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Abstract—Millimeter wave (mmWave) communication tech-
nique has been developed rapidly because of many advantages
of high speed, large bandwidth, and ultra-low delay. However,
mmWave communications systems suffer from fast fading and
frequent blocking. Hence, the ideal communication environment
for mmWave is line of sight (LOS) channel. To improve the
efficiency and capacity of mmWave system, and to better
build the Internet of Everything (IoE) service network, this
paper focuses on the channel identification technique in line-of-
sight (LOS) and non-LOS (NLOS) environments. Considering
the limited computing ability of user equipments (UEs), this
paper proposes a novel channel identification architecture based
on eigen features, i.e. eigenmatrix and eigenvector (EMEV)
of channel state information (CSI). Furthermore, this paper
explores clustered delay line (CDL) channel identification with
mmWave, which is defined by the 3rd generation partnership
project (3GPP). The experimental results show that the EMEV
based scheme can achieve identification accuracy of 99.88%
assuming perfect CSI. In the robustness test, the maximum noise
can be tolerated is SNR= 16 dB, with the threshold acc ≥ 95%.
What is more, the novel architecture based on EMEV feature
will reduce the comprehensive overhead by about 90%.

Index Terms—Channel identification, millimeter wave, clus-
tered delay line, eigenmatrix and eigenvector.

I. INTRODUCTION

With the mature applications of internet of things (IoT)
communication [1], the fifth generation (5G) and sixth
generation (6G) [2] of mobile communication has put forward
new development vision: internet of everything (IoE). The
explosive network connection and data transmission demands
put forward higher wireless data traffic, e.g., a 1000-fold
capacity increase [3]. However, the microwave band (300 MHz
to 3 GHz) cannot support the escalating capacity demand.
Thus, exploring new spectrum with broader bandwidths, such
as the millimeter wave (mmWave) bands (30–300 GHz),
is a promising solution to increase network capacity [4].
Intelligent wireless communication systems with mmWave
band and massive multiple-input multiple-output (MIMO)
should be the key technology of future IoE network [5]–[7].
However, T. Mantoro et al. [8] claimed that the transmission
performance of line of sight (LOS) and none line of sight
(NLOS) with mmWave band is very different. This is caused
by the coupling of time delay, received power, azimut angle

of departure (AoD), elevation AoD, azimut angle of arrival
(AoA) , elevation AoA, path-lost and RMS delay in LOS and
NLOS environment.

In recent years, many scholars have been studying how to
identify LOS and NLOS channels. J. Zhang et al. [9] explored
the scheme of NLOS channel identification using kurtosis to
improve the accuracy of indoor wireless localization problem.
Meanwhile, C.X. Huang et al. [10] proposed a LOS-NLOS
identification algorithm for indoor localization problem. R.
Diamant et al. [11] focused on the identification algorithm of
LOS and NLOS in underwater communication environment.
All papers [9]–[11] used traditional algorithm to classify
channels. They paid more attention to analyzing the channel
state information (CSI) to obtain the difference between LOS
and NLOS channel. With the development of machine learning
(ML) and deep learning (DL), more researchers [12]–[18]
prefered to applying ML/DL algorithms to identify LOS
and NLOS channel. X. Fu et al. [12] proposed a real-
time LOS/NLOS identification based on CSI characteristics
and K-means algorithm. In this paper, the author claimed
that they achieved great identification performance for both
static and dynamic scenarios. T.Y. Zeng et al. [13] applied
convolutional neural network (CNN) to channel identification
of three dimensional massive MIMO system. And the authors
used channel model 3D urban macro (UMa) defined by the 3rd
generation partnership project (3GPP) to verify the proposed
scheme. Aiming at the NLOS channel filtering problem in
radio frequency identification (RFID), S.G. Zhang et al.
[14] proposed a variety of efficient and novel algorithms.
These methods included a new metric that combined both
phase and received signal strength variances and a ML
based algorithm. C. Huang et al. [15] proposed a time-
varying angular information-based LOS identification solution
based on ML. For indoor ultra-wideband (UWB) positioning
systems, C.H. Jiang et al. [16] and Z. Cui et al. [17] employed
CNN to identify the NLOS signal.

To ensure the efficient transmission of mmWave systems,
LOS/NLOS channel identification is necessary. Although
many works have proposed identification solutions for
LOS/NLOS channels, they focused on the binary classification
(0/1 classification) problem. So, this paper aims to explore
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a more accurate channel identification scheme. 3GPP report
[19] introduced clustered delay line (CDL) channel model
which is defined for the full frequency range from 0.5 GHz
to 100 GHz. CDL channel models can be further divided
into two categories: NLOS and LOS, and five sub-categories:
CDL-A, CDL-B, CDL-C, CDL-D and CDL-E. In this paper,
we propose a novel channel identification architecture for
mmWave systems. The main contributions of this paper are
summarized below.

• This paper further explores the channel identification
problem. A more exact CDL channel identification
scheme is proposed, which can further identify the chan-
nel type among CDL-A to CDL-E. Accurate identification
of channel type can help to improve efficiency and
capacity for mmWave wireless communication system.

• To avoid increasing the overhead of UEs, this paper
intends to utilize eigenmatrix and eigenvector as
identification obeject, instead of CSI matrix. Compared
with traditional DL algorithm, a lightweight channel
identification architecture is designed for UEs.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section is composed of the following two parts. First
of all, we show the problem formulation and some channel
knowledge to the readers, to better understand the purpose of
this paper. Then, we introduce singular value decomposition
(SVD) and the application of eigenvector and eigenmatrix.

A. Channel Model and Problem Formulation

This paper focuses on the identification solution for CDL
channel model. In order to better understand CDL channel
model, this section will give simple channel modeling and
LOS channel probability distribution function defined by
3GPP. Considering a three-dimensional mmWave channel
[20], the CSI estimated at the UE can be expressed as (1).
It is not difficult to find that the fading rate is inversely
proportional to the wavelength λ. In other words, mmWave
wireless communication system will suffer faster fading as
the wave length increases.

hu,s,t(t) =

M∑
m=1

√
Pn,m[cu,s,n,m · exp(j2πvn,mt)

· exp
(
j2πλ−1dsφn,m

)
· exp(j2πλ−1dsφ

′

n,m)]

(1)

where Pm,n represents the power of ray m in the ray cluster n.
And the cu,s,n,m is the coefficient calculated by field patterns
and initial random phases for a pair of antenna elements
between BS s and UE u. Then, ds and Hu are the locations
of the BS and UE, respectively, λ is the wavelength, φn,m
and φ

′

n,m represents the angle vectors of departure and arrival,
vn,m denotes the speed and can be understood as Doppler shift
parameter.

After channel model, we will further discuss the probability
distribution of LOS channel. Considering an urban macro
(UMa) scenario defined by 3GPP TR38.901 [19], we assume
that the plane straight-line distance from the UE to the BS is

d2D and the LOS probability is PrLOS . If d2D ≤ 18 m, then
PrLOS = 1, else the PrLOS can be calculated via

PrLOS =

[
18

d2D
+ exp

(
−d2D

63

)(
1− 18

d2D

)]
·

[
1 + 0.8 · C(hUT )

(
d2D

100

)3

exp

(
−d2D

150

)] (2)

where the C(hUT ) can be found in (3), and the hUT denotes
the antenna height for the UE.

C(hUT ) =


0, hUT ≤ 13 m(

hUT−13

10

)1.5

, 13 m ≤ hUT ≤ 28 m
(3)

In summary, NLOS channel will be a more common
scenario with the popularization of mmWave systems. In fact,
the position of the UE relative to BS is always changing, so
UEs need to frequently identify the channel type and reports to
BS. Accurate channel type will help establish a more efficient
and intelligent communication link between the UE and BS.

B. Application of SVD transformation
This section will show the advantages of SVD transforma-

tion and its application in wireless communication. In order
to reduce the conflict between multi-users and increase the
channel capacity in MIMO channels, the transmitter needs
to use the beamforming technology to precode the data flow
according to the quality of channel. A classical precoding
matrix is based on SVD transformation of CSI matrix.

Considering a CDL channel with Nt BS antennas and Nr

UE antennas. For simplicity, it is assumed that the number of
RB is 1, i.e. NRB = 1. So, we can obtain our CSI matrix as
H ∈ CNr×Nt . First, the CSI matrix H should carry on SVD
transformation as

H = U ·Σ ·V∗ (4)

where U ∈ CNr×Nr and V ∈ CNt×Nt are the left-singular
and the right-singular matrices1, respectively. What is more,
UU∗ = INr

,VV∗ = INt
2. Note that Σ = (Λ, 0) and Λ can

be expressed as follows:

Λ =


√
λ1 · · · 0
...

. . .
...

0 · · ·
√
λNr


Nr×Nr

(5)

which represents the singular value matrix. And we define the
eigenvalues of HH∗ as s = [λ1, λ2, . . . , λNr ].

Next, the application of SVD transformation will be
introduced in detail. The unitary matrices V and U are used
as precoding matrix for transmitter and receiver, respectively.
When BS needs to sent the parallel data flow x =
[x1, x2, . . . , xNt ]

T to multiuser, right-singular matrix V will
be used for precoding: xt = V · x. Thirdly, we consider a
classical signal transmission model as

y = Hxt + n (6)

1Both U and V will be called as eigenmatrix in the follows.
2X∗ denotes conjugate transpose matrix of X.



where y is the received data flow and n denotes the noise
vector. The channel matrix H can be expressed by (4), and
we can get

y = UΣV∗V · x + n

= UΣ · x + n
(7)

Finally, the receiver will use U∗ for de-precoding, which can
be expressed as

U∗y = U∗(UΣ · x + n)

= Σx + U∗n
(8)

The noise component in (8) will be filtered out by the receiver.
So, the receiver can recover the data flow x by Σ.

In short, as a receiver, UE should pay more attention to
U and S. While used for the precoding algorithms for UEs,
eigenvector and eigenmatrix are also the representation of
the channel features in the channel matrix H. Therefore, this
paper considers using eigenvector and eigenmatrix to support
UEs for channel identification. The scheme and the algorithm
framework are described in section III.

III. PROPOSED CHANNEL IDENTIFICATION
ARCHITECTURE

In this section, the proposed channel identification architec-
ture based on eigenmatrix and eigenvector is presented. This
section will be introduced according to the following three
points. First, the overall framework of the proposed novel
channel identification architecture will be shown. Then, we
will give a detailed algorithm describtion. Finally, the hyper-
parameters and overhead analysis of proposed neural network
will be given in detail.

Fig. 1. Illustration of the architecture of proposed novel EMEV based channel
identification.

A. EMEV based Channel Identification Architecture

This paper proposes a novel channel identification archi-
tecture based on eigenmatrix and eigenvector. Instead of the
whole CSI matrix H, its eigenvector S and eigenmatrix U will
be used as the input object for identification neural network.

U and S of H can be obtained by SVD transformation. The
proposed channel identification architecture is shown in Fig. 1,
namely eigenmatrix and eigenvector (EMEV) based channel
identification architecture.

Due to frequent movement of UEs relative to the BS, UE
should feedback the channel type information to BS frequently
in the frequency division duplexing (FDD) communication
system. This paper focuses on the CDL channel, so we make
the assumption that the CSI matrix H ∈ CNRB×Nr×Nt . The
NRB denotes the number of resource block (RB), Nt and
Nr are the number of BS and UE antennas (Nt � Nr). As
is shown in Fig. 1, the CSI matrix H will be divided into
three parts after SVD transformation, namely eigenmatrix U ∈
CNRB×Nr×Nr , eigenvector S ∈ RNRB×Nr and eigenmatrix
V ∈ CNRB×Nt×Nt . And then U and S will be input into
the neural network, which is called EMEV based channel
identification network (EMEV-IdNet). Compared with the
size of CSI matrix H, the size of U and S are much smaller,
i.e. EMEV-IdNet adopts a lightweight design. After the
trained EMEV-IdNet, we can identify accurately the channel
type among CDL-A to CDL-E. The EMEV based channel
identification hopes to eliminate the redundant information in
CSI matrix H through the SVD transformation, further make
the neural network lightweight as much as possible.

B. Analysis of Algorithm

Algorithm 1: The algorithm of the proposed EMEV
based channel identification scheme.
Input: H ∈ CNRB×Nr×Nt ← CSI matrix;
y ∈ R5×1 ← label of channel type;
η ← learning rate; Nepoch ← Number of epoches
Output: channel type: ŷ = {0, 1, 2, 3, 4}

1 SVD transformation :
2 Initialize U ∈ CNRB×Nr×Nr ,S ∈ RNRB×Nr ;
3 for i = 1, · · ·NRB do
4 Ut,St,Vt = fsvd(H(i, :, :))
5 if Ut · St ·Vt == H(i, :, :) then
6 U(i, ; , :) = Ut

7 S(i, :) = St

8 end
9 end

10 Save U ∈ CNRB×Nr×Nr ,S ∈ RNRB×Nr .
11 Training EMEV-IdNet :
12 Load U ∈ CNRB×Nr×Nr ,S ∈ RNRB×Nr ,y ∈ R5×1;
13 Initialize Ω3D,Ω2D,ΩFC , Adam(·);
14 for t = 1, · · · , Nepoch do
15 ŷ = fnet(U,Ω3D,S,Ω2D,ΩFC)
16 losst = −

∑
k=1 yk · log(ŷk)

17 if losst converges then
18 break
19 end
20 (Ω3D,Ω2D,ΩFC)← Adam(Ω, η,∇losst)
21 end
22 Save Ω3D,Ω2D,ΩFC , fnet(·).



TABLE I
THE HYPER-PARAMETERS SETTING AND ANALYSIS OF PARAMETERS AND FLOPS.

Layer name Hyper-parameters Activation Output shape Parameter size FLOPs
Input(U) – – NRB ×Nr ×Nr × 2 – –
Input(S) – – NRB ×Nr × 1 – –

Conv3D 1(U) Filter = 16,
Kernel = 3.

Leaky Relu NRB ×Nr ×Nr × 16 16× 2× 32 (NRB ×Nr ×Nr × 16)× (2× 32)
Conv2D 1(S) Leaky Relu NRB ×Nr × 16 16× 2× 32 (NRB ×Nr × 16)× (2× 32)
Conv3D 2(U) Filter = 32,

Kernel = 3.
Leaky Relu NRB ×Nr ×Nr × 32 32× 16× 32 (NRB ×Nr ×Nr × 32)× (2× 32)

Conv2D 2(S) Leaky Relu NRB ×Nr × 32 32× 16× 32 (NRB ×Nr × 32)× (2× 32)
Conv3D 3(U) Filter = 16,

Kernel = 3.
Leaky Relu NRB ×Nr ×Nr × 16 16× 32× 32 (NRB ×Nr ×Nr × 16)× (2× 32)

Conv2D 3(S) Leaky Relu NRB ×Nr × 16 16× 32× 32 (NRB ×Nr × 16)× (2× 32)
Concatenate – – NRBNr(Nr + 1)× 16 0 0
FCLayer 1 Units = 128 Relu 128× 1 [NRBNr(Nr + 1) × 16] × 128 2 × [NRBNr(Nr + 1) × 16] × 128

FCLayer 2 Units = 32 Relu 32× 1 128× 32 2× 128× 32
FCLayer 3 Units = 5 Softmax 5× 1 32× 5 2× 32× 5

Although the proposed EMEV based channel identification
pays more attention to unitary matrix U and eigenvector S,
the most common information for UEs is CSI matrix H.
Therefore, we consider CSI matrix H as the input object in
Algorithm 1. U and S are obtained after data preprocessing.
As for the neural network, we construct a dual channel parallel
model which takes eigenmatrix U and eigenvector S as input
layer.

The EMEV based channel identification is shown in
Algorithm 1. In SVD transformation part, we consider
the channel independence between different RBs. Therefore,
we do SVD transformation on each RB, and finally
concatenate eigenmatrx and eigenvector. In EMEV-IdNet
training part, Ω3D,Ω2D,ΩFC represent the weights of 3D
convolution layers, 2D convolution layers and fully-connected
layers, respectively, and fnet(·) denotes the framework
function of EMEV-IdNet. Meanwhile, Adam optimizer and
categorical-crossentropy loss function are used to improve the
performance and convergence rate. The algorithm training goal
is to minimize the loss function between the true channel label
y and the output label ŷ by updating the weights as,

(Ω∗
3D,Ω

∗
2D,Ω

∗
FC) = arg min

Ω
−
∑
k=1

yk · log(ŷk) (9)

where k denotes the length of channel label y.

C. Structure of EMEV-IdNet

Fig. 2 shows the structure of the neural network used in
our proposed scheme. The network we used in this paper is
modifid from CNN. As is shown in figure, three dimensional
(Conv3D) and two dimensional convolutional layers (Conv2D)
are used to extract special features for U and S, respectively.
After the two parallel feature extraction blocks, an un-
trainable concatenate layer is used. Then the two output
high dimensional feature maps of U and S are concatenated.
Finally, we rely on three fully-connected layers (FCLayer) to
complete the identification task. Meanwhile, Tab. I shows the
hyper-parameters, activation and output shape of every layer
in detail. Meanwhile, the analysis of parameters and floating
point operations (FLOPs) are presented.

Fig. 2. Illustration of the structure of EMEV-IdNet.

IV. SIMULATION AND EXPERIMENTS

This section will introduce the simulation experiments
carried out in this paper in detail, including the experimental
platform, simulation data, experimental results and so on.
All the simulations and experiments are carried out on the
workstation with CentOS 7.0. The workstation is equipped
with 2 Intel(R) Xeon(R) Silver 4210R CPU and 4 Nvidia RTX
2080Ti GPU, it also has 192GB RAM. The dataset we used in
this paper and the simulation codes can be found at Github3.

3Github link: https://github.com/CodeDwan/EMEV-channle-identification



A. Dataset Generation

With the help of Matlab 5G toolbox and communication
toolbox, we define a standard CDL channel object and carry on
the link-level simulation. The dataset used in our experiments
are extracted from the link-level simulator. Tab. II shows the
alternative parameter and default values in the data generator.
Both UE and BS antennas use uniform panel array (UPA).
Note that 10,000 original data samples are generated for each
CDL channel (50,000 data samples in all). And we divide the
training data, validation data and test data in the proportion of
65 : 15 : 20. Using the StratifiedShuffleSplit function provided
by sckit-learn, we can ensure that the data samples of each
label is uniformly distributed.

TABLE II
ALTERNATIVE PARAMETER AND DEFAULT SETTINGS IN DATA GENERATOR

Channel
Type

NLOS LOS
CDL-A CDL-B CDL-C CDL-D CDL-E

NRB 13
Center Frequency 28 GHz
Subcarrier spacing 60 KHz

UE Speed {4.8, 24, 40, 60} km/h
Delay spreads 129 ns 634 ns 634 ns 65 ns 65ns

BS antenna UPA [8.8] = 64
UE antenna UPA [2, 2] = 4

B. Experimental Results

Fig. 3. Illustration of the confusion matrix of EMEV-IdNet.

In order to verify the feasibility and robustness of the
scheme proposed in this paper, we design two experiments:
one is to research the perfect CSI matrix, and the other is
the imperfect CSI matrix with noise. At the same time, in
order to conduct comparative experiments, we design two
different networks. One is a two channel identification network
based on eigenmatrix and eigenvector proposed in this paper,
named EMEV-IdNet. The other is directly inputting CSI

matrix H into the network for identification, named CSI-based
identification network (CSI-IdNet) .

TABLE III
THE ACCURACY OF EMEV-IDNET AND CSI-IDNET WITH NOISE

SNR (dB) 10 12 14 16 18 20
EMEV-IdNet 70.26% 80.68% 89.89% 97.39% 99.62% 99.80%

CSI-IdNet 87.55% 96.85% 99.55% 99.97% 99.98% 100.00%

Fig. 4. Accuracy comparison of EMEV-IdNet and CSI-IdNet with different
noise.

First, we verify the feasibility of the proposed EMEV-IdNet.
The confusion matrix in Fig. 3 shows that CDL-A to CDL-C
are strictly separated from CDL -D and CDL-E. That is to
say, LOS and NLOS channels are perfectly recognized, and
the CDL-A channel achieves perfect identification accuracy.
What’s more, the identification accuracy of CDL-B to CDL-
E reaches 99.75%, 99.80%, 99.90% and 99.95% respectively.
The comprehensive recognition accuracy is 99.88% Secondly,
it is difficult for UEs to obtain perfect CSI matrix in practical
scenarios. Therefore, we conduct noise experiments and verify
the robustness of EMEV-IdNet. In this part, additive white
Gaussian noise(AWGN) is used to simulate the imperfect CSI
matrix, which can be expressed as,

SNR(dB) = 10 · log

(
PH

Pn

)
noise ∼ N(0, Pn) =

1√
2πPn

· exp

(
− x2

2Pn

) (10)

where PH and Pn are the respective power of CSI matrix
H and noise, N(0, Pn) represents normal distribution with
mean = 0 and variance = Pn. We use the test dataset
containing AWGN to test the perfect identification network
(IdNet). The perfect IdNet means the network is trained with
perfect CSI dataset. The test accuracy can be seen from Tab.
III and Fig. 4. From the experimental results, the robustness of
EMEV-IdNet is slightly worse than CSI-IdNet. If we define the
acceptable threshold of recognition accuracy is acc ≥ 95%,



then the noise tolerated by EMEV-IdNet is SNR = 16 dB,
while the one CSI-IdNet can tolerate SNR = 12 dB.

C. Analysis of Overhead

In this part, we will analyse the overhead of EMEV-IdNet
and CSI-IdNet, including the number of parameters, FLOPs,
model size and response delay4. The parameters and model
size measure space complexity and storage overhead. The
FLOPs and response delay can measure time complexity
and computing overhead. As is shown in Tab. IV, the
comprehensive overhead of EMEV-IdNet is about only 10%
of CSI-IdNet. However, the performance of EMEV-IdNet can
achieve almost 90% comparing with CSI-IdNet. In summary,
the proposed EMEV-IdNet conforms to the lightweight design
and ensures performance as much as possible while greatly
reducing overhead.

TABLE IV
COMPARISON OF OVERHEAD BETWEEN EMEV-IDNET AND CSI-IDNET

EMEV-IdNet CSI-IdNet
Parameters 575,157 6,848,869

FLOPs 14 M 204 M
Model size 7.1 MB 82.3 MB

Response delay 88.23 us 294.29 us

V. CONCLUSION

In this paper, we proposed a novel EMEV based channel
identification architecture with lightweight design. In this
paper, SVD transformation was adopted as data preprocessing.
The obtained eigenmatrix and eigenvector can be used not only
for channel identification, but also for calculation of precoding
matrix. It was confirmed that EMEV-IdNet proposed in this
paper has a great identification performance and very slim
overhead. When using perfect CSI matrix, EMEV-IdNet can
achieve a comprehensive identification accuracy of 99.88%, in
which the CDL-A channel can be perfectly recognized. When
AWGN is introduced to simulate the actual channel estimation
error, EMEV-IdNet can tolerate the noise with SNR = 16 dB
if the threshold is acc ≥ 95%. At the same time, we analyzed
the comprehensive overhead of EMEV-IdNet, which is more
suitable for deployment at UE. The EMEV based channel
identification architecture proposed in this paper meets the
needs of mmWave communication. Considering the massive
number of edge devices in the IoE network, the proposed
architecture is lightweight and effective for edge computing
deployment. It can be widely applied to edge equipment in
mmWave systems to achieve the high quality of service (QoS)
of IoE communication.
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