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Abstract—To enlarge the perception range and reliability of
individual autonomous vehicles, cooperative perception has been
received much attention. However, considering the high volume of
shared messages, limited bandwidth and computation resources
in vehicular networks become bottlenecks. In this paper, we
investigate how to balance the volume of shared messages and
constrained resources in fog-based vehicular networks. To this
end, we first characterize sum satisfaction of cooperative per-
ception taking account of its spatial-temporal value and latency
performance. Next, the sensing block message, communication
resource block, and computation resource are jointly allocated
to maximize the sum satisfaction of cooperative perception, while
satisfying the maximum latency and sojourn time constraints of
vehicles. Owing to its non-convexity, we decouple the original
problem into two separate sub-problems and devise correspond-
ing solutions. Simulation results demonstrate that our proposed
scheme can effectively boost the sum satisfaction of cooperative
perception compared with existing baselines.

Index Terms—Fog-based vehicular networks, cooperative per-
ception, joint sensing, communication, and computation resource
allocation, multi-agent deep reinforcement learning

I. INTRODUCTION

With the rapid advancements of embedded systems, sen-

sors, and artificial intelligence in recent decades, autonomous

driving has evolved from an impossible dream into a fore-

seeable reality, and will eventually reshape future transport

system and driving experience [1]. As the key enabling

technology, cooperative perception [2] exploits vehicle-to-

everything (V2X) communications to exchange sensory mes-

sages among neighboring vehicles and road side units, and

offers an eagle view of broader road environment. In [3],

a remarkable perception performance gain over traditional

separate perception is validated through theoretical analysis,

regardless of the additional communication and computation

overhead. Nevertheless, when the number of involved vehicles

is 15, the required communication capacity reaches 500 Mbps

[4], [5], which overwhelms limited communication bandwidth

and computation power in vehicular networks (VNETs) and

restricts the implementation of cooperative perception.

To balance the exchanging message volume in cooperative

perception and the limited resources in VNETs, some efforts

have been made for the joint allocation of sensing, communi-

cation, and computation resource. Higuchi et al. [6] attempt

to reduce the redundancy of cooperative perception messages

by selecting more valuable ones to be delivered. Specifically,

the value of messages is firstly quantified based on message

history and current mobility, and then more valuable messages

are transmitted via V2X communications. In [7], a quadtree-

based compression mechanism is utilized to partition sensory

information into different block messages. Then, the vehicular

association, resource allocation, and block message selection

are jointly optimized with deep reinforcement learning (DRL)

to maximize the satisfaction of cooperative perception. Du et

al. [8] go a step further by proposing a platoon-based coopera-

tive perception framework, in which the perception scheduling,

computation strategies, and communication resource allocation

are jointly optimized to minimize the delay of sensing tasks.

The aforementioned works [6]–[8] commonly concentrate

on the direct sharing among vehicles, leaving the more gen-

eral problem of VNET-assisted cooperative perception less

investigated. By taking advantages of hierarchical computa-

tion resources and flexible resource management, fog-based

vehicular networks (FVNETs) [9] provide a promising edge-

cloud collaboration framework. In this paper, we examine how

to realize cooperative perception with constrained resources in

FVNETs, where multiple vehicles offload individual sensory

messages to fog access points (F-APs) or the cloud server for

cooperative computation. The main contribution are summa-

rized three-folds.

• Taking spatial-temporal values of sensory messages and

latency performance into consideration, we propose a

joint sensing block message, communication and compu-

tation resource allocation problem to maximize the sum

satisfaction of cooperative perception, while satisfying the

maximum tolerant latency and sojourn time constraints.

• The non-convex sum satisfaction maximization problem

is decoupled into a joint block message and offloading

mode selection problem plus a joint communication and

computation resource allocation problem. By solving two

problems based on multi-agent DRL and swap matching,

the sum satisfaction can be maximized.
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Fig. 1. Cooperative Perception in FVNETs.

• Through simulation results, we show that our proposed

scheme can significantly improve the sum satisfaction of

cooperative perception in FVNETs.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Considering a cooperative perception scenario in FVNETs,

which consists of K vehicular user equipments (VUEs), N

F-APs, and M remote radio heads (RRHs) connecting to a

centralized cloud server. As shown in Fig.1, each VUE adopts

region quadtree technique [7] to compress its sensory data

into independent block messages b ∈ Bk ⊆ B. Here, Bk and B
denote the block sets of VUE k’s sensory region and the whole

region, respectively. With efficient machine learning methods,

the cloud server can implicitly estimate VUE k’s trajectory

lk (t) = (xk (t) , yk (t)) and sojourn time τ
soj
k,n(t) with F-AP n

for time t ∈ [0, T ], where (xk (t) , yk (t)) are coordinates.

For cooperative perception, each VUE requests a map

constructing task Tk which covers its front region with a length

of dexp. To this end, the cloud server chooses different VUEs

to constitute independent cooperative clusters, and selects dif-

ferent block messages from cooperative VUEs for uploading.

In this article, we assume that the VUEs associating with the

same F-AP or the cloud server form a cooperative cluster,

and partial messages could be migrated among F-APs and the

cloud server via fiber backhaul links.

Once receiving these uploading messages, the cloud server

and F-APs carry out customized maps for individual VUEs

by sequentially realigning, integrating, inferring, and pro-

jecting the collected uploading messages. We define a tuple

(I, µ, τmax
k ) to refer to VUE k’s task, whose elements denote

the data size of a block message, the number of CPU-cycle

frequencies required to process 1 bit input, and Tk’s maximum

tolerant latency, respectively.

A. Spatial-Temporal Model in Cooperative Perception

To identify the values of block messages in cooperative

perception, the spatial-temporal model is detailed as follows.

From the perspective of timeliness, the value of VUE k’s

block message b decreases from time of generation at tk,b,0
until it hits deadline at tk,b,0 + τ dll. A linear descend function

is used to define the temporal value of VUE k’s block message

b at time t as

qk,b (t) = −
qk,b,0

τ dll
(t−tk,b,0) + qk,b,0, (1)

where qk,b,0 > 0 is the message’s initial value. However,

considering that the sensing time tk,b,0 and the sensing period

are unknown at the cloud server, we model the temporal

value qk,b (t) by Markov process to characterize its ran-

domness. For VUE k, the set of potential temporal value

is defined as Qk,b = {qk,b,1, qk,b,2, ..., qk,b,Z}. Prk,z|z′ =
Pr {qk,b(t) = qk,b,z |qk,b(t− 1) = qk,b,z′} is the probability

that the temporal value of VUE k’s block message b at time

t is qk,b,z if its value in time t− 1 is qk,b,z′ .

As for spatial dimension, each VUE has a rectangular region

of interest where the closer sensory blocks are more expected

by the VUEs. With VUE k’s and block b’s positions lk(t), lb,
the euclidean distance dk,b between VUE k and block b and

the angle θk,b between VUE k’s moving direction and block

b can be easily calculated, as illustrated in Fig.1. Thus, we

define the spatial value of block b for VUE k as

wk,b (t) =
dexp − |dk,b (t) cos θk,b (t)|

dexp
. (2)

Finally, the spatial-temporal value of VUE k′’s block message

b for VUE k can be calculated by uk,k′,b(t) = qk′,b(t)wk,b(t).

B. Communication and Computation Models

As illustrated above, Tk includes block message uploading,

joint processing, and output downloading process. Like [8],

we ignore the download latency. Denote τcomm
k and τ

comp
k as

the uploading and computation latencies, we have Tk’s sum

latency τk = τcomm
k +τ

comp
k . Moreover, each task Tk could be

handled by following two possible modes: the cloud mode and

the F-AP mode. Let xk,n ∈ {0, 1} denote the offloading mode

selection of VUE k: if xk,0 = 1, VUE k choose the cloud

mode; while xk,n = 1, n ∈ {1, 2, ..., N}, VUE k offloads the

task to F-AP n. Next, we describe the communication and

computation models considered in both modes in sequence.

1) Communication model: In FVNETs, the total bandwidth

is divided into S resource blocks (RBs) with W bandwidth

each and full frequency reuse is considered for all F-APs and

RRHs. Define ak,s ∈ {0, 1} as the RB allocation indicator.

ak,s = 1 if RB s is allocated to VUE k and ak,s = 0,

otherwise. Without loss of generality, each VUE is allocated

a single RB for uploading. For VUE k associating with F-AP

n ∈ N , its uploading rate can be expressed as

Rk,n (t) =
∑

s∈S

W log2











1 +
ak,spk

∣

∣

∣
h
(F )
k,n,s (t)

∣

∣

∣

2

K
∑

j=1,j 6=k

aj,spj

∣

∣

∣
h
(F )
j,n,s (t)

∣

∣

∣

2

+ σ2











,

(3)

where pk, σ2, and h
(F )
j,n,s are the transmit power, noise power,

and channel gain from VUE k to F-AP n on RB s at time t,

respectively.



When VUE k selects the cloud mode, it associates with

its |Mk| close RRHs, whose set is described as Mk. In the

meantime, optimal linear detection, i.e. minimum mean square

error (MMSE) detection, is performed at the cloud server to

mitigate inter-RRH interference, thus the uplink rate of VUE

k in the cloud mode at time t is

Rk,0 (t) =
∑

s∈S

W log2






1 +

ak,spk

∣

∣

∣gH
k,sh

(C)
k,s (t)

∣

∣

∣

2

Intk,s+σ2gH
k,sgk,s






, (4)

where Intk,s =
∑

j 6=k aj,spj

∣

∣

∣gH
k,sh

(C)
j,k,s (t)

∣

∣

∣

2

is the interfer-

ence and gk,s is the MMSE detection vector. h
(C)
k,s (t) is the

channel gain from VUE k to its associated RRHs Mk on RB

s at time t, while h
(C)
j,k,s (t) is the channel from VUE j to the

associated RRHs of VUE k.

Note that the offloaded task Tk starts computing only when

the whole VUEs finish uploading. Therefore, the communi-

cation latency of task Tk relies on the maximum one among

cooperative VUEs, i.e.,

τcomm
k (t) = max

({
∑

b∈B
k′
ek′,bI

Rk′,n (t)
+ xk′,0τ

fh

}

∀k′∈K

)

,

(5)

where τfh is fronthaul delay. ek,b ∈ {0, 1} denotes the block

message selection of VUE k: if ek,b = 1, then block message

b of VUE k is selected for uploading.

2) Computation model: For cooperative perception, the

offloaded task Tk has to process all uploaded block messages

within its region of interest. Assuming that the computation

capabilities of the cloud server and each F-AP n are char-

acterized by the maximum CPU-cycle frequency fmax
0 and

fmax
n . With fn,k CPU-cycle frequency allocated to VUE k,

the computation latency of task Tk can be obtained by

τcomp
k

(t) =

∑

k′∈K

∑

b∈Tk

ek′,bµI

fn,k
. (6)

C. Problem Formulation

In FVNETs, the cloud server and F-APs are interested in

finishing VUEs’ offloaded tasks with more valuable block

messages as quickly as possible, therefore we define the

satisfaction of VUE k at time t as

Uk(t) = ε1
∑

b∈Tk

∑

k′ 6=k

ek′,buk,k′,b (t)+ε2(τ
max
k − τk (t)), (7)

where ε1 and ε2 are weight parameters. The first part shows

the overall spatial-temporal values of block messages from

cooperative VUEs, and the second part denotes the effect of

task latency.

The key of this work is to maximize the long-term sum

satisfaction for cooperative perception in FVNETs by opti-

mizing the offloading mode selection scheme x∗, the sensory

block message selection scheme e∗, the uplink RB allocation

scheme a∗, and the frequency resource allocation scheme f∗.

Mathematically, it can be formulated as

max
x,e,a,f

∑T−1

t=0

∑

k∈K
Uk (t)

s.t. (a) τk(t) ≤ min
(

τmax
k , τ

soj
k,n(t)

)

∀k

(b)
∑

k∈K
ek,b ≤ 1, ek,b ∈ {0, 1} , ∀b

(c)
∑N

n=0
xk,n ≤ 1, xk,n ∈ {0, 1} , ∀k

(d)
∑

s∈S
ak,s ≤ 1, ak,s ∈ {0, 1} , ∀k

(e)
∑

k∈K
xk,nfk,n ≤ fmax

n , ∀n ∈ 0 ∪ N

(8)

where constraints (8a) shows the overall latency of individual

VUE should be less than the maximum tolerant latency of

Tk and its sojourn time τ
soj
k,n, constraint (8b) regulates that

the uploading block messages of different VUEs are non-

overlapped, constraints (8c,d) means each VUE can be allo-

cated to a single mode and RB, and constraint (8e) denotes

that the allocated CPU-cycle frequencies are not allowed to

exceed the frequency budgets .

III. JOINT SENSING, COMMUNICATION, AND

COMPUTATION RESOURCE ALLOCATION

Note that the formulated problem (8) is a mixed-integer non-

linear programming problem which is in general intractable.

In this section, we decouple the original problem into a

joint mode selection and block selection sub-problem plus a

joint communication and computation resource allocation sub-

problem. Afterwards, multi-agent DRL and swap matching-

based algorithms are developed.

A. Optimization of Offloading Mode and Block Selection

Under the circumstance that communication and compu-

tation resource allocation scheme has been determined, the

original problem can be reformulated as

max
x,e

∑T−1

t=0

∑

k∈K
Uk (t)

s.t. (8b), (8c).
(9)

Since the block message’s value is dynamic and unknown,

we cannot solve problem (9) using traditional optimization

method. Inspired by [10], we resort to multi-agent DRL to

resolve this uncertainty.

1) Multi-Agent Markov Game: To be concrete, we treat

every VUE as an intelligent agent and convert problem (9)

into a Markov game with K agents. At time t, each agent k

observes local state sk(t) and selects its own action ak(t).
Given the joint actions a(t) = (a1(t), ..., aK(t)) taken by

K agents, the FVNET feeds back new state s(t + 1) =
(s1(t + 1), ..., sK(t + 1)) and immediate reward rk(t). The

formal definitions of three elements are given in the following.

State: Each agent k’s local state includes the following

parts: τmax
k , the maximum tolerant latency of VUE k; lk (t),

the coordinate of its own; qk (t− 1), the temporal value of

VUE k’s sensory messages at time t−1; {On (t− 1)}n∈0∪N ,



the number of serving VUEs of the cloud server and F-APs

at time t− 1; and rsat (t− 1), the latency satisfied ratio.

Action: Consistent with (9), each agent selects the offload-

ing mode and uploading messages ak (t) =
(

n, {ek,b}b∈Bk

)

.

Reward: We consider this game as a fully cooperative one

and define the immediate reward function of each VUE as the

sum satisfaction, i.e., rk(t) = r(t) =
∑

k∈K Uk (t).
2) Attention Multi-Agent Deep Deterministic Policy Gra-

dient (DDPG)-based Algorithm: Due to non-stationary local

states and large action spaces, canonical DRL algorithms,

like deep Q-network, are always ineffective. Inspired by [11],

[12], multi-agent DDPG algorithm is tuned with an attention

mechanism in this article to tackle this problem, namely

attention multi-agent DDPG.

In attention multi-agent DDPG, each agent k has its own

actor network θk and critic network δk, acting as the policy

and the policy evaluator, respectively. Note that instead of the

locals, the global states and actions are considered at the critic

network to address the non-stationary and cooperative issues.

Furthermore, two target networks (θ−k and δ−k ) and experience

replay are applied to stabilize training and to remove data

correlation. We denote D as the replay buffer with capacity

|D| and express the stored experience of all agents as the tuple

(s,a, r, s′). Here, we omit the time index t and denote mark

·′ as time t+ 1 for simplicity.

Specifically, the actor network θk is responsible for finding a

deterministic policy µk (sk(t); θk) to maximize the cumulative

discounted reward J (µk) = E

[

∑T

t′=t γ
t′−tr (t′)

]

, where γ is

the discounted factor. Then, ak(t) can be obtained by

ak (t) = µk (sk (t) ; θk) +N (t) , (10)

where N (t) is the stochastic noise to encourage exploration.

For its updating, the parameter θk is directly adjusted in the

direction of ∇θkJ(µk), which is given by

∇θkJ(µk) = Es,a∼D [∇θkµk (ak|sk)∇ak
Qk (s,a)] . (11)

Here, Qk (s,a) is the action-value function that is established

by the critic network δk. It takes as the input of the states s

and actions a of all agents and outputs the Q-value for agent k.

With (s,a, r, s′) ∼ D, the weights of agent k’s critic network

δk can be updated by minimizing the MSE-based loss function

Lk(δk), i.e.,

L (δk) = E(s,a,r,s′)∼D

[

(yk −Qk (s,a))
2
]

, (12)

where yk = r+γmax
ak

Q− (s′,a′) |a′

k
=µ

−

k
(s′

k
). Here, Q−(s,a)

and µ−
k (sk) are agent k’s target critic and actor networks with

weights δ−k and θ−k , respectively.

Furthermore, we adjust the critic network Qk with an

attention mechanism which facilitates fine-grained and dis-

criminatory treatment of different VUEs. To this end, we

firstly customize a multi-layer perception (MLP) network

gk : (sk, ak) → ek to reduce the input dimension s,a and

extract the higher features e = (e1, ..., eK). Then, agent k’s

attention value for the other agents can be calculated by

Algorithm 1 Attention multi-agent DDPG-based algorithm

1: Initialize actor, critic, target actor, target critic networks

θ, θ−, δ, δ−, and the replay memory D with capacity |D|.
2: for epoch e = 1, ...E do

3: Initialize the state s.

4: for step t = 1, ...T do

5: Select action ak with (10), ∀k ∈ K.

6: Obtain current reward r and next state s′.

7: Store tuple (s,a, r, s′) into D.

8: for agent k = 1, ...K do

9: Randomly sample a mini-batch of tuples from D.

10: Update the critic network by minimizing (12).

11: Update the actor network with (11).

12: Update the target critic and actor networks

θ− ← τθ + (1− τ ) θ−, δ− ← τδ + (1− τ ) δ−.

13: end for

14: end for

15: end for

vk =
∑

j 6=k αk,jvk,j . Here, αk,j and vk,j denote agent k’s

attention weight and value for agent j, which is given by

αk,j =
exp

(

eTkW
T
q Wkej

)

∑

j 6=k exp
(

eTkW
T
q Wkej

) , (13)

vk,j=h (Vkej) . (14)

Wherein, the parameter matrix Wq and Wk constitute a

bilinear mapping for ek and ej . In addition, h(·) is a ReLu

function and V is a transform matrix. With the derived high

feature ek and the attention value vk , we could establish a new

MLP network Q(ek, vk) to replace the original critic network

Q(s,a).
Finally, we conclude the attention multi-agent DDPG pro-

cedures to solving problem (9) in Algorithm 1.

B. Optimization of RB and CPU-frequency Allocation

Once the offloading modes and selected blocks have been

determined, the original problem is reduced into

min
a,f

∑

k∈K
τk

s.t. (8a), (8d), (8e).
(15)

Hereafter, the RBs and frequencies are successively allocated.

1) Swap Matching-based RB Allocation: With fixed CPU-

frequencies, we firstly model the RB allocation problem as a

one-to-one matching game and solve it in a distributed and

low-complexity manner.

Formally, we define Φ : Kn ↔ S as the matching function

for the associated VUE set Kn, n ∈ 0∪N and the bandwidth

set S, which has the following properties

1) k = Φ(s) ↔ s = Φ(k), ∀k ∈ Kn, ∀s ∈ S,

2) |Φ(s)| ≤ 1, |Φ(k)| ≤ 1, ∀k ∈ Kn, ∀s ∈ S,
(16)

where condition 1) implies that if RB s matches with VUE k,

VUE k also matches with RB s; condition 2) gives that each



Algorithm 2 Swap matching-based RB allocation algorithm

1: Initialize the preference lists Lk,Ls, ∀k, ∀s and the set

of unmatched VUEs Kunmatch = K.

2: while Kunmatch 6= ∅ and ∃Lk 6= ∅ do

3: for ∀k ∈ Kunmatch do

4: VUE k proposes to its most preferred RB in Lk that

has not rejected it before.

5: end for

6: for ∀s ∈ S do

7: if
∑

k∈Kn
ak,s = 1, RB s holds the matching and

rejects all proposals; otherwise, RB s accepts its

favorite VUE and rejects the others.

8: end for

9: end while

10: while there exists a swap-pair (k, k′) which can reduce

the maximum latency do

11: Update Φk′

k .

12: end while

RB can be matched with one VUE, and each VUE can only

be matched with one RB in turn.

The utility of VUE k is defined as the uploading rate on

RB s, i.e.,

φk = Rs
k,n, (17)

which indicates that every VUE selfishly favours the RBs with

higher offloading rate. As for RB s, it aims to minimize the

overall communication latency which equals to the maximum

one, thus we define the utility of RB s as

φs =

∑

b∈B
k′
ek′,bI

Rs
k,n

+ xk′,0τ
fh. (18)

Based on above analysis, a swap matching-based RB allo-

cation algorithm is developed in Algorithm 2. To start the

matching process, each VUE k ∈ Kn and RB s establish

their own preference lists Lk and Ls in the descending

order. A deferred acceptance algorithm is then adopted for

initial matching. To overcome the dynamics introduced by

inter-cell interference, two matched VUEs could exchange

their matched RBs Φk′

k = {Φ\ {(k,Φ (k)) , (k′,Φ (k′))}} ∪
{(k,Φ (k′)) , (k′,Φ (k))} when the maximum communication

latency could be reduced.

2) CPU-Cycle Frequency Allocation: Given a, the problem

(15) is apparently a convex optimization problem with respect

to f and is easy to be solved by the interior-point method.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, simulation results are provided to verify

the sum satisfaction of cooperative perception in FVNETs.

We deploy 2 RRHs, 1 F-AP, and 6 ∼ 12 VUEs on a 1000-

meter-long road. The whole road is equally divided into 100
blocks and the size for each block message is 6.4-kbits with

3-level region quadtree. For cooperative perception, each VUE

requests a task to expand its sensory range by 150 ∼ 500 m

with µ = 130 and τmax
k = 100 ∼ 150 ms. In addition, The
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Fig. 3. Sum satisfaction versus desired expanding distance.

total bandwidth is 15 MHz, while the cloud server and the

F-AP has a maximum computation resource of 30 GHz and

10 GHz, respectively.

Fig. 2 shows the convergence performance of the proposed

attention multi-agent DDPG-based algorithm, when the num-

ber of VUEs is 12. It is seen that our proposed algorithm could

effectively converge to stable sum satisfaction.

In Fig. 3, the sum satisfaction performances are provided

with different desired expanding distances. For comparison,

a distance-based mode selection and full message uploading

scheme is adopted as the baseline. It can be observed that our

proposed attention multi-agent DDPG algorithm outperforms

the baseline, because it could select more valuable block

messages and avoid undesired message uploading, meanwhile

balancing the load among F-APs and the cloud server. Espe-

cially when the network load is large (K = 12), our proposed

algorithm can effectively balance task load and constrained

resource by controlling the selection of block messages.

Fig. 4 verifies the convergence of algorithm 2 with different

numbers of VUEs, where the optimal latency which is derived
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Fig. 4. The convergence of Algorithm 2.

by exhaustive search is adopted for comparison. It can be seen

that, our proposed swap matching algorithm can converge to

a stationary point within 3 ∼ 5 iterations, while its latency

performance is close to exhaustive search algorithm.

Fig. 5 evaluates the average latency performances with

different communication RB allocation schemes, when the

numbers of VUEs are set as 6 ∼ 10. For comparison, the ex-

haustive search and the matching-based sum rate maximization

algorithms are selected as two baselines. Wherein, the former

one offers the optimal average latency. It can be observed

that our proposed algorithm outperforms the max sum rate

algorithm and their latency gap becomes larger when the

involved number of VUEs increases. That is because, on the

one hand, the uploading latency of cooperative perception in

(5) depends on the maximum one among all cooperative VUEs

rather than overall latencies of all VUEs; on the other hand,

the inter-cell interference has a larger effect on the VUE with

lower channel gain. In addition, it is also observed that our

proposed algorithm achieves considerable latency performance

compared with exhaustive search algorithm.

V. CONCLUSION

In this article, we focus on a vehicular cooperative percep-

tion scenario with ultra-low latency requirement, and propose

a joint sensing, communication, and computation resource

allocation scheme with multi-agent DRL and swap matching

for FVENTs, in which multiple VUEs constitute coopera-

tive clusters to offload their computation tasks to either the

cloud server or F-APs. Simulation results have verified the

effectiveness and superiority of our proposed algorithms on

the sum satisfaction and latency performances. In the future,

it is interesting to incorporate radio sensing and investigate

corresponding resource allocation for cooperative perception.
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