49-58.

M. P. Robillard, “Automatic generation of suggestions for program
investigation,” inProc. ESE@SE, 2005, pp. 11-20.

M. Trifu, “Improving the dataflow-based concern identification ap-
proach,” inProc. CSMR 2009, pp. 109-118.

A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Using IR methods for labeling source code artifacts: Is it worthwhile?”
in Proc. ICPG 2012, pp. 193-202.

