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Abstract—In this paper, we propose a polar coding based
scheme for set reconciliation between two network nodes. The
system is modeled as a well-known Slepian-Wolf setting induced
by a fixed number of deletions. The set reconciliation process is
divided into two phases: 1) a deletion polar code is employed to
help one node to identify the possible deletion indices, which
may be larger than the number of genuine deletions; 2) a
lossless compression polar code is then designed to feedback
those indices with minimum overhead. Our scheme can be
viewed as a generalization of polar codes to some emerging
network-based applications such as the package synchronization
in blockchains. Some connections with the existing schemes based
on the invertible Bloom lookup tables (IBLTs) and network
coding are also observed and briefly discussed.

I. INTRODUCTION

The increasing scale of data in toady’s cloud, network

environment and other distributed systems requires much

higher bandwidth consumption for the purpose of package

synchronization among replicas, even if there are slight data

differences. Efficient synchronization protocols or algorithms

are crucial for emerging network-based applications such

as blockchains, which keeps propagating fresh transactions

and mined blocks among different nodes. Guaranteeing those

transactions and blocks consistent and synchronized is impor-

tant for both commercial and secure purposes. Great effort

has been made in this direction during the recent years. Many

excellent synchronization methods and protocols have been

developed, and most of them use the popular data structures

such as Bloom filters [1] and invertible Bloom lookup tables

(IBLTs) [2] for set reconciliation. As a seminal probabilistic

data structure, Bloom filters can efficiently check whether an

element is a member of a set, with high successful probability.

With a richer structure, the IBLTs can not only check the set

difference, but also recover the missing items. An interesting

connection between IBLTs and classical graph-based erasure

codes has been observed, as they both rely on “checksum”

bits and use similar onion-peering decoding algorithms. This

connection makes existing erasure and error correction codes

good candidates for the set reconciliation problem.

Specifically, we model the set reconciliation problem as a

modified Slepian-Wolf setting, with fixed number of deletions.

This work investigates the potential of polar codes in this

direction. Being considered as a major breakthrough in coding

theory, polar codes [3] are the first kind of theoretically prov-

able capacity achieving codes for binary-input memoryless

symmetric channels (BMSCs). The novel channel polarization

technique enables polar codes to achieve channel capacity by

successive cancellation (SC) decoding with low complexity.

More sophisticated decoding algorithms such as belief prop-

agation (BP) decoding [4], successive cancellation list (SCL)

decoding [5] and successive cancellation stack (SCS) decoding

[6] have been proposed later. The versatility of polar codes has

then been witnessed at other scenarios including asymmetric

channels [7], wiretap channels [8], broadcast channels [9],

multiple access channels [10] and even quantum channels

[11]. More recently, polar codes found their application in

channels with deletions [12]–[14]. The so-called deletion polar

codes will be a key ingredient of our polar coding based set

reconciliation protocol.

Another ingredient of our protocol is polar coding for

lossless compression. Besides channel coding, polar codes can

be also extended to source coding, for both lossless [15] and

lossy compression [16]. The corresponding source polarization

technique was introduced to solve the Slepian-Wolf problems

with perfect synchronization over symbols [17]. In our case

of set reconciliation, where synchronization is not available, a

deletion polar code is first designed to aid one peer to locate

the possible deletions, which helps to obtain some relaxed

synchronization information, and then the possible deletion

indices are losslessly compressed and returned. The optimality

of polar codes for lossless compression provides us negligible

overhead for this step.

The rest of the paper is organized as follows: Section

II presents a brief introduction of our system model and

the overview scheme. A bit-wise Slepian-Wolf problem with

fixed number of deletions is then defined between two peers.

The details for identifying the possible deletion locations are

presented in Section III, where we employ deletion polar codes

to align one particular column of data for the two peers.

Then, we design a deletion detection algorithm to locate the

potential deletions based on the aligned bit stream. We also

show that the amount of potential deletions is roughly three

times of the genuine deletion number after one round of data

alignment, which is also verified by numerical simulation.

With the assistant of the potential deletions, the system is

converted to a Slepian-Wolf problem with erasures in Section

IV. By approximating the occurrence of the potential deletions
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as a Bernoulli source model, a polar coding based lossless

compression scheme is utilized to return the missing indices.

Finally, the paper is concluded in Section V.

All random variables are denoted by capital letters. For

a set I, Ic denotes its complement, and |I| represents its

cardinality. Following the notation of [3], we use XN
1 as a

short hand of a row vector (X1, ..., XN ). Let [N ] denote the

set of all integers from 1 to N . For a subset I ⊂ [N ], XI

represents the subsequence of XN
1 with indices in I.

II. SYSTEM MODEL AND OVERVIEW SCHEME
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Fig. 1. The system model of the set reconciliation problem with deletions.

The graphical settings of the set reconciliation problem are

depicted in Fig. 1. A set of package data is shared between

the two peers Alice and Bob through a network, where Alice

is the central node and she is assumed to have a complete

data backup, while Bob has an incomplete backup with a

certain amount of missing packages. We notice that the noise

is modeled as deletions instead of erasures since the indices

of missing packages are unknown on Bob’s side. A package

is represented as a binary row vector with length L in Fig.

1. We also assume there are N = 2n packages on Alice’s

side for the convenience of the following polar coding. Please

note that all the packages follow a chronological ordering,

which can be obtained from their corresponding content. This

assumption is natural because in many network applications

the package data contains a precise version of its generation

time. Particularly, such a package in blockchains may represent

a transaction record, which always contains its accurate time

information. The unstable network conditions lead to several

package deletions on Bob’s side. In Fig. 1, the third and the

sixth packages are deleted from Alice’s perspective. Thanks

to the time information, Bob can still order the remaining

packages chronologically.

Remark 1. We note that when perfect package synchroniza-

tion is available, the connection between the two nodes can be

modeled as a channel with a certain amount of erasures instead

of deletions, as shown in Fig. 2. The set reconciliation task at

this scenario is much simpler as Bob can directly identify the

indices of the missing packages from his local data. However,

for the set reconciliation problem with deletions, more effort

is required to obtain those indices, and we shall see that polar

codes are promising in addressing this issue with very small

data overhead.
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Fig. 2. The system model of the set reconciliation problem with erasures.

Our proposed scheme can be summarized as in Fig. 3. It

starts when Alice collects N packages, and N is a preset

number known to both Alice and Bob. Bob then counts the

amount of his local packages, and informs Alice the number of

deletions d. After knowing d, Alice and Bob pick one specific

column on both sides to detect the location of deletions.

Since all bits of package data are assumed to be uniformly

random, the first column (see Fig. 1) is picked without loss

of generality. Alice then encodes her first column data XN
1

into K bits UK using a deletion polar encoding function Po-

lar Deletion Enc, and sends UK to Bob. With the assistance

of the received K bits, Bob tries to recover the estimation X̂N
1

of XN
1 from his local data Y N−d

1 with the decoding function

Polar Deletion Dec. The two data columns are then aligned

by the function Deletion Detect to identify the potential

deletion positions, or equivalently the set difference, which

can be expressed by a binary sequence DN
1 with “1” denot-

ing the potential deletion. Next, DN
1 is compressed to UM

(M ≤ N ) by the function Polar Compress Enc to further

reduce the overhead. Alice finally obtains DN
1 from UM using

Polar Compress Dec and sends the required packages. This

protocol can be viewed as a solution to the Slepian-Wolf

problem for two joint binary symmetric sources (BSSs) with

deletions.

For the example in Fig. 1, we have N = 8 and d = 2.

By aligning the two column vectors X8
1 = [01011010] and

Y 6
1 = [011110], Bob knows the potential deletion positions

are 3 and 6, and the set difference is described by D8
1 =

[00100100] consequently. We note that it is not always the case

that Bob obtains the exact deletion positions. As we shall see,

the number of potential deletions generally gets larger than

d. However, since d is relatively smaller compared with N ,

the resulted sequence DN
1 is quite biased, which explains the

motivation of the further lossless compression process.

III. POLAR CODES FOR SLEPIAN-WOLF PROBLEM WITH

DELETIONS

A. Polar Codes for Deletions

Let W be a BMSC with input alphabet X and output

alphabet Y . Given the capacity C of W and a rate R < C, the

information bits of a polar code with block length N = 2m

are indexed by a set of ⌊RN⌋ rows of the generator matrix

GN = B · F⊗n, where F = [ 1 0
1 1 ], ⊗ denotes the Kronecker

product, and B is the bit-reverse permutation matrix. The

matrix GN combines N identical copies of W to WN . Then



 !"#$ %&'

()#*)+$,-. ()#*)+$,-. ! "

 !"/&0"#$.1$!$0"&/./23'$4."

#!",$/1.#$ % &'()*+,-(-./'0+1023456
78 "9

$!"$,0"3)0$35:6
7 % &'()*+,-(-./'0+,-234;6

7<=8 #$9

1$0$#0..>6
7 % ?@A@BCDE+?@B@FB45:6

78 ;6
7<=9

#&3(4$,,.#G % &'()*+H'IJ*-KK+10234>6
78 "9

%!"4$#&5$43>L6
7% &'()*+H'IJ*-KK+,-234#G8 "9

,$/1.()#*)+$,.4$62"4$1.'7.%&'.

,
$
0.4$

#
&
/
#
"!")
0"&
/
.,
#
8
$
3
$
.

Fig. 3. A high-level description of the proposed set reconciliation scheme
using polar codes.

this combination can be successively split into N binary

memoryless symmetric subchannels, denoted by W
(i)
N with

1 ≤ i ≤ N . By channel polarization, the fraction of good

(roughly error-free) subchannels is about C as n → ∞.

Therefore, to achieve the capacity, information bits should be

sent over those good subchannels and the rest are fed with

frozen bits which are known before transmission. The indices

of good subchannels are generally identified according to their

associated Bhattacharyya Parameters.

Definition 1. Given a BMSC W̃ with transition probability

PY |X , the Bhattacharyya parameter Z ∈ [0, 1] is defined as

Z(W ) = Z(X |Y ) ,
∑

y

√

PY |X(y|0)PY |X(y|1). (1)

Based on the Bhattacharyya parameter, the information set

I is defined as {i : Z(W
(i)
N ) ≤ 2−Nβ

} for any 0 < β <
1
2 , and the frozen set F is the complement of I. Let PB

denote the block error probability of a polar code under the SC

decoding. It can be upper-bounded as PB ≤ Σi∈IZ((W
(i)
N ).

Efficient algorithms to evaluate the Bhattacharyya parameter

of subchannels for general BMSCs were presented in [18]–

[20].

However, when W is a deletion channel with fixed deletion

numbers d, which is no longer memoryless, the design of polar

codes becomes more complicated. In fact, the polarization

phenomenon can be generalized to the memory cases [21],

[22]. Particularly, for a deletion channel with d deletions,

although its channel capacity is still unknown, the trend

of polarization has been well observed [12] and further

proved [14]. Moreover, a practical modified SC decoding

algorithm was proposed in [12], which has a complexity of

roughly O(d2N logN). Compared with the previous work

on deletion channels [13], which exhaustively searches all

possible deletion patterns and then perform SC decoding,

[12] suggests to use a state triple (d1, d2, d3) to label every

consecutive sequence, where d1, d2 and d3 denote the number

of deletions before, within and after the sequence, respectively.

For the modified SC decoding, a parent node with a certain

state triple corresponds to two kid nodes with their state triples

being complementally coupled. In this work, we adopt the

decoding scheme in [12] to solve the Slepian-Wolf problem

with deletions.
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Fig. 4. The Slepian-Wolf problem with deletions.

The Slepian-Wolf coding problem between two joint BSSs

with deletions is lifted from the system model, as shown in

Fig. 4, where XN
1 ∈ {0, 1}N denotes N i.i.d. random variables

with uniform distribution and Y N−d
1 ∈ {0, 1}N−d represents

a noisy copy of XN
1 with d random deletions. A polar code

constructed for channels with deletions can be easily adopted

here to solve this problem. Let UN
1 = XN

1 GN denote the

encoded bits after the polar transform. In order to reconstruct

XN
1 or equivalently UN

1 on Bob’s side, the decoder needs to

know the unreliable bits UFd in UN
1 . For any given 0 < δ < 1,

the set Fd is defined as

Fd , {i ∈ [N ] : PSC
d (Ui|U

i−1
1 , Y N−d

1 ) > δ}, (2)

where PSC
d (Ui|U

i−1
1 , Y N−d

1 ) denotes the error probability of

the i-th subchannel by the modified SC decoding method [12].

Unfortunately, the existing evaluation methods of Z(W
(i)
N )

for memoryless channels cannot be used to evaluate

PSC
d (Ui|U

i−1
1 , Y N−d

1 ) for deletion channels. In practice,

one can use the Monte Carlo method to estimate

PSC
d (Ui|U

i−1
1 , Y N−d

1 ), which is only determined by N
and d. Therefore, the estimation can be performed off-

line and pre-shared between Alice and Bob. After that,

PSC
d (Ui|U

i−1
1 , Y N−d

1 ) is sorted in descend order and the first

K indices form the set Fd, namely |Fd| = K and the coding

rate R = K
N

. Note that we use UK to represent UFd for

convenience. Once receiving the bits UK , Bob implements

the decoding algorithm to recover the remaining bits in UN
1 ,

treating Y N−d
1 as the channel output of the deletion channel.

The performance of polar codes of varying rates for different

N and d is illustrated in Fig. 5. It can be seen that the

performance gets better when N increases or d decreases.

Remark 2. As shown in Fig. 4, our Slepian-wolf coding

scheme can also be performed reversely from Bob to Alice

with the encoder and the decoder being swapped. In this case,

we view the channel from Bob to Alice as a channel with d
insertion (see the dash line). The design of polar codes for

insertion channels follows a similar idea as that for deletion

channels [12]. In this work, we prefer the setting of deletion

channels to make it consistent with [12].

Remark 3. Generally speaking, the set difference is relatively

much smaller than the size of the whole package set, i.e., d
N

is

a small number less than 0.5. In this case, the capacity of the

channel with d deletions is lower-bounded by 1− h2(1−
d
N
)

[23], where h2(·) is the binary entropy function. By the ex-

tremal property of polarization, the coding rate for our Slepian-

Wolf coding scheme can be upper-bounded by h2(1 − d
N
),

when N is sufficiently large.



Fig. 5. The performance of polar codes for Slepian-Wolf problems with
deletions.

Remark 4. We note that the rationale behind our polar-coding

based set reconciliation scheme still matches that of some

existing schemes (e.g. [24]) using Bloom filters and IBLTs

in the sense that some “checksum” bits of local data are

sent to assist the other peer for reconstruction and then set

comparison. More explicitly, UK is the “checksum” of XN
1

according to the matrix GFd
, which is a submatrix of GN with

column indices in Fd. The difference is that the “checksum”

bits are generated from a single bit of each package instead of

the entire bits within it, which makes the complexity of our

scheme uncorrelated to the size of each package.

TABLE I
AN EXAMPLE OF THE ADMISSIBLE TABLE

deletion state (d2, d1)
i (d2 = 0, d1 = 0) (d2 = 0, d1 = 1) (d2 = 1, d1 = 0)

1 1 �⋆N 0 1

2 1 �⋆N 0 1

3 1 �⋆ 0 1 N
4 1 � 1 N 1 ⋆
5 0 1 ⋆N 1 �
6 1 1 �⋆N 1

7 0 1 �⋆N 1

8 0 1 �⋆N 1

B. Deletion Detection

After Bob reconstructs XN
1 successively, a detection algo-

rithm is employed to locate the potential deletion positions,

based on an admissible table data structure. The admissible

table is denoted by an N× (2d+1) binary matrix T . The row

index i of T corresponds to the bit index of [N ], and its column

index j corresponds to a state vector (d2, d1), where d1 and d2
represent the number of deletions before and within the i-th
bit, respectively. We can easily check that d1 ≥ 0, 0 ≤ d2 ≤ 1
and d1 + d2 ≤ d. Therefore, there are 2d + 1 columns with

(d2, d1) = (0, 0), ..., (0, d), (1, 0), ..., (1, d − 1), and we have

j = d2 × (d + 1) + d1 + 1. The element T (i, j) represents

whether the j-th state for the i-th bit is admissible or not. The

pseudo-code of obtaining T is given in Algorithm 1.

Algorithm 1 The generation of the admissible table

1: Input: XN
1 (Alice’s 1-st column), Y N−d

1 (Bob’s 1-st

column).

2: Output: T (admissible table)

3: for i = 1 : N do

4: for j = 1 : 2d+ 1 do

5: if j < d+ 2 then

6: d1 = j − 1
7: if d1 > i− 1 or d1 < i− (N − d) then

8: T (i, j) = 0
9: else

10: T (i, j) = (Xi == Yi−d1
)

11: end if

12: else

13: d1 = j − d− 2
14: if d1 > i− 1 or d1 < i− (N − d)− 1 then

15: T (i, j) = 0
16: else

17: T (i, j) = 1
18: end if

19: end if

20: end for

21: end for

22: Return T

TABLE II
AN EXAMPLE OF THE PATH-CHECKING TABLE

patential paths

i Path #1 Path #2 Path #3

1 1 1 1

2 1 1 1

3 1 1 3

4 1 3 2

5 3 2 2

6 2 2 2

7 2 2 2

8 2 2 2

An example of the admissible table when X8
1 = [10111001]

and Y 7
1 = [1011001] is shown in Table I. Based on the

admissible table, a path-checking algorithm is developed to

detect the potential paths of the state evolution. We notice

that a potential path of the deletion state propagation can

only go through the “1” elements in the admission table. For

example, when i = 1, there are two available states in the

first row of Table I, i.e., State 1 (d2 = 0, d1 = 0) and State 3

(d2 = 1, d1 = 0). If State 1 is chosen, d1 will not be changed

for the next index i = 2, and there will be two admissible states

for i = 2 as well. However, if State 3 is chosen for i = 1, d1
will increase to 1 for i = 2, and the path prorogation will be

terminated since State 2 (d2 = 0, d1 = 1) for the second row is

inadmissible. The pseudo-code of checking the potential paths

of the state evolution is given in Algorithm 2, where a path



propagation function PathProp is iteratively called. The detail

of PathProp is given in Algorithm 3.

For the admissible table in Table I, the path-checking table is

shown in Table II. The three potential paths correspond to the

evolution of deletion state in Table I are labeled with symbol

�, ⋆ and N, respectively. It can be seen that the positions of

the potential deletions for each path are the indices of elements

larger than d + 1. In Table II, the deletion may occur for

i = 3, 4 or 5, namely D = {3, 4, 5}.

Let d̂ denote the number of potential deletions after the

previously introduced detection algorithm for one data column.

From the above example we can see that d̂ ≥ d. Since the

potential deletion indices need to be returned to Alice, who

may further process these d̂ packages. A natural question is

that how large d̂ is with respect to d. The following lemma

gives an upper-bound on d̂ for one data column alignment.

Algorithm 2 The path-checking algorithm over the admissible

table

1: Input: the admissible table T
2: Output: the path-checking table P and potential deletion

indices D
3: [N,M ] = sizeof(T )

4: d = (M − 1)/2
5: Cnt = 0
6: Path = zeros(N ,1)

7: i = 1 % Set the current index

8: Ava State = find(T (i,:)==1)

9: for j = 1 : length(Ava State) do

10: d1 = 0
11: [Path, d1, Cnt, P ]

12: =PathProp(T, Path, d1, d, i, Ava State(j), Cnt, P )

13: end for

14: Return P and the indices set D of rows in which there

are elements larger than d+ 1.

Lemma 1. Suppose P is the output of Algorithm 2 for two

aligned vector XN
1 and Y N−d

1 , and d̂ is the number of rows

of P with elements larger than d + 1. The expectation of d̂
satisfies E[d̂] ≤ 3d.

Proof: Consider d = 1 firstly. The value of d̂ gets larger

than 1 when the deletion occurs in more than one consecutive

“0”s or “1”s. The probability of the deleted bit being covered

by n consecutive “0”s or “1”s is n
2n+1 .

E[d̂] =
N
∑

n=1

n ·
n

2n+1
(3)

≤

∞
∑

n=1

n ·
n

2n+1
(4)

= 3. (5)

Now consider the case when d > 1. If all the deletions occur

in different subsequences with consecutive “0”s or “1”s, the

above inequality can be applied and we have E[d̂] ≤ 3d. If

two deletions occur in the same subsequence with consecutive

“0”s or “1”s, the potential deletion indices overlap and E[d̂]
becomes smaller. Therefore, the upper bound E[d̂] ≤ 3d still

holds.

Algorithm 3 The path propagation algorithm for a given state

1: Input: the admissible table T , the current path vector

Path, the previous number of deletions d1, total number

of deletions d, current index i, the chosen state State,

counter of available paths Cnt, the potential path table P
2: Output: the updated path vector Path, the previous num-

ber of deletions for the next index Next d1, the updated

counter of available paths Cnt, the updated potential path

table P
3: N = length(Path)

4: if i == N then

5: if State < d+ 2 and (State− 1) == d1 then

6: Next d1 = d1
7: Path(i) = State
8: P (:, Cnt+ 1) = Path
9: Cnt = Cnt+ 1

10: return

11: else if State > d+1 and (State−d−2) == d1 then

12: Next d1 = d1 + 1
13: Path(j) = State
14: P (:, Cnt+ 1) = Path
15: Cnt = Cnt+ 1
16: return

17: else

18: Next d1 = d1
19: return

20: end if

21: else

22: if State < d+ 2 and (State− 1) == d1 then

23: Next d1 = d1
24: Path(i) = State
25: Ava State = find(T (i+ 1, :) == 1)

26: for j = 1 : length(Ava State) do

27: [Path,NNext d1, Cnt, P ]=
28: PathProp(T, Path,Next d1, d, i+ 1, ...
29: ...Ava State(j), Cnt, P )

30: end for

31: else if State > d+1 and (State−d−2) == d1 then

32: Next d1 = d1 + 1
33: Path(i) = State
34: Ava State = find(T (i+ 1, :) == 1)

35: for j = 1 : length(Ava State) do

36: [Path,NNext d1, Cnt, P ]=
37: PathProp(T, Path,Next d1, d, i+ 1, ...
38: ...Ava State(j), Cnt, P )

39: end for

40: else

41: Next d1 = d1
42: return

43: end if

44: end if



The numerical simulation result of the relationship between

E[d̂] and d for N = 256 can be found in Table III, which

shows that the upper bound in Lemma 1 is tight.

TABLE III
THE RELATIONSHIP BETWEEN E[d̂] AND d FOR N = 256

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

E[d̂] 2.9985 5.9593 8.9893 11.9026 14.8974 17.7470

Remark 5. One may be curious about the number of po-

tential deletions if more columns are aligned. Let
ˆ̂
d denote

the detected number of deletions after two-column alignment

between Alice and Bob. More explicitly, let ẊN
1 (ẌN

1 ) and

Ẏ N−d
1 (Ÿ N−d

1 ) denote the first (second) data column of Alice

and Bob, respectively. We can invoke Algorithm 2 for two

times to obtain two sets of deletion indices D1 and D2.

Clearly, the set of potential deletion indices can be shrinked

to D = D1 ∩D2, and we have
ˆ̂
d ≤ d̂. Numerical result shows

that E[
ˆ̂
d] ≈ 1.7d. The expectation can be further reduced to

roughly 1.3d and 1.1d when three and four columns are used,

respectively.

IV. FEEDBACK AND LOSSLESS COMPRESSION

After identifying the potential deletion positions, the rest

of Bob’s task is to feedback these positions to Alice, who

is going to send the corresponding packages and complete

the reconciliation process. A natural way is to send Alice the

indices of the potentially missing packages. Since there are N
packages in total, each index can be represented by n = logN
bits. Therefore, when a single column is used for the deletion

detection, the average overhead for sharing the missing indices

in roughly 3dn. However, by taking the advantage of source

polarization, we may reduce this overhead. Recall that the

missing state can be represented by a bit for each package,

e.g., 1 stands for missing and 0 stands for the opposite. Then,

the overall states of the N packages can be expressed by an

N -bit sequence, denoted by DN
1 . As a result of Lemma 1,

the sequence DN
1 is relatively biased, with roughly 3d ones

and N − 3d zeros. We may simply treat D as a Bernoulli

random variable with distribution Ber(p)1, where p = 3d
N

.

Consequently, the entropy of D is given by h2(
3d
N
), which

means that DN
1 can be represented by roughly N · h2(

3d
N
)

bits. A comparison between these two overheads 3dn and

N · h2(
3d
N
) for d = 4 and various N is shown in Fig. 6. It

can be seen that the overhead after lossless compression can

be slightly improved, which explains our motivation to some

extend.

By taking a closer look at DN
1 , one may find that the

compression rate can be further reduced. By the analysis in

the proof of Lemma 1, the ambiguousness of the deletion

positions is mainly caused by the consecutive “0”s or “1”s

1It should be noted that the state random variable D is not independently
distributed. However, we may use a pre-shared random permutation between
Alice and Bob to remove the dependency.
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Fig. 6. A comparison of the feedback overhead for different compression
schemes with d = 4 and N = {27, 28, ...,214}. The green curve (marked
with squares) stands for directly sending the indices of the potentially
missing packages, the black curve (marked with stars) represents the lossless
compression scheme for the deletion state sequence DN

1
, and the red curve

(marked with circle) labels the lossless compression scheme for the differential
version of DN

1
.

in the sequence XN
1 , which results in consecutive “1”s in the

sequence DN
1 . A differential operation 2 on DN

1 can break the

segments of consecutive “1”s and make the proportion of “1”s

smaller, which leads to a better compression rate. We have the

following lemma.

Lemma 2. Let DN
1 denote the N -bit sequence labeling the

state of deletion of each package after aligning XN
1 and Y N−d

1

according to Algorithm 2. Suppose D̄N
1 is the differential

version of DN
1 , and d̄ is the number of “1”s in D̄N

1 . The

expectation of d̄ satisfies E[d̄] ≤ 2d.

Proof: Similarly to the proof of Lemma 1, we consider

d = 1 firstly. The probability of the deleted bit being covered

by n consecutive “0”s or “1”s is n
2n+1 . This event would result

in n consecutive “1”s in DN
1 . After the differential operation,

only 2 of them are left. Consequently, the expectation can be

calculated as

E[d̄] =

N
∑

n=1

2 ·
n

2n+1
(6)

≤
∞
∑

n=1

2 ·
n

2n+1
(7)

= 2. (8)

For the case when d > 1. We can similarly claim that E[d̄] ≤
2d, because some deletions may occur in a same segment of

consecutive “0”s or “1”s, shrinking the number of “1”s in D̄N
1 .

2To maintain the length N , we assume a padding 0 at the beginning of the
sequence DN

1
before the differential operation.



The numerical simulation result of E[d̄] for various d and

N = 256 is given in Table IV, which shows that the upper

bound in Lemma 2 is tight, especially for relatively small d
and large N . We then treat D̄ as a Bernoulli random variable

with distribution Ber(2d
N
), whose entropy is given by h2(

2d
N
)

bits. The feedback overhead N ·h2(
2d
N
) is also depicted in Fig.

6 for comparison.

TABLE IV
THE RELATIONSHIP BETWEEN E[d̄] AND d FOR N = 256

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

E[d̄] 1.9927 3.9389 5.8482 7.6799 9.4958 11.2399

According to Shannon’s source coding theorem, the average

compression rate can be made arbitrarily close to the source

entropy, i.e., the compression rate h2(
2d
N
) can be asymptoti-

cally achieved for the source D̄. Thanks to the technique of

source polarization [15], [17], we may still use polar codes to

complete this task. With some abuse of notation, let UN
1 =

D̄N
1 GN denote the sequence after the polar transform. The

source polarization theorem says that as N grows, almost all

the conditional entropy H(Ui|U
i−1
1 ) for i ∈ [N ] polarizes to 0

or 1. Moreover, the proportion of the indices with H(Ui|U
i−1
1 )

close to 1 approaches to H(D̄), and those with H(Ui|U
i−1
1 )

close to 0 approaches to 1−H(D̄). Let S denote the subset

of [N ] such that H(Ui|U
i−1
1 ) → 0 for i ∈ S. Then, the source

sequence D̄N
1 can be compressed into the subsequence of UN

1

with indices in Sc, which is denoted by USc

. For recovery,

since H(Ui|U
i−1
1 ) → 0 for i ∈ S, the bits with indices in S

can be decoded from USc

with vanishing error probability

by using standard decoding algorithms of polar codes. To

guarantee a zero error probability for lossless compression,

the source encoder can run the decoding algorithm and check

if the estimate ÛS of US matches or not. Let T denote the

subset of S such that Ûi 6= Ui for i ∈ T by the decoding

algorithm. The encoder sends UM = {USc

, T } to make sure

that US can be correctly recovered at the side of decoder.

Finally, D̄N
1 is reconstructed by D̄N

1 = UN
1 G−1

N and in fact

G−1
N = GN . We note that the proportion

|T |
N

tends to 0 for

sufficiently large N .

For simplicity, we choose the standard SC decoding method

for numerical simulation. The comparison of the average

feedback overhead in bits between the direct feedback scheme

and the compression scheme with differential operation is

shown in Table V, where the overhead of direct feedback is

given by n ·E[d̂] and that of lossless compression is calculated

by |Sc|+n ·E[|T |]. It demonstrates that the feedback overhead

can be further reduced, by the simple lossless compression

scheme with complexity of O(N logN). We note that the

compression rate can be further improved by using more

sophisticated decoding algorithms [4]–[6]. After recovering

D̄N
1 and then DN

1 , Alice sends the corresponding packages

to Bob, which completes the reconciliation process.

Remark 6. It is possible to use the network coding technique

[25] to reduce the number of sending packages on Alice’s side,

because the genuine number d of deletions is no larger than d̂.

An intuitive example is the case when d = 1, and d̂ ≥ 1 can

be any integer. When Alice recovers DN
1 and locates the d̂

potential deletions successfully, she does not need to send the

d̂ corresponding packages to Bob. Instead, sending a single

“checksum” package of all the d̂ packages to Bob is sufficient

to help Bob recover the missing package. When d > 1, how

to design the network coding scheme to optimize the number

of sending packages on Alice’s side is a future work.

TABLE V
NUMERICAL SIMULATION OF THE AVERAGE OVERHEAD (IN BITS) FOR

VARIOUS d AND N .

Direct Feedback Cpr. with. Diff.

d = 8, N = 256 189.8272 101.2584

d = 10, N = 256 237.7520 114.1440

d = 8, N = 512 215.6850 131.4060

d = 10, N = 512 266.5980 150.6010

d = 8, N = 1024 239.2500 161.7400

d = 10, N = 1024 293.3600 188.2800

d = 20, N = 1024 582.9000 306.0160

V. CONCLUSION

In this paper, we proposed a total polar coding based set

reconciliation scheme between two network nodes which are

sharing data with unknown deletions. Firstly a polar code

aiming to help one node to recover a certain amount of the

other’s data is constructed in the presence of deletions. The

problem is modeled as the Slepian-Wolf coding with deletions,

which can be solved by designing polar codes for deletion

channels. By aligning the local data with the recovered data

of the other, the position of potential deletions can be revealed.

We also designed an explicit algorithm for this aligning

process. After that, a lossless compression scheme based on

source polarization is utilized to reduce the feedback overhead

of the deletion position information as much as possible. Our

scheme is immune to the size of the data package, and the

overall complexity is only related to the package number N ,

which is particularly given by O(N logN) if the number d
of deletions is fixed. We also provided some analysis on the

upper bound of the number of detected deletions.
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