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Abstract—In this paper, optimal linear transceiver designs
for multi-hop amplify-and-forward (AF) Multiple-input Mu ltiple-
out (MIMO) relaying systems with Gaussian distributed chan-
nel estimation errors are investigated. Some commonly used
transceiver design criteria are unified into a single matrix-variate
optimization problem. With novel applications of majorization
theory and properties of matrix-variate function, the optimal
structure of robust transceiver is first derived. Based on the
optimal structure, the original transceiver design problems are
reduced to much simpler problems with only scalar variables
whose solutions are readily obtained by iterative water-filling
algorithms. The performance advantages of the proposed robust
designs are demonstrated by the simulation results.

I. I NTRODUCTION

In order to satisfy the emerging requirements for high
speed ubiquitous wireless communications, MIMO coopera-
tive communication has become one of the key parts in the
future wireless standards such as LTE, IMT-Advanced, Win-
ner project, etc. Transceiver design for amplify-and-forward
(AF) MIMO relaying systems has been reported in [1]–[6].
There are various design criteria with different goals. The
most common criteria are capacity maximization [1], [2], [5]
and data mean-square-error (MSE) minimization [3]–[5]. In
most of the previous works on transceiver design, most of
the designs are restricted for dual-hop relaying systems and
furthermore channel state information (CSI) is assumed to be
perfectly known. Unfortunately, channel estimation errors are
inevitable in practical systems. To mitigate the effect on the
performance of AF relaying systems, such channel estimation
errors should be taken into account in the transceiver design
process.

In this paper, we consider robust transceiver design for a
multi-hop AF relaying system with channel estimation errors.
Taking the Gaussian distributed channel errors into account,
the precoder at source, multiple forwarding matrices at allthe
relays and equalizer at destination are jointly designed. The
structure of the optimal solution for the unified problem is
derived based on Majorization theory and properties of vector-
monotone functions. The derived optimal structure covers most
of the existing transceiver design results in point-to-point
and dual-hop AF MIMO relaying systems as special cases.
With the optimal structure, iterative water-filling solutions
are proposed to obtain the remaining unknown parameters in

the transceiver. The performance advantages of the proposed
robust designs are demonstrated by simulation results.

The following notations are used throughout this paper.
Boldface lowercase letters denote vectors, while boldface
uppercase letters denote matrices. The notationZH denotes the
Hermitian of the matrixZ, andTr(Z) is the trace of the matrix
Z. The symbolIM denotes theM ×M identity matrix, while
0M,N denotes theM×N all zero matrix. The notationZ1/2 is
the Hermitian square root of the positive semidefinite matrix
Z, such thatZ1/2Z1/2 = Z and Z1/2 is also a Hermitian
matrix. The symbolλi(Z) represents theith largest eigenvalue
of Z. The symbol⊗ denotes the Kronecker product. For two
Hermitian matrices,C � D means thatC − D is a positive
semi-definite matrix. For two vectors,x ≥ y represents that
each element ofx is larger than the corresponding counterpart
of y. The symbolΛ ց represents a rectangular diagonal
matrix with decreasing diagonal elements.

II. SYSTEM MODEL

In this paper, a multi-hop AF MIMO relaying system is
considered. There is one source withN1 antennas wants to
communicate with the destination withMK antennas through
K − 1 relays. For thekth relay, it hasMk receive antennas
andNk+1 transmit antennas. It is obvious that the dual-hop
AF MIMO relaying systems is one of its special cases when
K = 2.

At the source, aN ×1 data vector s with covariance matrix
Rs = E{ssH} = IN is transmitted through a precoder matrix
P1. The received signalx1 at the first relay is

x1 = H1P1s+ n1 (1)

whereH1 is the MIMO channel matrix between the source
and the first relay, andn1 is the additive Gaussian noise vector
at the first relay with zero mean and covariance matrixRn1

=
σ2
1IM1

.
At the first relay, the received signalx1 is first multiplied

by a forwarding matrixP2 and then the resultant signal is
transmitted to the second relay. The received signalx2 at the
second relay is given by

x2 = H2P2x1 + n2

= H2P2H1P1s+H2P2n1 + n2, (2)
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whereH2 is the MIMO channel matrix between the first relay
and the second relay, andn2 is the additive Gaussian noise
vector at the second relay with zero mean and covariance
matrix Rn2

= σ2
2IM2

. Similarly, the received signal atkth

relay can be written as

xk = HkPkxk−1 + nk (3)

whereHk is the channel for thekth hop, andnk is the additive
Gaussian noise with zero mean and covariance matrixRnk

=
σ2
kIMk

.
Finally, for a K-hop AF MIMO relaying system, the re-

ceived signal at the destination is

y =

[
K∏

k=1

HkPk

]

s+

K−1∑

k=1

{[
K∏

l=k+1

HlPl

]

nk

}

+ nK , (4)

where
∏K

k=1Zk denotesZK × · · ·×Z1. In order to guarantee
the transmitted datas can be recovered at the destination, it is
assumed thatNk andMk are greater than or equal toN [3].

In practical systems, because of limited length of training
sequences, channel estimation errors are inevitable. Withchan-
nel estimation errors, we can write

Hk = H̄k +∆Hk, (5)

whereH̄k is the estimated channel in thekth hop and∆Hk

is the corresponding channel estimation error whose elements
are zero mean Gaussian random variables. Moreover, the
Mk ×Nk matrix ∆Hk can be decomposed using the widely
used Kronecker model∆Hk = Σ

1/2
k HW,kΨ

1/2
k [7], [8]. The

elements of theMk × Nk matrix HW,k are independent and
identically distributed (i.i.d.) Gaussian random variables with
zero mean and unit variance. The specific formulas of the
row correlation matrixΣk and the column correlation matrix
Ψk are determined by the training sequences and channel
estimators being used [7], [8].

At the destination, a linear equalizerG is employed to
detect the desired data vectors. The resulting data MSE
matrix equals toΦ(G) = E{(Gy − s)(Gy − s)H}, where
the expectation is taken with respect to random data, channel
estimation errors, and noise. Following a similar derivation in
dual-hop systems [8], the MSE matrix is derived to be

Φ(G)

= E{(Gy − s)(Gy − s)H}

= G[H̄KPKRxK−1
PH

KH̄H
K +Tr(PKRxK−1

PH
KΨK)ΣK

+RnK
]GH + IN −

[
K∏

k=1

H̄kPk

]H

GH −G

[
K∏

k=1

H̄kPk

]

,

(6)

where the received signal covariance matrixRxk
at thekth

relay satisfies the following recursive formula

Rxk
= H̄kPkRxk−1

PH
k H̄

H
k +Tr(PkRxk−1

PH
k Ψk)Σk +Rnk

,
(7)

andRx0
= Rs = IN represents the signal covariance matrix

at the source.

III. T RANSCEIVERDESIGN PROBLEMS

A. Objective Functions

There are various performance metrics for transceiver de-
signs. In the following, we focus on two widely used metrics.

(1) In general, for balancing the performance across dif-
ferent data streams, (e.g., minimizing the worst data stream
MSE), the objective function is written as [9]

Obj 1: ψ1[d(Φ(G))] (8)

where ψ1(•) is an increasing Schur-convex function1 and
d(Φ(G)) = [[Φ(G)]1,1 [Φ(G)]2,2 · · · ]T, with the symbol
[Z]i,j represents the(i, j)th entry ofZ.

(2) On the other hand, if a preference is given over a certain
data streams, (e.g., loading more resources to the data streams
with better channel state information), the objective function
can be written as

Obj 2: ψ2[d(Φ(G))] (9)

whereψ2(•) is an increasing Schur-concave function.

B. Problem Formulation

Although the above two criteria aim at different designs, the
transceiver design optimization problem can be unified intoa
single form:

min
Pk,G

f(Φ(G))

s.t. Tr(PkRxk−1
PH

k ) ≤ Pk, k = 1, · · · ,K (10)

where the objective functionf(•) is a real-valued matrix-
variate function withΦ(G) as its argument. Notice that for all
the two objectives described above,f(•) is a matrix-monotone
increasing function.

For (10), there is no constraint on the equalizerG. We can
differentiate the trace of (6) with respect toG and obtain the
LMMSE equalizer

GLMMSE =

[
K∏

k=1

H̄kPk

]H

[H̄KPKRxK−1
PH

KH̄H
K

+Tr(PKRxK−1
PH

KΨK)ΣK +RnK
]−1, (11)

with the property [10]

Φ(GLMMSE) � Φ(G). (12)

Becausef(•) is a matrix-monotone increasing function, (12)
implies thatGLMMSE minimizes the objective function in (10).
Substituting the optimal equalizer of (11) intoΦ(G) in (6),
Φ(G) equals to

ΦMSE = IN −

[
K∏

k=1

H̄kPk

]H

[H̄KPKRxK−1
PH

KH̄H
K

+Tr(PKRxK−1
PH

KΨK)ΣK +RnK
]−1

[
K∏

k=1

H̄kPk

]

.

(13)

1The detailed introduction of Schur-concave/convext functions, and ma-
jorization theory is given in [11].



For multi-hop AF MIMO relaying systems, the received
signal atkth relay depends on the forwarding matrices at all
preceding relays, making the power allocations at different
relays couples with each other (as seen in the constrains of
(10)), and thus the problem (10) difficult to solve. In order to
simplify the problem, we define the following new variable in
terms ofPk:

Fk , PkK
1/2
Fk−1

× (K
−1/2
Fk−1

H̄k−1Fk−1F
H
k−1H̄

H
k−1K

−1/2
Fk−1

+ IMk−1

︸ ︷︷ ︸

,Πk−1

)1/2QH
k−1,

(14)

where KFk
, Tr(FkF

H
k Ψk)Σk + σ2

nk
IMk

and Qk is an
unknown unitary matrix. The introduction ofQk is due to that
fact that for a positive semi-definite matrixM, its square roots
has the formM1/2Q whereQ is an unitary matrix. Notice
thatF1 = P1. With the new variable, the MSE matrixΦMSE

is reformulated as

ΦMSE = IN −

[
K∏

k=1

QkΠ
−1/2
k K

−1/2
Fk

H̄kFk

]H

×







K∏

k=1

QkΠ
−1/2
k K

−1/2
Fk

H̄kFk
︸ ︷︷ ︸

,Ak







= IN −AH
1 · · ·AH

KAK · · ·A1. (15)

Meanwhile, with the new variablesFk, the corresponding
power constraint in thekth hop can now be rewritten as

Tr(FkF
H
k ) ≤ Pk. (16)

It is obvious that with the new variablesFk, the constraints
become independent of each other. Putting (15) and (16) into
(10), the transceiver design problem can be reformulated as

P 1: min
Fk,Qk

f (IN −Θ)

s.t. Tr(FkF
H
k ) ≤ Pk, k = 1, · · · ,K

Θ = AH
1 · · ·AH

KAK · · ·A1

QH
k Qk = IMk

(17)

From the definition ofAk in (15) and noticing thatKFk
=

Tr(FkF
H
k Ψk)Σk + σ2

nk
IMk

, it can be seen thatFk appears
at multiple positions in the objective function. Therefore, the
optimization problem is much more complicated than the
counterpart with prefect CSI. Indeed, as demonstrated by
existing works, robust transceiver design for point-to-point or
dual-hop relaying MIMO systems is much more complicated
and challenging than its counterpart with perfect CSI [7], [8].

IV. OPTIMAL STRUCTURE OFROBUST TRANSCEIVER

Based on the formulations of the objectives given in (8) and
(9), in Appendix A, it is proved thatP 1 has the following
property.

Property 1: At the optimal value ofP 1, Θ must have the
structure of

Θ = UΩdiag[λ(Θ)]UH
Ω (18)

where the vectorλ(Θ) = [λ1(Θ), · · · , λN (Θ)]T with λn(Θ)
being thenth largest eigenvalue ofΘ, and

UΩ =

{
QF for Obj 1
IN for Obj 2

. (19)

In (19), the unitary matrixUW is defined from the eigen-
decompositionW = UWΛWUH

W with ΛW ց, the matrix
UArb is an arbitrary unitary matrix, andQF is the unitary
matrix which makesQFdiag[λ(Θ)]QH

F having identical di-
agonal elements. Furthermore, with this optimal structure, the
objective function ofP 1 equals to

f(IN −UΩdiag[λ(Θ)]UH
Ω

︸ ︷︷ ︸

Θ

) = g[λ(Θ)] (20)

whereg(•) is a monotobically decreasing and Schur-concave
function with respective toλ(Θ). 2

Proof: See Appendix A.�
Based onProperty 1, the objective function of (17) can

be directly replaced byg[λ(Θ)] and thus the optimization
problem is simplified as

P 2: min
Fk,Qk

g[λ(Θ)]

s.t. Θ = AH
1 · · ·AH

KAK · · ·A1

Tr(FkF
H
k ) ≤ Pk, QH

k Qk = IMk

Θ = UΩdiag[λ(Θ)]UH
Ω (21)

whereAk ’s are defined in (15). In order to further simplify
the optimization problem, we make use of the following two
additional properties.
Property 2: As g(•) is a decreasing and Schur-concave
function andλ(Θ) ≺w γ(Θ), the objective function inP
2 satisfies

g(λ(Θ)) ≥ g([γ1(Θ) · · · γN (Θ)]T
︸ ︷︷ ︸

,γ(Θ)

) (22)

with γi(Θ) , λi(A
H
KAK)λi(A

H
K−1AK−1) · · ·λi(A

H
1A1),

(23)

where the equality in (22) holds when the neighboringAk ’s
satisfy

VAk
= UAk−1

, k = 2, · · · ,K (24)

with unitary matricesUAk
and VAk

being defined based
on the following singular value decompositionAk =
UAk

ΛAk
VH

Ak
with ΛAk

ց.
Property 3: As g(•) is a monotonically decreasing function
with respective to its vector argument, the optimal solutions
of the optimization problem always occur on the boundary:

Tr(FkF
H
k ) = Pk. (25)

2The specific expressions ofg(•) are given in Appendix A, but they are
not important for the derivation of the optimal structures.



Furthermore, defining

ηfk , Tr(FkF
H
k Ψk)αk + σ2

nk
(26)

with αk = Tr(Σk)/Mk which is a constant, (25) is equivalent
to

Tr[FkF
H
k (αkPkΨk + σ2

nk
INk

)]/ηfk = Pk. (27)

Based onProperties 2 and 3 , the optimal solution of
the optimization problem (21) is exactly the optimal solution
of the following new optimization problem with different
constraints

P 3: min
Fk,Qk

g[γ(Θ)]

s.t. Tr[FkF
H
k (αkPkΨk + σ2

nk
INk

)]/ηfk = Pk

Θ = AH
1 · · ·AH

KAK · · ·A1

QH
k Qk = IMk

, Θ = UΩdiag[γ(Θ)]UH
Ω

VAk
= UAk−1

, k = 2, · · · ,K. (28)

Noticing that g(•) is a monotonically decreasing function,
solving P 3 gives the following structure for the optimal
solution.
Conclusion 1: Defining unitary matricesUHk

and VHk

based on the following singular value decomposition

(KFk
/ηfk)

−1/2H̄k(αkPkΨk + σ2
nk
INk

)−1/2 = UHk
ΛHk

VH
Hk

with ΛHk
ց and UH0

= UΩ, (29)

when Ψk ∝ I or Σk ∝ I, the optimal solutions of the
optimization problem (28) have the following structure

Fk,opt =
√

ξk(ΛFk
)(αkPkΨk + σ2

nk
INk

)−1/2

×VHk,NΛFk
UH

Hk−1,N

Qk,opt = IMk
, (30)

whereVHk,N andUHk,N are the matrices consisting of the
first N columns ofVHk

andUHk
, respectively, andΛFk

is
a N ×N unknown diagonal matrix. The scalarξk(ΛFk

) is a
function ofΛFk

and equals to

ξk(ΛFk
) = ηfk

= σ2
nk
/{1− αkTr[V

H
Hk,N(αkPkΨk + σ2

nk
INk

)−1/2

×Ψk(αkPkΨk + σ2
nk
INk

)−1/2VHk,NΛ2
Fk

]}.
(31)

In the optimal structure given by (30), the scalar variable
ξk(ΛFk

) is only a function of the matrixΛFk
and therefore

the only unknown variable in (30) isΛFk
. The remaining

unknown diagonal elements ofΛFk
can be obtained by water-

filling alike solution as discussed in the next section.

V. COMPUTATIONS OFΛFk

The remaining unknown variables in (30) are onlyΛFk
.

Substituting the optimal structures given byConclusion 1into
P 3 and defining[ΛHk

]i,i = hk,i and [ΛFk
]i,i = fk,i for

i = 1, · · · , N , the optimization problem for computingΛFk

becomes

min
fk,i

g[γ(Θ)]

s.t.

N∑

i=1

f2
k,i = Pk

γ(Θ) = [γ1(Θ) · · · γN (Θ)]T

γi(Θ) =

∏K
k=1f

2
k,ih

2
k,i

∏K
k=1(f

2
k,ih

2
k,i + 1)

. (32)

The specific methods for findingfk,i depend on the ex-
pressions ofg(•), In the following, we discuss the solution
of (32) in more detail. The design criterion of MAX-MSE
minimization is taken as example to show how to compute
ΛFk

.
MAX-MSE minimization is a special case ofObj 1 in (8)

and in this case,ψ1(d(ΦMSE)) = max[ΦMSE]i,i. Further-
more, in Appendix A it is proved thatg(λ(Θ)) = ψ1[1N −
(
∑N

i=1λi(Θ)/N)⊗ 1N ]. Therefore,g[γ(Θ)] equals to

g[γ(Θ)] = max

(

1N − (
∑N

i=1
γi(Θ)/N)⊗ 1N

)

= 1−
1

N

N∑

i=1

γi(Θ) (33)

based on which the optimization problem (32) becomes

min
fk,i

1−
1

N

N∑

i=1

∏K
k=1(f

2
k,ih

2
k,i)

∏K
k=1(f

2
k,ih

2
k,i + 1)

s.t.

N∑

i=1

f2
k,i = Pk. (34)

The optimization problem (34) can be solved by using iterative
water-filling algorithm.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the proposed robust
designs are evaluated by simulations. For the purpose of com-
parison, the algorithms based on the estimated channel only
(without taking the channel estimation errors into account)
are also simulated. In the following, we consider a three-
hop AF MIMO relaying system where all nodes are equipped
with 4 antennas. Furthermore, the estimation error correlation
matrices are chosen as the popular exponential model [8] i.e.,
[Ψk]i,j = α|i−j| and[Σk]i,j = β|i−j|. The estimated channels
H̄k’s, are generated based on the following complex Gaussian
distributions

H̄k ∼ CNMk,Nk
(0Mk,Nk

,
(1− σ2

e)

σ2
e

Σk ⊗ΨT
k ), (35)

such that channel realizationsHk = H̄k + ∆Hk have unit
variance. We define the signal-to-noise ratio (SNR) for the
kth link as Pk/σ

2
nk

. At the source node, four independent
data streams are transmitted and in each data stream,NData =



5 10 15 20 25 30 35

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 
Capacity maximization with estimated CSI only
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Fig. 1. BERs of the proposed robust design with different design objectives,
whenα = 0.4, β = 0 andσ2

e
= 0.004.

10000 independent QPSK symbols are transmitted. Each point
in the following figure is an average of 10000 trials.

Fig. 1 shows the bit error rate (BER) of the proposed robust
designs with different performance metrics: sum MSE mini-
mization, mutual information maximization and MAX-MSE
minimization. Other parameters are taken asα = 0.4, β = 0
and σ2

e = 0.004. It can be seen that the former two criteria
have better performance than the latter one. Meanwhile, the
capacity maximization based on estimated CSI only is given
to show that the proposed robust designs are better than that
of the design with estimated CSI only.

VII. C ONCLUSIONS

Bayesian robust transceiver design for multi-hop AF MIMO
relaying systems under channel estimation errors was consid-
ered. Various transceiver design criteria were unified intoa
single optimization framework. Using majorization theoryand
properties of matrix-variate functions, the optimal structure of
transceivers was derived. Then, the transceiver design prob-
lems were greatly simplified and the remaining unknowns were
obtained by iterative water-filling solutions. The performance
of the proposed transceiver designs has been demonstrated by
simulation results.

APPENDIX A
PROOF OFPROPERTY1

Obj 1: For the diagonal elements of the positive semi-definite
matrix ΦMSE = IN −Θ, we have the following relationship
[11]

1N − (
∑N

i=1
λi(Θ)/N)⊗ 1N ≺ d(IN −Θ) (36)

with the equality holds if and only if[Θ]i,i =
∑N

i=1λi(Θ)/N ,
where1N is theN × 1 all one vector.

For the first objective function in (8), asψ1(•) is decreasing
and Schur-convex, the objective function satisfies [9]

ψ1(d(IN −Θ)) ≥ ψ1

(

1N − (
∑N

i=1
λi(Θ)/N)⊗ 1N

)

︸ ︷︷ ︸

,g[λ(Θ)]

,

(37)

with equality holds if and only if[Θ]i,i =
∑N

i=1λi(Θ)/N .
Therefore,Θ must have the following structure [9]

Θ = QFdiag(λ(Θ))QH
F . (38)

where QF is a unitary matrix such thatΘ has identical
diagonal elements.

Based on the definition thatψ1(•) is a decreasing and
Schur-convex function, based onA.6.LemmaandA.8.Lemma
in [11] it can be directly proved thatg(λ(Θ)) is a decreasing
and Schur-concave function ofλ(Θ).
Obj 2: Notice that for the positive semi-definite matrix
ΦMSE = IN −Θ, d(IN −Θ) ≺ λ(IN −Θ) [9]. Furthermore
ψ2(•) is Schur-concave, we have

ψ2(d(IN −Θ)) ≥ ψ2(1N − λ(Θ))
︸ ︷︷ ︸

,g[λ(Θ)]

. (39)

In order to make the equality in (39) hold, we need[Θ]i,i =
λi(Θ), which means thatΘ is a diagonal matrix. Therefore,
we can write

Θ = INdiag(λ(Θ))IN . (40)

Since ψ2(•) is increasing and Schur-concave, based on
A.6.Lemma and A.8.Lemma in [11] it is obvious that
ψ2(1N − λ(Θ)) is decreasing and Schur-concave with re-
spective toλ(Θ).
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