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Abstract—In this paper, optimal linear transceiver designs the transceiver. The performance advantages of the prdpose
for multi-hop amplify-and-forward (AF) Multiple-inputMu  ltiple-  robust designs are demonstrated by simulation results.
out (MIMO) relaying systems with Gaussian distributed chan The following notations are used throughout this paper.
nel estimation errors are investigated. Some commonly used .
transceiver design criteria are unified into a single matrixvariate Boldface lowercase letters ‘?'e”Ote VeCtors‘_’ while boldface
optimization problem. With novel applications of majorization ~UPpercase letters denote matrices. The notaidnienotes the
theory and properties of matrix-variate function, the optimal Hermitian of the matriXZ, andTr(Z) is the trace of the matrix
structure of robust transceiver is first derived. Based on tle 7. The symboll,; denotes the\/ x M identity matrix, while
optimal structure, the original transceiver design problems are 0., ~ denotes thé/ x N all zero matrix. The notatio&!/2 is

reduced to much simpler problems with only scalar variables the H iti t of th iti idefinit tri
whose solutions are readily obtained by iterative water-fiing € Hermitan squareé root of the positive semidetinite matri

algorithms. The performance advantages of the proposed ratst  Z, such thatzZ!/2z'/? = Z and Z'/? is also a Hermitian
designs are demonstrated by the simulation results. matrix. The symbol;(Z) represents thé" largest eigenvalue

of Z. The symbolx denotes the Kronecker product. For two
Hermitian matricesC = D means thalC — D is a positive

In order to satisfy the emerging requirements for higbemi-definite matrix. For two vectorg, > y represents that
speed ubiquitous wireless communications, MIMO cooperaach element of is larger than the corresponding counterpart
tive communication has become one of the key parts in tbé y. The symbolA *\, represents a rectangular diagonal
future wireless standards such as LTE, IMT-Advanced, Wimatrix with decreasing diagonal elements.
ner project, etc. Transceiver design for amplify-and-famv
(AF) MIMO relaying systems has been reported [in [L]-[6].
There are various design criteria with different goals. The In this paper, a multi-hop AF MIMO relaying system is
most common criteria are capacity maximizatibh [I], [2]} [5¢onsidered. There is one source with antennas wants to
and data mean-square-error (MSE) minimizatioh [3]-[5]. IgROmMmunicate with the destination with/x antennas through
most of the previous works on transceiver design, most &f — 1 relays. For thek'" relay, it hasM, receive antennas
the designs are restricted for dual-hop relaying systens a&nd Ni1 transmit antennas. It is obvious that the dual-hop
furthermore channel state information (CSI) is assumedeto AF MIMO relaying systems is one of its special cases when
perfectly known. Unfortunately, channel estimation esrare £ = 2.
inevitable in practical systems. To mitigate the effect ba t At the source, av x 1 data vector s with covariance matrix
performance of AF relaying systems, such channel estimatiBs = E{ss"'} = I is transmitted through a precoder matrix
errors should be taken into account in the transceiver desi1. The received signat,; at the first relay is
process. | — x; = HyPis+ (2)

In this paper, we consider robust transceiver design for a
multi-hop AF relaying system with channel estimation errorsvhere H; is the MIMO channel matrix between the source
Taking the Gaussian distributed channel errors into adgou@nd the first relay, and, is the additive Gaussian noise vector
the precoder at source, multiple forwarding matrices atnal at the first relay with zero mean and covariance magjx =
relays and equalizer at destination are jointly designdue To7Ias, .
structure of the optimal solution for the unified problem is At the first relay, the received signal, is first multiplied
derived based on Majorization theory and properties ofarect by a forwarding matrixP, and then the resultant signal is
monotone functions. The derived optimal structure covesstm transmitted to the second relay. The received signaht the
of the existing transceiver design results in point-toapoi Second relay is given by
and dual-hop AF MIMO relaying systems as special cases.
With the optimal structure, iterative water-filling soloris
are proposed to obtain the remaining unknown parameters in = HoP2H 1 Pis + HoPony + 1y, )

|. INTRODUCTION

Il. SYSTEM MODEL

x2 = HaPox; +ny
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whereH, is the MIMO channel matrix between the first relay IIl. TRANSCEIVERDESIGN PROBLEMS
and the second relay, anib is the additive Gaussian noisea Opjective Functions

vector at the second relay with zero mean and covarianc
matrix R,,, = o2I,,. Similarly, the received signal at'®
relay can be written as

SThere are various performance metrics for transceiver de-

signs. In the following, we focus on two widely used metrics.
(1) In general, for balancing the performance across dif-

xr = HpPrxp_1 + ng (3) ferent data streams, (e.g., minimizing the worst data strea

whereH;, is the channel for thé*" hop, andn;, is the additive MSE), the objective function is written a1 (9]

Gaussian noise with zero mean and covariance mRifjx = Obj 1: ¥, [d(®(G))] (8)
O%IM,C

Finally, for a K-hop AF MIMO relaying system, the re-
ceived signal at the destination is

where ¢, (e) is an increasing Schur-convex funcfioand
d(®(G)) = [®(G)]11 [®(G)]ae ---]", with the symbol
[Z]; ; represents théi, j)** entry of Z.

s K-l K (2) On the other hand, if a preference is given over a certain
y = HHkPk S + Z H H/P;| n; ; +ng, (4) data streams, (e.g., loading more resources to the datarstre
k=1 k=1 l=k+1

with better channel state information), the objective fiorc

where[],_, Z;, denotesZy x --- x Z,. In order to guarantee can be written as
the transmitted data can be recovered at the destination, it is Obj 2: ,[d(®(G))] 9)
assumed thalV;, and M}, are greater than or equal 9 [3]. . ) ) .

In practical systems, because of limited length of trainingherev,(e) is an increasing Schur-concave function.
sequences, channel estimation errors are inevitable.&N&h- B problem Formulation

nel estimation errors, we can write Although the above two criteria aim at different designs, th

H,=H,+ AH,, (5) transceiver design optimization problem can be unified &to

whereH, is the estimated channel in tiké" hop andAH, single form:

is the corresponding channel estimation error whose elamen  min  f(®(G))

are zero mean Gaussian random variables. Moreover, the ~* -

M, x N, matrix AH,, can be decomposed using the widely st. Tr(PrRy Py) < Py k=1,--- K (10)
used Kronecker modehH;, = %,/*Hy,, %,/ [7], [8]. The where the objective functiorf (e) is a real-valued matrix-
elements of thell,, x N, matrix Hyy,. are independent andvariate function with®(G) as its argument. Notice that for all
identically distributed (i.i.d.) Gaussian random vareWith the two objectives described aboy&s) is a matrix-monotone
zero mean and unit variance. The specific formulas of thecreasing function.

row correlation matrix3; and the column correlation matrix  For (10), there is no constraint on the equaligarWe can
¥, are determined by the training sequences and chandifferentiate the trace of 16) with respect @ and obtain the

estimators being used![7].][8]. LMMSE equalizer

At the destination, a linear equaliz€k is employed to K H
detect the desired data vecter The resulting data MSE G _ Hﬁ P
matrix equals to®(G) = E{(Gy — s)(Gy — s)!}, where LMMSE Pt Rk
the expectation is taken with respect to random data, cthanne - _
estimation errors, and noise. Following a similar derwatin + (PR PR ¥r) 2k + Roye] ™' (11)
dual-hop systems [8], the MSE matrix is derived to be with the property|[[10]

®(G) ®(GrLmuse) = 2(G). (12)

= E{(Gy —s)(Gy —s)""} Becausef () is a matrix-monotone increasing functiof,}(12)
= G[HgPkR,, ,PRAL + Tr(Px Ry, PRTK)Sg implies thatG \vvsge minimizes the objective function if (ILO).

[HgPxRy, ,PRHL

K H x Substituting the optimal equalizer di{11) inB(G) in (@),
YR, JGH £ Iy — H 0P, c'-aG H P |, ®(G) equals to
k=1 k=1 K H B
6) ®\gp =1y — [H H;P,| [HxPxRy, ,PLHAL
k=1

where the received signal covariance mafx, at the Eth
relay satisfies the following recursive formula

Ry, = H.PyR,, ,PIA! + Tr(P Ry, ,PY¥.)3. +R,,,
(7) (13)

and RXO =Rs=1Iyn represents the S|gna| covariance matrix 1The detailed introduction of Schur-concave/convext fiomst, and ma-
at the source. jorization theory is given in[[11].

K
+ Tr(PgRy,  PRU)SK + R, |7} [H H,P,



For multi-hop AF MIMO relaying systems, the receivedroperty 1: At the optimal value ofP 1, ® must have the
signal atk' relay depends on the forwarding matrices at aditructure of
preceding relays, making the power allocations at differen - . H
relays couples with each other (as seen in the constrains of © = Uqdiag[A(©)[Uq (18)
(10)), and thus the probleri{[10) difficult to solve. In order twhere the vectoA(®) = [\, (), --- , Ax(©)]T with \,(O)
simplify the problem, we define the following new variable irbeing then'® largest eigenvalue o, and

terms of Py.: _ Qe for Obj 1
Fj. 2 P Ky 271 Iy forObj2

-1/2 47 H H —1/2 1/28  In ([@3), the unitary matrixUwy is defined from the eigen-
X (Kp, s it P B B Ko 2 4 Do) Qi decompositiontW = Uw Aw U, with Aw \,, the matrix
A1, Ua,p, IS an arbitrary unitary matrix, an@Qg is the unitary
(14) matrix which makesQrdiag[A(©)]QE having identical di-
N - ) ) agonal elements. Furthermore, with this optimal structtive
where Kp, = Tr(FF;/¥;)3; + o7, Ing, and Qg is an objective function ofP 1 equals to
unknown unitary matrix. The introduction @, is due to that
fact that for a positive semi-definite matdM, its square roots f(Iy — Ugqdiag[A(©)]Ug) = g[A(©)] (20)
has the formM'/2Q where Q is an unitary matrix. Notice P
thatF; = P;. With the new variable, the MSE matri®ysg
is reformulated as

(19)

whereg(e) is a monotobically decreasing and Schur-concave
function with respective t\(0).

K H Proof: See Appendix AR
yse =Iv — |[] QuIL, ' *Ky PH,Fy, Based onProperty 1, the objective function of[{17) can
k=1 be directly replaced by[A(®)] and thus the optimization
X« problem is simplified as
< [T QeIn, /Ky *HFy, P2 min  g[A(®)
paie ks Qe
LA, st. ©@=A) AR Ax - A
=1In _A{IA}II(AKAI (15) TI‘(FkFE) < P, QI]C{Qk :Il\lk
Meanwhile, with the new variable¥', the corresponding O = Ugqdiag[A(©)]Ug (21)

o S )
power constraint in thé™ hop can now be rewritten as  \yhere A,'s are defined in[{15). In order to further simplify

Tr(F:FY) < P (16) the optimization problem, we make use of the following two
additional properties.
It is obvious that with the new variablds,, the constraints Property 2: As g(e) is a decreasing and Schur-concave
become independent of each other. Putting (15) (16) iftmction andA(®) <, ~(®), the objective function inP
(10), the transceiver design problem can be reformulated a3 satisfies

P 1 min  f(Iy - ©) g\ (©)) > g([11(©) -y (©)]") (22)
st. Tr(FFHY <P, k=1,--- K . é'7(911 ;
@—A"... AN AL ... A, with 7;(©) 2 X\ (AL AN (AE Ak 1) A(AL A(lz)é)
QlQi = Ly, 17)

where the equality in[{22) holds when the neighboritg's

From the definition ofd4, in (I5) and noticing thaKr, = satisfy
Tr(FyFIW, )X, + 02 1y, it can be seen thdf, appears
at (multiéle p)ositions in the objective function. Therefotiee Va, =Ua, s k=2, K (24)
optimization problem is much more complicated than thgith unitary matricesU4, and V4, being defined based
counterpart with prefect CSI. Indeed, as demonstrated by the following singular value decompositiod, =
existing works, robust transceiver design for point-taapor UAkAAkVEk with Aa, \.
dual-hop relaying MIMO systems is much more complicateBroperty 3: As g(e) is a monotonically decreasing function
and challenging than its counterpart with perfect CS$I [8], [ with respective to its vector argument, the optimal sohsgio
of the optimization problem always occur on the boundary:

Tr(FyFil) = B. (25)

IV. OPTIMAL STRUCTURE OFROBUST TRANSCEIVER

Based on the formulations of the objectives giver{in (8) and

@)1 in Appendixl], it is proved thaP 1 has the fOIIOWing 2The specific expressions gf(e) are given in AppendiXA, but they are
property. not important for the derivation of the optimal structures.



Furthermore, defining i=1,---,N, the optimization problem for computing =,

N ° ) becomes
np, = Te(FpFyp ¥y )ag + oy, (26)

, _ , _ min  g[y(0)]
with o, = Tr(X2}) /M), which is a constant[{25) is equivalent fri

to N
s.t. Z fl?z =Py
i=1
v(@) =

®) .- e)7T
Based onProperties 2 and 3 , the optimal solution of )=l 2{ JNg )
the optimization problen{(21) is exactly the optimal sajuti 44(©) = | P (32)
of the following new optimization problem with different ! Hszl(fgihii_i_l).

constraints . o
The specific methods for finding, depend on the ex-

Te[FFy (ar Py + o In) /g = Pee (27)

P 3: min g[y(0)] pressions ofg(e), In the following, we discuss the solution
Fi Qi i 5 of (32) in more detail. The design criterion of MAX-MSE
st Tr[FxFy (anPe®r + 03, In)|/mp = P minimization is taken as example to show how to compute
©=A%...A%A,. .. A Ax,.
QIQ) =1, © = Ugqdiagy(©)UR MAX-MSE minimization is a special case @bj 1 in (8)

and in this casep,(d(®mse)) = max|[®Pysgiq. Further-

more, in AppendiA it is proved thag(A(®)) = ¢, [1n —
N

Noticing thatg(e) is a monotonically decreasing function,2-i=14:(©)/N) @ 1x]. Thereforeg[v(®)] equals to

Va,=U,s, ,, E=2,--- K. (28)

solving P 3 gives the following structure for the optimal N
solution. glv(®)] = max (1N - (Zizl%‘(@)/N) ® 1N>
Conclusion 1: Defining unitary matricesUy;, and Vg, N
based on the following singular value decomposition —1_ 1 (@ 33
1/213 2 1/2 H N 271( ) ( )
(Kr, /np) " PHi(ap Py + 02 Iy, )7 = Usg Ay, VI, _ -
with Az, N\, and Uz, = Uq, (29) based on which the optimization problem](32) becomes
- i 1o~ T (FRah2)
when ¥, o« I or 3, o I, the optimal solutions of the min 1 — _Z k=1\ kv "kyi
optimization problem[{28) have the following structure fri N~ HkK:I(fl?,ih%,i +1)
N
2 —1/2
Prop = VEAz) (0 P¥e +07,Tn) ™ st Y Ri=P (34)
X V?‘Lk,NA-'FkUHk,l,N i=1

Qr,opt = Ly, (30) The optimization probleni(34) can be solved by using iteeati

. o water-filling algorithm.
whereVy, v andUy, n are the matrices consisting of the

first N columns ofV4,, and Uy, , respectively, and\ #, is VI. SIMULATION RESULTS AND DISCUSSIONS
a N x N unknown diagonal matrix. The scalgf(Ax,) is a

) In this section, the performance of the proposed robust
function of Az, and equals to

designs are evaluated by simulations. For the purpose of com
A . parison, the algorithms based on the estimated channel only
o - ) 12 (without taking the channel estimation errors into accypunt
= 03, /{1 = Tr[Vay, N Pe¥y + 07, In,) are also simulated. In the following, we consider a three-
X Wi (ap Po®y + aZkINk)‘l/QVHk,NAgck]}. hop AF MIMO relaying system where all nodes are equipped
(31) with 4 antennas. Furthermore, the estimation error cdiosla

) ) . matrices are chosen as the popular exponential mpHel [8] i.e
In the (_)ptlmal structure given bﬂBp), the scalar vanablﬁ,k]ij — oli~il and[2,];; = B"Il. The estimated channels
£x(Az,) is only a function of the matribA 7, and therefore gy g “5re generated based on the following complex Gaussian
the only unknown variable in(80) iA#,. The remaining jistributions
unknown diagonal elements &fx, can be obtained by water- a 2)
- . : i ; . _ g
filling alike solution as discussed in the next section. Hj, ~ CNag v, (001 v, 5525 @ ol (35)

V. COMPUTATIONS OF A, such that channel realizatiodd;, = H; + AH, have unit

The remaining unknown variables ih"{30) are omly=,. variance. We define the signal-to-noise rat§iNR) for the
Substituting the optimal structures given ®gnclusion linto %™ link as Pk/o—flk. At the source node, four independent
P 3 and defining[As, i = hi; and [Ax,]i; = fir; for data streams are transmitted and in each data st®am, =



10 : with equality holds if and only if®];; = Zf.vzl)\i(@)/N.

—¥— Capacity maximization with estimated CSI only .
=~ Capacity maximization robust design Therefore,® must have the following structurgl[9]
—{— Sum-MSE minimization robust design
—O— MAX-MSE minimization robust design

© = Qrdiag(A(©))Qy. (38)

where Qg is a unitary matrix such tha® has identical
diagonal elements.

Based on the definition that),(e) is a decreasing and
Schur-convex function, based #n6.LemmaandA.8.Lemma
in [21] it can be directly proved thaj(A\(®)) is a decreasing
and Schur-concave function of(®).
_ S o Obj 2: Notice that for the positive semi-definite matrix
\'/T/Ir?er}a :B%Rf gft:h% [;rr?dpggei [)O(k])(L)th design with differenigfesbjectives, BisE = Iy — O, d(IN _ @) =~ )\(IN _ @) [En Furthermore

€ 1, (@) is Schur-concave, we have

, _ _ Py (d(In — ©)) = Py(1n — A(O)). (39)
10000 independent QPSK symbols are transmitted. Each point —_—
in the following figure is an average of 10000 trials. 2glx(®)]

Fig.[ shows the bit error rate (BER) of the proposed robusst order to make the equality i (39) hold, we ne@; ; =
designs with different performance metrics: sum MSE minj;(®), which means tha® is a diagonal matrix. Therefore,
mization, mutual information maximization and MAX-MSEwe can write
minimization. Other parameters are takencas- 0.4, 8 = 0 )
ando? = 0.004. It can be seen that the former two criteria © = Iydiag(A(©))Ly. (40)

have better performance than the latter one. Meanwhile, thesince ¢, (o) is increasing and Schur-concave, based on
capacity maximization based on estimated CSI only is giveig._Lemma and A.8.Lemma in [LI] it is obvious that

to show that the proposed robust designs are better than tat1, — A\(©)) is decreasing and Schur-concave with re-
of the design with estimated CSI only. spective toA(©).

2‘0 2‘5 3‘0 35
SNR (dB)
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