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Abstract—Modern software development frequently involves
developing multiple codelines simultaneously. Improvements to
one codeline should often be applied to other codelines as well,
which is typically a time consuming and error-prone process.
In order to reduce this (manual) effort, changes are applied to
the system’s modules and those affected modules are upgraded
on the target system. This is a more coarse-grained approach
than upgrading the affected files only. However, when a module
is upgraded, one must make sure that all its dependencies are
still satisfied. This paper proposes an approach to assess the ease
of upgrading a software system. An algorithm was developed
to compute the smallest set of upgrade dependencies, given the
current version of a module and the version it has to be upgraded
to. Furthermore, a visualization has been designed to explain
why upgrading one module requires upgrading many additional
modules. A case study has been performed at ASML to study
the ease of upgrading the TwinScan software. The analysis shows
that removing elements from interfaces leads to many additional
upgrade dependencies. Moreover, based on our analysis we have
formulated a number improvement suggestions such as a clear
separation between the test code and the production code as well
as an introduction of a structured process of symbols deprecation
and removal.

I. INTRODUCTION

Modern software development frequently involves multiple
codelines (branches), being canonical sets of source files
required to produce a specific software instance [1]. Codelines
correspond, e.g., to maintenance, release and development
versions of a system, or to variants targeting different user
groups or platforms. A typical scenario involves one mainline,
containing the latest features and bug fixes and being continu-
ously updated, and a number of customer codelines, containing
different configurations being used by different customers.
Such customer codelines need to be updated frequently, e.g., to
provide new features or bug fixes. The updates then translate
to patches or entirely new releases of the software, which
are shipped to customers and have to be integrated into their
environments.

However, integrating the patches on the customer-side (re-
ferred to as upgrading) can become particularly costly, espe-
cially for safety-critical or real-time embedded software, that
require extensive integration testing and complex initialisation
routines. Consequently, large upgrades (e.g., upgrading the
entire codeline to a new release) are typically undesirable,

and performing upgrades in a module-based fashion is pre-
ferred [2], [3]. This way, customers receive only the features
they requested. Moreover, as less changes are introduced
modular upgrades reduce testing and integration effort, as well
as limit the risk of the system downtime.

Nonetheless, modules are often interdependent, hence up-
grading a particular one may introduce the need to upgrade
additional others, until all dependencies have been satisfied. In
the worst case, upgrading one module may lead to upgrading
the entire codeline, e.g., if the change to this particular module
introduces dependencies to newer versions of all other modules
in the codeline, not yet present.

In this paper, we propose a framework to assess the dif-
ficulty of upgrading a software module. Our framework is
in use by ASML Netherlands B.V., a large manufacturer of
photolithography systems, and consists of three stages. First,
we evaluate a module’s independence, by looking at which
functionality it provides through an interface, and which func-
tionality it requires from other modules. Using this interface
usage data, in Section II-C we present an algorithm computing
a minimal set of modules which need to be upgraded (referred
to as upgrade dependencies) in order to satisfy all depen-
dencies in the codeline. Finally, in Section III we propose a
visualisation which shows how the upgrade dependencies have
evolved over time, and allows the user to study the nature of
these upgrade dependencies.

II. FINDING MINIMAL UPGRADES

Given the upgrade of a module from one version to another,
in this section we develop a formalization and an algorithm
finding versions of all other modules such that all dependen-
cies are satisfied, and the number of modules that have to be
upgraded is minimal.

Dependencies arise as a result of some modules providing
interfaces to be used by other modules. Each interface can
disclose various program elements, which we call symbols,
such as constants, enumerations, data types and functions.
Each symbol can be provided by only one module.

A. Motivating Example

Consider the three system states in Figure 1. Suppose that
the system is initially at t = 1 and we would like to upgrade
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Fig. 1: An example system at three versions. Choosing module B at
t = 2 yields the cheapest solution.

module A to the version at t = 3. Between these two versions,
A has started to depend on symbol S of module B, which is
not available at t = 1. Therefore, module B has to be upgraded
as well. Here we have a choice: upgrade module B to the
version at t = 2 or t = 3. Both versions provide the symbol
S which is required by the latest version of A. However, B at
t = 3 has a dependency on a new module C. So there are two
valid ways to satisfy the dependencies: C1 = {(A→ 3), (B →
2), (C → ⊥)}, where ⊥ represents absence of a module in the
configuration, and C2 = {(A→ 3), (B → 3), (C → 3)}.

However, recall that the system is at t = 1. Hence, to obtain
C1 we need to upgrade two modules (A itself and B) and to
obtain C2 we need three modules (A, B and C). C1 is therefore
preferred to C2.

B. Formalization

Let M be a set of modules within a system. At each moment
of time the system is composed from different versions of
different modules: this composition is called a configuration.
Formally, a configuration C is a mapping from M to V∪{⊥},
where V ⊂ N is the set of versions, N is the set of the natural
numbers.

Given a module m that has to be updated from version i to
version j, our goal is to find a valid configuration C inducing a
minimal upgrade such that C(m) = j. Configuration C is valid
if for any pair of modules n1 and n2, the symbols required by
the version C(n1) of n1 from n2 are provided by the version
C(n2) of n2. We stress that we do not consider semantics
of the symbols, and potential incompatibilities between the
expectations of requiring module and providing module.

With C and i as above we say that C induces an upgrade
u(C, i) defined as {n|n ∈M∧C(n) > i∧C(n) 6= ⊥}. Finally,
we say that an upgrade u(C, i) is minimal if for any valid
C′ with C′(m) = j, |u(C, i)| ≤ |u(C′, i)|, where |Z| denotes
the cardinality of a set Z. We stress that a valid configuration
inducing a minimal upgrade is not necessarily unique.

C. Algorithm

We sketch the algorithm searching for a configuration
defined in Section II-B (a more detailed discussion, including
the pseudo-code, can be found in [4]). As above, the module
m is upgraded from version i to version j (i < j). The search
then involves the following steps:

• Init. Create an initial configuration C0, where all modules
are at version i, except for module m, which is set to
version j. Add C0 to the stack S. Set threshold to ∞.

• Loop. Repeat until S = ∅.
1) Pop a configuration C from S.
2) If C is valid

If |u(C, i)| < threshold, remember C and update
threshold to |u(C, i)|.

3) Otherwise C is invalid, i.e., there exists at least
one module n1 upgraded in C (i.e., C(n1) 6= ⊥
and C(n1) > i) that requires a symbol σ from
n2, but either C(n2) = ⊥ or C(n2) does not
provide σ. We call n2 a missing dependency. For
all missing dependencies (say k, k < |M|), push
to S all configurations C′ which attempt to resolve
the existing incompatibilities, i.e., those based on
all combinations of missing dependencies n and
version numbers C′(n) such that C(n) < C′(n) ≤ j.

• Return the last C remembered at Step 2. If no C has been
remembered, return “no upgrade possible”.

D. Discussion

Requirement C′(n) ≤ j implies that each Step 3 can add
only finitely many configurations. For k missing dependen-
cies, the version range (i, j] yields at most (j − i)k new
configurations to be added. Moreover, C(n) < C′(n) ensures
that if new configurations are pushed on S, then at least one
module has a version higher than in the configuration popped
from S, thus the loop terminates. Hence, the loop implements
an exhaustive search and upon its termination either a valid
configuration inducing a minimal upgrade is found (i.e., an
optimal solution), or absence of a valid configuration is
reported (i.e., no solution).

Unfortunately, finding an optimal solution is hopelessly
inefficient: each new configuration C′ may incur even more
configurations if not all dependencies in C′ have been met,
hence upgrading one module may require upgrading all other
modules. In the worst case, the search has to analyze |V||M|−1
possible configurations. Moreover, generating new configura-
tions at Step 3 has high memory demands: for example, if
a configuration is invalid and requires 15 additional mod-
ules, each having eight versions to choose from, a total of
815 ' 3.52 × 1013 new configurations would be pushed on
the stack. While we cannot hope to obtain a theoretically
efficient algorithm as the problem is known to be NP-complete
and might have exponentially many solutions [5], we prefer
a practically efficient approach delivering an approximate
solution based on a number of heuristics discussed below.

434



E. Enhancements

To address the inefficiency of the naive algorithm we have
implemented a number of heuristics.

1) Improve Step 3:
a) Limit the Number of Added Configurations: The

memory demands can be reduced by limiting the number of
new configurations being added simultaneously in Step 3. As
explained above, for k missing dependencies, the number of
new configurations added simultaneously in one iteration can
reach (j − i)k. By limiting k, the newly added configurations
will have missing dependencies, but these dependencies will
be discovered as soon as it is their turn to be checked for
validity, in future iterations. If all missing dependencies are
considered at the same time, the stack S is likely to overflow.
If only one dependency is considered at a time, the size of
S will be limited but the number of iterations (hence the
running time of the algorithm) will increase. Determining a
suitable cutoff threshold for k in order to balance these two
contradicting objectives (i.e., memory usage and running time)
is an experimental process, and depends on the characteristics
of the machine onto which the algorithm is run. Our experience
suggests that b 10

log(j−i)c provides good results in practice.
b) Limit Missing Dependencies: Furthermore, it is suffi-

cient to consider solely n2 such that C(n2) = ⊥ or C(n2) = i.
Indeed, if C(n2) > i either C(n2) has been increased at
Step 3 of one of the previous iterations or n2 coincides with
m and C(n2) = j. If C(n2) has been increased at Step 3
of one of the previous iterations, then either C(n2) = ⊥ or
n2 has been a missing dependency in some configuration C1

such that i ≤ C1(n2) < C(n2). Repeating this argument
we can observe that there exists a configuration C2 such
that either C2(n2) = ⊥ or n2 is a missing dependency in
it and C2(n2) = i. If n2 coincides with m, then the only
way to obtain a valid configuration is by considering C1 with
C1(n1) > C(n1). However, such C1 has been added to S
together with C (since if Step 3 added C it added all C′ with
C(n1) < C′(n1) ≤ j).

c) Ordering Versions of a Module: Step 3 adds config-
urations differing in versions of a module. To improve the
search, we consider heuristics determining whether “older”
(closer to i) or “newer” (closer to j) versions of a module
should be considered first. The first heuristic is to look at
the latest version of a module first, i.e., if modules n1, n2
and n3 have to be upgraded we first consider a configuration
with the three modules being mapped to version j, than two
modules being mapped to j and one to j−1, . . . We will refer
to this heuristic as “3-2-1”. The idea is that more versions
are more likely to be compatible with m which is being
upgraded to the latest version, leading towards a solution—not
necessarily the best one—in less steps. Alternatively, we might
prefer the older versions of a module. Indeed, Lehman’s law
of increasing complexity [6] suggests that older versions have
less dependencies than the newer ones, i.e., by preferring older
versions the search is focussed on finding a minimal solution
rather than a solution. We call this heuristic “1-2-3”.

2) Improve the Search:
a) Search Strategy: A further efficiency gain can be

obtained by following the branch-and-bound strategy, i.e., first
checking whether |u(C, i)| < threshold and only then either
recording C if C is valid or adding new configurations to S
if C is invalid. Moreover, to reduce the time required to find
the first candidate solution (i.e., the first finite value of the
threshold) we perform a preliminary search by considering
only configurations where Step 3 increases versions of all
missing dependencies directly to j. This preliminary search
is guaranteed to terminate after |M| iterations.

b) Limit Search: Given the size of the search space, the
search needs to be aborted if the optimal solution is not found
within a reasonable amount of time. To keep the running
time of the search acceptable, a limit has been put in place
which aborts the search after considering a specified amount
of invalid configurations. We discuss the impact of the choice
of the limit value on the optimality of the solutions found vs.
the running time of the algorithm in Section II-G1.

c) Time vs. Memory: Finally, to improve the time perfor-
mance of the algorithm we are ready to trade memory for time
by storing functions’ output for each input they receive. When
the same input is encountered at a later stage, the function can
immediately return the stored value. As a result, subsequent
calls with the same parameters are served in nearly constant
time, potentially achieving major performance boosts. This
process is known as memoization [7], [8].

F. Heatmap

The heatmap shows a high-level overview of the number of
modules that have to be upgraded if the module represented by
the row is upgraded from one version to another, as represented
by the column; i.e., in terms of Section II-B the module m is
represented by the row, version i by the column, and |u(C, i)|
by the colour of the cell, where C is a valid configuration
inducing a minimal upgrade and satisfying C(m) = j for
a given version j > i. The colours in the heatmap range
from white (|u(C, i)| = 1) to dark blue (|u(C, i)| = |M|).
A logarithmic scale is applied such that small changes among
the lower values result in a more observable colour change.

G. Case Study

To evaluate the approach proposed we have applied it to
software of a large photolithography system, developed by
ASML. The software is developed by approximately 1000
developers at ASML and currently consists of more than 40
million lines of code. At the time of the case study, the
software contains almost 400 modules and 7000 interfaces. To
identify dependencies between the modules we have applied
CScout [9], a source code analysis tool for C source files
collecting information about the scope and usage of identifiers,
as well as a number of proprietary tools providing similar
functionality for Python, proprietary data definition files and
configuration files. We have successfully extracted information
from 327 modules: the remaining modules did not contain
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TABLE I: List of versions used for the analysis.

Version Date
0 October 10, 2011
1 November 15, 2011
2 December 19, 2011
3 January 23, 2012
4 February 20, 2012
5 March 27, 2012
6 May 1, 2012
7 June 4, 2012
8 July 5, 2012

source code or contain code in languages not supported by
the dependency identification tools.

We have considered nine versions of the system summarized
in Table I and 2616 = 327 * 8 scenarios involving upgrade
of each one of the 327 modules from version each one of the
versions 0–7 to the most recent version, version 8.

1) Evaluation of the Enhancements: We start by discussing
the impact of the nhancements discussed in Section II-E on
the performance of the algorithm.

In the first series of experiments we study the impact of
the choice of the maximal number of invalid configurations
on the optimality of the solutions found vs. the running time
of the algorithm. Recall, that if the algorithm performs limited
exhaustive search, i.e., if the algorithm terminates prior to
reaching the maximal number of invalid configurations, then
the solution found is optimal. Table II shows that higher
numbers of invalid configurations result in a significantly
higher running time, without significant improvement of the
number of optimal solutions. Hence, in the subsequent series
of experiments we abort the search after 1000 invalid config-
urations.

Next we compare the two heuristics: “3-2-1” and “1-2-
3” by the number of solutions and the number of optimal
solutions found during the search. While “3-2-1” always finds
a solution, it finds an optimal solution only in 1424 cases
(54.4%). The “1-2-3” heuristics finds a solution only in 1723
cases (65.9%), but it is more successful in finding optimal
solutions: 1627 (62.2%). The heuristics find configurations
inducing equally-sized upgrades in 1424 cases. In 880 cases
the “3-2-1” heuristic returns a configuration inducing a smaller
upgrade, vs. 302 cases for the “1-2-3” heuristic. However, if
“3-2-1” yields a smaller upgrade, the difference is at most
10 modules compared to the “1-2-3” heuristic. When “1-2-
3” yields a smaller upgrade, it is often considerably smaller
than the one provided by the “3-2-1” heuristic: on average
62 modules less with the maximal difference in upgrade sizes
reaching 149 modules.

Further investigation revealed that if the search with heuris-
tic “1-2-3” finds a solution, it does so within 25 steps for
94% of the cases. This means that in a few cases a much
cheaper solution can be found in practically no time. Hence,
we combine the heuristics as follows: first try to find a solution
with the “1-2-3” heuristic and abort the search after 25 steps. If
no solution is found, a search will be performed using the “3-2-
1” heuristic. The combined heuristics finds an optimal solution

TABLE II: Allowing more invalid configuration barely increases the
number of optimal solutions but slows down the search.

Number of Number of % Running time
invalid configurations optimal solutions (HH:MM)
1000 1465 56 16:13
2000 1478 56.50 44:07
4000 1513 57.8 62:04
16000 1540 58.87 310:51

for 1524 scenarios: with a negligible amount of additional
time, we find 100 more optimal solutions than before.

Memoization has significantly improved the running time
of the algorithm. Together with the combined heuristics 2616
upgrade scenarios have been analysed in 112214 seconds of
CPU time, i.e., 1 day and 7 hours. The algorithm checked
1358396 possible configurations for validity, while it generated
almost 485 million configurations. Due to the limit of 1000
failed configurations per upgrade scenario, most configurations
could not be processed. For 1524 upgrade scenarios (58%),
the algorithm was able to find an optimum. In most of these
cases, the initial solution found by the preliminary search using
the “1-2-3” heuristic was also the optimal one. Merely in
33 cases the initial solution was not optimal, and the full
search resulted in obtaining the optimal solution. For the
remaining 1092 scenarios no optimal solution was found. The
improvement with respect to the initial solution is modest: the
largest improvement that the algorithm was able to find was
a solution with 8 modules less, where the initial solution on
average required upgrading 90 modules.

2) Evaluation of the Heatmap Visualization: A partial
heatmap of the system is shown in Figure 2. The color of a
cell (Module,Version) corresponds to the number of modules
that have to be upgraded when Module is being upgraded from
Version to the most recent version, version 8. Inspecting this
figure we observe that in many cases, the colors in a row
become lighter from left to right, i.e., the older the version,
the more upgrade dependencies are involved. This can be
expected because the time span to the latest version is longer,
suggesting that more changes could have occurred. Moreover,
most modules show dark cells in columns 0, 1 and 2, and much
lighter cells in columns 3–7. This means that most modules
are difficult to upgrade to the most recent version 8 if they
are of version 2 or older. The heat map does not reveal the
cause of this “cliff” from version 2 to version 3: we reconsider
this issue when discussing the second visualization proposed,
an upgrade dependency graph. Finally, module AF is easy to
upgrade: its row is completely blank, indicating that there are
no upgrade dependencies. This is typical for modules which
see little to no development. It could still be the case that this
module has changed, but that these changes were internal to
the module.

We postpone the discussion of the case study to Sec-
tion III-C.
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Fig. 2: A partial heatmap showing the upgrade dependencies from
versions 0 through 7 to version 8. The more upgrade dependencies,
the darker the cell.

III. WHY DOES UPGRADING ONE MODULE REQUIRE
UPGRADING MANY ADDITIONAL MODULES?

We have observed that frequently upgrading one module re-
quires an upgrade of numerous other modules. Unfortunately,
the techniques discussed in Section II cannot provide insights
as to why does this happens. Therefore, in this section we
present a visualization supporting identification of the reason
why one upgrade triggers numerous additional upgrades.

A. Upgrade Dependencies

When a module is being upgraded to a more recent version,
modules it uses or modules using it might require an upgrade
as well. Consider the following scenarios:

Scenario 1 Let module A be upgraded from version i to
version j. If version j of A requires a symbol S from B, that
was not required by version i, then upgrading A necessitates
the upgrade of B if the current version of B does not already
provide S. We say that there is an upgrade dependency from
A to B (caused by adding S).

Scenario 2 Let module B be upgraded from version i to
version j. If version j of B no longer provides a symbol

(a) Upgrade dependency graph representing the upgrade of Module
E (dark blue) and containing an SCC-vertex (dark gray).

(b) Graph shown when the SCC-vertex is clicked upon: module
Module C is shown in light grayed since it does not belong to the
SCC but has an edge coming from one of the SCC vertices.

Fig. 3: Zooming in a SCC-vertex of an upgrade dependency graph.

S, provided in version i, and module A requires S, then
upgrading B necessitates the upgrade of A. We say that there
is an upgrade dependency from B to A (caused by removing
S).

In the motivation example introduced in Section II-A there
are two upgrade dependencies: from A to B caused by adding
S and from B to C caused by adding T .

B. Upgrade Dependency Graph

The upgrade dependency graph represents a single upgrade
of a module m, based on the configuration C which was
determined by the algorithm. The upgrade dependency graph is
a directed graph with vertices {n|C(n) > i∧C(n) 6= ⊥}. There
is an edge from module n1 to module n2 if and only if there
is an upgrade dependency from n1 to n2. Each edge in the
upgrade dependency graph is associated with a set of symbols
which addition or removal caused the upgrade dependency.
Edges are shown in green if all symbols in the set have been
added, in red if all symbols in the set have been removed and
in black if some symbols in the set have been added and while
some other symbols in the set have been removed. Cardinality
of the set of symbols is represented by thickness of the edge.

In order to ease comprehension of the graph, the strongly
connected components (SCC) are collapsed to a single vertex.
A modified version of Tarjan’s algorithm [10] is used to locate
the strongly connected components. To simplify the inspection
of the upgrade dependency graph, we allow the user expanded
a SCC-vertex by clicking on it (Figure 3). A new graph is
shown with the modules inside the SCC as well as the modules
with incoming/outgoing edges from the SCC.

We stress that strongly connected components in an upgrade
dependency graph are different from strongly connected com-
ponents in traditional dependency graphs [11]. Upgrade depen-
dency graphs represent changes in dependencies between the
modules. Hence, if the required or provided symbols leading
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(a) (b)

Fig. 4: Cyclic upgrade dependencies not causing new cyclic depen-
dencies between modules.

to a cyclic dependency in a traditional dependency graph have
not changed, no relation is shown in the upgrade dependency
graph. Moreover, not every cyclic upgrade dependency yields
a new cyclic dependency in the software, as shown in Figure 4.
In Figure 4a, Module G has changed such that it uses new
symbols from Module H and removes symbols used by that
same module. No new cyclic dependency has been introduced
because Module H does not require additional symbols from
Module G. In Figure 4b, symbols were removed at both
sides. While they depend on each other during an upgrade,
they are made more independent because they require less
symbols from each other.

C. Discussion of the Case Study

One of the first observations while developing the tooling
was the presence of suspicious dependencies, whose existence
cannot be immediately explained given the functionality of the
modules involved. In many cases these upgrade dependencies
involved the test code: while 264 out of 327 modules had
more than 150 upgrade dependencies, after the test code has
been excluded only 4 out of 327 modules had more than 150
dependencies.

Based on this observation we stress the importance of
separating the test code from the production code.

Even after the test code has been excluded, we observe that
a module upgrade from the version of October 2011 to the
version of July 2012 often includes many additional upgrade
dependencies. The heat map in Figure 2 tells us that upgrades
are much easier from version 3 (January 2012) and onwards.
From there, more than half of the modules are upgradeable
with only 10 or less additional modules, where the majority
of these modules have no additional upgrade dependencies at
all.

By inspecting upgrade dependency graphs we further dis-
cover that many edges are red, i.e., many upgrade dependen-
cies are being caused by symbols being removed. If removal of
symbols is dismissed, the difficulty of upgrading the modules
decreases. As opposed to 204 modules (55%) that require

upgrading ten modules or less when upgrading from version
3 to version 8 if symbol removal is taken into account, 91%
of the upgrades involve ten modules or less if symbol removal
is dismissed.

Therefore, to facilitate the upgrades a policy disallowing
symbols removal should be considered, or at least a structured
process of symbols deprecation and removal. As an example
of such a structured process one might consider not to remove
symbols from an interface until they are no longer used in any
supported release.

Finally, we have evaluated application of the tool at ASML.
ASML developers reported that the tool provided valuable
insights in the upgrade structure of the system in an easy and
transparent way.

IV. RELATED WORK

Our work should be situated in the area of the update
management, and more specifically, component-based update
management [3], [12], [13], [14]. This problem is frequently
considered e.g., open-source software distributions, develop-
ment platforms like Eclipse plugins, and Web browser ex-
tensions. The key problem that has to be addressed is the
problem of dependency solving, i.e., identification of versions
of modules that have to be upgraded when another module
is being upgraded. State-of-the-art package managers tend to
prefer the resulting system to be as up-to-date as possible,
i.e., they prefer to update as many modules as possible [5].
This is known as a “progressive” [3] or “trendy” [5] upgrade.
Unlike these approaches we prefer to upgrade as few modules
as possible, since every module upgraded has to be installed
and configured. Our approach is closer to “conservative” [3]
or “paranoid” [5] upgrades. We stress, however, that while a
“paranoid” upgrade first attempts at minimizing the number
of modules removed, and then at minimizing the number of
modules changed, we focus solely on the modules changed
as removed modules do not require additional installation or
configuration effort.

Academic research has explored the possibilities of ap-
plying advanced logic-based techniques (e.g., pseudo-boolean
optimization [15], [16] and mixed integer linear program-
ming [17]) to dependency solving. The latter approach has
became a clear winner in the recent Mancoosi International
Solver Competition [5], while p2cudf [15] showed better
results than the other solvers on the dependency requirements
extracted from a real software system (Debian) rather than syn-
thesised by the competition organizers. A detailed comparison
of our approach with the results of these solvers is considered
as a future work.

To the best of our knowledge none of the approaches
targeting dependency solving considering dependency solving
addressed the challenge of explaining why upgrading some
modules is much more complex than others. This is not
surprising as in Eclipse, Debian and similar systems the de-
composition is fixed, while in our case the company developers
are ready to reconsider the decomposition depending on the
feedback provided by the techniques proposed.
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Monitoring dependencies through addition and removal of
symbols carried out by CScout [9] is reminiscent of the
API change and ripple effect detection through the Ecco-Evol
metamodel [18]. Furthermore, in context of Java dependencies
our search for missing dependencies is similar to automated
dependency resolution detection in Maven [19] or in Eclipse
plugins [20]. As opposed to [19], [20] we are not interested in
finding a configuration that satisfies dependency requirements
but rather in finding the configuration that satisfies dependency
requirements and the number of modules that have to be
upgraded is minimal.

We have considered off-line dependency resolution and
upgrades. A complementary research domain considers on-line
upgrades [21], [22], topic related to run-time evolution [23].
Furthermore, upgrade dependencies are but one of the kinds of
dependencies between modules studied in the literature [24],
[25], [26].

Finally, directed graph visualization is a well-known prob-
lem [27]. We prefer the visualization with a traditional force-
directed layout: it was preferred by the company developers to
more advanced techniques [28], [29] that seemed to provide
few benefits when attempting to discover undesirable upgrade
dependencies.

V. CONCLUSION

We have reported on an industrial approach to complexity
assessment of software modules’ upgrades. The approach
combines a high-level assessment (“is the software structured
such that a module can be upgraded with few additional de-
pendencies?”) with a lower-level visual feedback to developers
(“if an upgrade causes many additional dependencies, what is
the cause of this?”). Based on the feedback the developers can
consider restructuring the system to simplify future upgrades.

The approach has been applied to a software of a large
photolithography system, developed by ASML. The software
is developed by approximately 1000 developers and currently
consists of more than 40 million lines of code. We have
considered nine versions of the system and 2616 = 327 * 8
scenarios involving upgrade of each one of the 327 modules
from each one of the versions 0–7 to the most recent version,
version 8. In total, the analysis took 112214 seconds, i.e., 1
day and 7 hours. Optimal solution was found in 58% of the
scenarios.

ASML developers reported that the tool developed provided
valuable insights in the upgrade structure of the system in an
easy and transparent way.

Future work A number of directions pertaining to designing
the techniques and evaluating it can be considered as a future
work.

First of all, it is relatively straight-forward to extend the
algorithm in Section II-C such that the upgrade scenario
is triggered by a simultaneous update of multiple modules.
While the result of the algorithm cannot be used to analyse
the upgrade effort for each one of the modules separately,
this algorithm extension allows one to consider more realistic
upgrade scenarios. Furthermore, we did not consider semantic

changes in the symbols, i.e., symbol S provided by module B
at t = 2 is considered to be identical to symbol S provided
by module B at t = 3. Distinguishing between different
versions of S can be carried out by identifying elements
in B and modules B depends upon that can affect S, and
investigating evolution of these elements by mining the ver-
sion control system [30]. Similarly, to support comprehension
of the upgrade dependencies between modules, graph-based
visualization discussed in Section III can be extended by
hoover-on annotations derived from commit comments in the
version control system. One can also augment the visualization
approach with metrics, derived from the upgrade dependency
graph, such as different centrality measures. This metrics
should allow the developers to pinpoint modules “responsible”
for high upgrade effort without manual inspection of large
graphs (cf. the “highlight problems” requirement [31] and
a drill-down approach for measuring maintainability [32]).
Finally, applying econometric techniques [31], [33], [34] to
these metrics will allow us to assess concentration of upgrade
dependencies over the modules, and prefer configurations with
the highest concentration of the upgrade dependencies as
only few modules need to be considered to eliminate these
dependencies.

To evaluate the technique we intend to conduct a formal
user study. This would allow us to experiment with different
usage scenarios as well as with different visualization aspects
(such as the color palette).
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244–247.

[26] A. Sutii, S. Roubtsov, and A. Serebrenik, “Detecting dependencies
in Enterprise JavaBeans with SQuAVisiT,” in WCRE, R. Oliveto and
R. Robbes, Eds. IEEE Computer Society, 2013.

[27] I. Herman, G. Melancon, and M. Marshall, “Graph visualization and
navigation in information visualization: A survey,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 6, no. 1, pp. 24–43,
jan-mar 2000.

[28] D. H. R. Holten, “Hierarchical Edge Bundles: Visualization of Ad-
jacency Relations in Hierarchical Data,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 12, no. 5, pp. 741–748, 2006.

[29] M. Krzywinski, I. Birol, S. J. M. Jones, and M. A. Marra, “Hive plots–
rational approach to visualizing networks,” Briefings in Bioinformatics,
vol. 13, no. 5, pp. 627–644, 2012.

[30] W. Poncin, A. Serebrenik, and M. G. J. van den Brand, “Process
mining software repositories,” in CSMR, T. Mens, Y. Kanellopoulos,
and A. Winter, Eds. IEEE Computer Society, 2011, pp. 5–14.

[31] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, and
S. Ducasse, “Software quality metrics aggregation in industry,” Journal
of Software: Evolution and Process, pp. n/a–n/a, 2012. [Online].
Available: http://dx.doi.org/10.1002/smr.1558
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