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Abstract—In this paper, the asymptotic average bit error
probability (ABEP) is analytically analyzed for a spatial scat-
tering modulation (SSM) in millimeter-wave (mmWave) MIMO
system. An asymptotic union upper bound on the ABEP of the
SSM system is obtained in a closed-form. On this basis, the
achievable diversity gain of the SSM system is characterized.
Simulation results demonstrate the tradeoff between spectral
efficiency and ABEP performance, where the impacts of wireless
channel properties and modulation order on the performance of
SSM systems are investigated.

Index Terms—Millimeter wave, Spatial scattering modulation,
Average bit error probability, Diversity gain

I. INTRODUCTION

Multiple Input Multiple Output (MIMO) technologies,
which achieve a high spectral efficiency, have gained
widespread attention in recent decades. However, employing
multiple antennas increases the system complexity due to
inter-channel interference (ICI) [1]-[3]. Recently, single-radio-
frequency-based MIMO techniques, e.g., spatial modulation
(SM), were proposed, where only one antenna element in an
antenna array is activated for data transmission at any signaling
time instance [4]-[8].

In the past decade, SM systems have been widely inves-
tigated. In [9], an optimal detector was derived for the SM
system, where it shows that the system performance can be
further improved compared to the conventional demodulator
[5]. The authors in [10]-[12] derived the numerical average
bit error probability (ABEP) of the SM system over various
fading channels. The authors in [13] evaluated the performance
over generalized fading channels, for which a comprehensive
analytical framework is derived to compute the ABEP under
general modulation schemes and correlated fading channels.
The performance of SM systems are validated via practi-
cal measurements [14], [15]. Furthermore, the SM scheme
has been generalized by combining other concepts, such as
the space shift keying (SSK) [16]-[20], the generalized SM
(GSM) [3], the polarization shift keying system [24], [25]
and the quadrature spatial modulation (QSM) [21]-[23]. In
conclusion, recent studies have demonstrated that SM can be
a promising wireless communication technique.

However, some challenges and limitations need to be ad-
dressed before its widespread application in practical environ-
ment [1]. while much higher data rate demand is leading to

saturating the microwave spectrum, more and more attention
has been paid to the millimeter-wave (mmWave) because of its
broad range of idle frequencies still existing [26]. Due to the
sensitivity of mmWave to the blockages, mmWave frequencies
show more severe propagation loss than the microwave coun-
terparts under the Line-of-Sight (LoS). To resolve the severe
path loss for mmWave bandwidth, large antenna arrays are
required to steer a high beamforming gain. Thus, it is a great
challenge to design an innovative transceiver architecture.
Recently, a novel single-radio-frequency (RF) MIMO scheme
was proposed, called the spatial scattering modulation (SSM)
[27]. Practically, this new modulation scheme is designed for
mmWave systems, whose basic idea is similar to it of SM. In
the SSM scheme, it is supposed that there are N4 scattering
clusters with different complex gains in the propagation,
among which only Ny < N scattering clusters with larger
complex gains are available to transmit signals. In each time
slot, the transmitter forms a narrow and directional beam to
transmit toward only one of these available scattering clusters,
while an additional information is modulated on the direction
of the beam toward the NN, clusters, so the transmission
rate is logy NgM bits per transmission, where M denotes
modulation order of conventional signal constellation, e.g.,
M -phase-shift-keying (M-PSK) or M -quadrature-amplitude-
modulation (M-QAM). Besides, an upper bound on the ABEP
of the SSM is derived and the corresponding performance
in various environment is analytically investigated in [27].
However, its numerical results are required precisely through
more than 10° realizations, which is too time-consuming for
analytical simulation [13].

In this paper, we derive the pairwise error probability
(PEP), a tight upper bound on the ABEP, then an asymptotic
upper bound on the ABEP, consequently. From the asymptotic
upper bound, the diversity gain of SSM system is derived as
Nis— Ng+1, while assuming the channel has Ny scatters and
N; of them are employed to convey information. To justify
the theoretical results, we compare them with the Monte-
Carlo simulations and the original analytical ABEP expression
provided by [27]. In addition, we compare the asymptotic
performance of SSM systems with various modulation param-
eters, i.e., Ny and M under enviroments with different N.

The remainder of this paper is organized as follows. Section
IT proposes the system model of the SSM. Based on the
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Fig. 1. The system model of SSM. Only a single RF chain is utilized at
transmitter to achieve direction selection, while multiple RF chains at receiver
to achieve direction detection.

definition of ABEP in [27], we derive the closed-form ABEP
union upper bound in Section III. And then, we obtain the
asymptotic ABEP in the high signal-to-noise ratio (SNR)
regime, then extract the diversity gain in Section IV. In Section
V, we analyze the performance of SSM system for various
setups. Finally, we conclude the paper.

In this paper, we adopt a complex envelope signal rep-
resentation. Superscript (-)¥ is used to denote Hermitian
matrix transposition. E(-) and || - ||? respectively denote the
expectation and Lo norm. p is the average signal to noise ratio
(SNR) for each transmission. - is the estimated message by the
detector. x! is the factorial of .

II. SPATIAL SCATTERING MODULATION

The system model of SSM is shown in Fig.l1, which
consists of Ny transmit antennas, /N, receive antennas, and
Ny scattering clusters. Since the signal is transmitted toward
one out of Ny scattering clusters and goes over an N, x Ny
wireless channel H, the channel matrix of the SSM system
can be written as a sum of N;s sub-channel matrices [28]:

Nes

H=> ph, i, e

=1

where [3; denotes the complex gain of the [th scattering
cluster, 5; ~ CN(0,1). h;; denotes the directional vector
from transmit antenna to the Ith cluster, and h,; denotes the
directional vector the beam arrives at receiver. The directional
vectors h;; and h,; are expressed as those in [27]. When
we assume that the array of antenna is large enough, the
directional vectors will be approximately onhogonal, ie.,
h”htkNOandh e~ 0 when [ # k, andh e =1
and h e =1 when I = k. According to the SSM scheme,
the recelved signal can be written as:

y = VPHpysm +n, 2

where pj denotes the directional vector from the transmitter to
the k-th scattering cluster, 1 < k < Ny, s, is the m-th signal
of the conventional signal constellation diagram, 1 < m < M,
and n ~ CN(0,1) is the N, x 1 dimensional white Gaussian
noise vector.

Exploit the orthogonality of the directional vectors and ap-
ply the maximum likelihood detector to estimate the direction
and the received symbol, the detection rule is expressed as
follows:

[fam] = ar% min ||y.(k) — hEk\/ﬁHht)ksmHQ
" 3)
= argmin [[ye(k) - VPBrsml?,

where k and 7 denote indexes of estimated direction aqd
estimated symbol, respectively. Note that when k£ = £k,
Ye(k) = hyn + \/pBism, whereas when k # k, y.(k) =
hnkn.

III. CLOSED-FORM UNION UPPER BOUND ON ABEP

A. Union Upper Bound

For a fast and exact evaluation of the SSM system, we need
to derive the closed-form PEP based on the original ABEP. The
performance of the SSM system is upper bounded as [27, Eq.
(1D)]

ABEP < iiiﬁ
N (m

o)) P ([, m] = [ ]
N, MlogQ(NSM) ’

where N ([k:,m] — [l%,ﬁz]) denotes the Hamming distance
between [k, m] and [k,7h], and P ([k, m] — [l%fn]) denotes
the PEP, which is the probability of detecting [k, m] as [k, ).
n [27], the PEP is given by:

P ([k;,m] - [l%,m]lﬁkﬂ;;)

Q <\/g|ﬁk(8

2 2
1 —218:171sml

—Sm)|2) k=Fk, (5
k# k.

Note that the PEP in (5) is determined by the specific re-
alization of the Log-Normal distributed |3x|?. Thus for fast
evaluation of the SSM system, we calculate the expected PEP
of the SSM system, E [P ([k,m] — [k, ™]|Bx, B)]-

B. Closed-form expression for the PEP with k = k

We assume that the complex gain 8; ~ CN(0, 1), and | 3|2
is exponentially distributed with a probability density function
(PDF) of f(x) = e ", and a cumulative distribution function
(CDF) of F(z) = 1 — e~*. Without loss of generality, the
magnitude of the complex gain |3;|? is sorted in a decreas-
ing order, i.e., |B1|>>|B2|>>- - >|BnN,.|?. Thus, the random
variable |3;|? is an order statistic [31] with a PDF of

—ao\Nis—k , ok
Nts!(l —¢€ ) (6 )

Tou@) = = N —pm =1

(6)



From (6), using binomial formula [29], the PDF of |8;|? is
rewritten as

Nes—k (_1)re—(r+k)m

Nl 5~ )
= (N — k=)t

fﬂk(x) = (k—1)!

Substituting

/2
Qz) = l/0 exp[—x2/(2sin? ¢)]d¢ (8)

s

in to (5), the closed-form expression for the PEP with k& = k
is derived as follows:
N o 1Y 2
] =5 |Q (/5 lsm — salc)]

/ /ep< plsm clom — 2l 2 “’”)dqbfﬂk(a:)dx

€))

Substituting (7) into (9), the closed-form expression for the
PEP for k = k is evaluated as follows:

E [P ([k,m] = [k, m]|Bx)]

— r ISWL_SﬁLlQ
Nl Nest (17 (1= el )
(k—1)! = TW(Nes —k—7)2(r +k)

E[P ([k,m] — [k,

(10)

C. Closed-form expression for the PEP with k #+ k

For k # l%, the PEP is determined by |ﬁ;€\2, whose PDF
is given by (7). From (5), following some straightforward
algebraic manipulations, the PEP for k # k is derived as
follows:

E [P ([k:,m] - [iz,m]w,%)]

= NtS' Nik (_1)T .
20k = 1) =5 r/(Neg —k —r)!(5lsml?+ 7+ k)
(11)

Substituting (10) and (11) into (4), we obtain the closed-
form upper bound on the ABEP of the SSM systems.

IV. DIVERSITY GAIN ANALYSIS

In this section, the achievable diversity gain and coding gain
of the considered SSM system is investigated based on the
analytically obtained ABEP in the previous section. For k = k,
we suppose and define N = Ny — k + 1, the PEP can be
approximated as:

E[P ([k,m] —
;(plsm - 8m|2)

[, ][ Br )]
“N(@2N — 1)IINg!
N 22N+L(2N!1(k — 1)! ’
where (2N)!l =2 x4 x6x---x (2N), and 2N — D! =
1x3x5x-+-x (2N —1). See Appendix A for the derivation.

12)

For k # I%, as the SNR increases, the parameter r in the
denominator of (11) can be ignored. Hence, the PEP can be
approximated as:

E [P ([k,m] - [i;,m]w,;)}
Nyo! (|3 - 2(ka+1)) —(Nea—h+1)

13)

2N¢S—k+2(k _ 1)!

See Appendix B for the derivation of (13).
Substituting (12) and (13) into the union upper bound, an
asymptotic ABEP can be expressed as:

Ny M Ny

ABEP = ZZZZp N DGk, m, k), (14)

k=1m=1j_q m=1
where G(k,m, k, m) is defined as:

N ([km] = [k N
2N, M log, (N, M)(k — 1)
4Ne=k LN — Il
[$m — Sy |2V —E+1) (2N)!!

X 2(Nts—k+1)

2(Nys—k+1)
S

G(k,m, k) =

=k, (15)

k£ k.

In the high SNR regime, the worst term in (14) dominates
the slope of the ABEP [32] and therefore, we have the
asymptotic ABEP as:

ABEP, .y = (Cp) 7, (16)
where the diversity gain is
D = Ngs — Ng + 1, 17)
whereas, the coding gain is
M Ny, M -t
3N G(Ne,m, ki) (18)

m=1f_1m=1

V. NUMERICAL RESULTS

In this section, we carry out numerical experiments, and
compare the performance of the SSM systems for various
values of Ny and N;s. Meanwhile, we compare the SSM
scheme with two benchmark schemes: maximum beamforming
(MBF), where the transmitter only transmits the signal toward
the scattering cluster having the largest gain (31, and random
beamforming (RBF) where the transmitter transmits the signal
to one of Ny clusters randomly [27]. For a fair comparison,
we fix the spectral efficiency of different schemes as four
bits per channel use. Therefore, the SSM employs Ny, = 4
scattering clusters, as well as quadrature phase shift keying
(QPSK) mapper. As the scattering clusters of the MBF and
RBF do not carry information bits, they employ 16 quadrature
amplitude modulation (16-QAM).

Fig.2 shows the comparison of the exact, the original and the
asymptotic ABEP curves, as well as the Monte-Carlo results.
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Fig. 2. Validation of analytic results via comparison of analytic results and
simulations, where N¢s = 12 and MC denotes Monte-Carlo results.
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Fig. 3. ABEP performance comparison among SSM, MBF and RBF, where
spectral efficiency is four bits per channel use.

We can see that the upper bound derived in (4) is tight. And
the asymptotic ABEP curve approaches that of the analytical
ABEP curve as the SNR increases. From the measurement, the
slope of the asymptotic ABEP curve equals to —(Nys— Ng+1).
Thus, as the Ny decreases, the slope of the asymptotic ABEP
curve gets steeper, which leads to a better performance with
other parameters being the same. In Fig.2, it is observed that
the SSM system with Ny = 4 achieves a better performance
than the system with Ny = 8.

Fig.3 demonstrates the performance comparisons among
SSM, MBF and RBF. Clearly, the SSM scheme achieves
a better ABEP performance when Ny = 12. From the
perspective of the diversity gain, the higher diversity gain
is obtained, the better system performance or higher spectral
efficiency is achieved. In other word, it is found that as Nig
increases, a greater diversity gain is achievable. Otherwise, at
a same value of N, a higher spectral efficiency is achieved
by increasing the number of Ny, whereas the diversity gain
is decreased. For intuitive analysis, we show the diversity

Diversity Gain D

Fig. 4. Diversity gain comparison of SSM with different values of Ng and
Nis.

oding Gain C (dB)
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Fig. 5. Coding gain comparison of SSM with different values of Ns, Nis
and M.

gain against Ny and Ny in Fig.4. Furthermore, from Fig.5
we can clearly see that the coding gain of the SSM decreases
as the modulation order or the number of Ny increases, where
M-QAM is employed. Thus, under the same data rate, it is
necessary to consider the setup of the SSM carefully.

VI. CONCLUSION

In this paper, a tight upper bound on the ABEP of SSM sys-
tems has been analytically derived in a closed-form expression
and validated with simulations under different wireless channel
properties and modulation orders. The maximum achievable
diversity gain has been derived analytically. Numerical re-
sults have demonstrated that the ABEP of the SSM system
decreases with increasing modulation order and the number
of scatters in the surrounding environment, while a decreasing
number of scatters that convey information contributes to a
better performance. In other words, a tradeoff between the
diversity gain and the spectral efficiency has been found.



APPENDIX
A. Derivation of Equation (12)
Since the random variable is an order statistic, we exploit
the closed-form PEP with k£ = k in (9) to derive the approx-
imate PEP. From (9), by exchanging the order of integration

and employing [31, Eq. (2.5)], the approximate PEP can be
rewritten as:

E [P ([k,m] — [k, m][Bx)]
= i

TJo 7’)‘8’”4_7,%‘2 +sin? ¢

In the high SNR regime, sin? ¢ in (19) is ignorable. There-
fore, we have

E[P ([k,m] = [k, ]| 5y)]

1 (N 4r 5

=—\Il;i—= / * (sin )2 N+ g,
0

™\ PlSm — Sm

19)

do.

(20)

By applying Wallis formula for simplification [30], the PEP
can be written as (12).

B. Derivation of Equation (13)

For k # k, |3|? becomes an exponential order statistics.
Then by employing [31, Eq. (2.5)], the average PEP can be
rewritten as:

~ 1 Sin 2z
E [P ([k,m} o [k,m]\ﬂ,;)} =E [26—” 3! ] @D
Following some straightforward derivations, we have
Nts
~ 1 2r
B[P (b - teoils)| = LT ().
- 22)

As p increases, 7 in the denominator of (22) can be ignored.
Thus, the approximate PEP is derived as (13).
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