
1

Asynchronous Federated Learning Based

Mobility-aware Caching in Vehicular Edge

Computing
Wenhua Wang1,2, Yu Zhao1,2, Qiong Wu1,2, Qiang Fan3, Cui Zhang4 and

Zhengquan Li1,5 (1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China)

(2. State Key Laboratory of Integrated Services Network(Xidian University),Xi’an 710071, China) (Email:

{wenhuawang, yuzhao}@stu.jiangnan.edu.cn, qiongwu@jiangnan.edu.cn) (3. Qualcomm, San Jose CA 95110

USA, China) (Email: qiangfan29@gmail.com) (4. Banma Network Technology Co., Ltd., Shanghai 200000,

China) (Email: zc351340@alibaba-inc.com) (5. Jiangsu Future Networks Innovation Institute, Nanjing 211111,

China) (Email: lzq722@jiangnan.edu.cn)

Abstract

Vehicular edge computing (VEC) is a promising technology to support real-time applications through

caching the contents in the roadside units (RSUs), thus vehicles can fetch the contents requested by

vehicular users (VUs) from the RSU within short time. The capacity of the RSU is limited and the

contents requested by VUs change frequently due to the high-mobility characteristics of vehicles, thus

it is essential to predict the most popular contents and cache them in the RSU in advance. The RSU can

train model based on the VUs’ data to effectively predict the popular contents. However, VUs are often

reluctant to share their data with others due to the personal privacy. Federated learning (FL) allows each

vehicle to train the local model based on VUs’ data, and upload the local model to the RSU instead of

data to update the global model, and thus VUs’ privacy information can be protected. The traditional

synchronous FL must wait all vehicles to complete training and upload their local models for global

model updating, which would cause a long time to train global model. The asynchronous FL updates

the global model in time once a vehicle’s local model is received. However, the vehicles with different

staying time have different impacts to achieve the accurate global model. In this paper, we consider

the vehicle mobility and propose an Asynchronous FL based Mobility-aware Edge Caching (AFMC)

scheme to obtain an accurate global model, and then propose an algorithm to predict the popular contents

This work was supported in part by the National Natural Science Foundation of China (No. 61701197), in part by the open

research fund of State Key Laboratory of Integrated Services Networks (No. ISN23-11), in part by the 111 Project (No. B12018),

in part by the Future Network Scientific Research Fund Project (FNSRFP-2021-YB-11).

August 3, 2022 DRAFT

ar
X

iv
:2

20
8.

01
23

6v
1 

 [
cs

.D
C

] 
 2

 A
ug

 2
02

2



2

based on the global model. Experimental results show that AFMC outperforms other baseline caching

schemes.

Index Terms

Caching, asynchronous federated learning, mobility, vehicular edge computing

I. INTRODUCTION

W ITH the advancement of the internet of vehicles (IoV), caching technology facilitates

the development of the real-time vehicular applications [1], [2]. Vehicles typically fetch

the contents requested by vehicular users (VUs) from a macro base station (MBS) connected with

a cloud to support the vehicular applications. However, the cloud is far from the vehicles, thus

the stringent delay requirement to fetch contents may not be satisfied. Vehicular edge computing

(VEC) is a promising technology to significantly reduce the delay to fetch contents, which

consists of a MBS connected with a cloud and a road side unit (RSU) deployed at the edge [3].

The MBS can cache all available contents due to its large storage capacity while the RSU can

retrieve contents from the MBS and cache them. The capacity of the RSU is limited, thus it

only caches part of the available contents. VUs in the VEC can fetch contents directly from the

RSU, thus satisfying the delay requirement [4].

For the traditional caching schemes, the contents are cached based on the previously requested

contents. However, vehicles in the VEC enter and leave the coverage of a RSU frequently owing

to the high-mobility characteristics, which incurs the frequent changes of contents requested by

VUs. Thus the traditional caching scheme cannot ensure that the RSU accurately caches VUs’

requested contents, which would result in that vehicles cannot fetch contents from the RSU

successfully. It is essential to predict the most popular contents and cache them in the RSU in

advance. With the assistance of machine learning (ML), the RSU can train a model through

extracting features from VUs’ data to effectively predict the popular contents [5]. However,

owing to privacy issue, VUs are often reluctant to share their data with each other, which results

in difficulties for RSU to collect data to train the model.

Federated learning (FL) allows each vehicle to train the local model based on its VUs’ data,

and then upload the local model to the RSU for the global model updating, and thus FL can

significantly protect VUs’ privacy information. Some works have studied the FL based caching

in the VEC. In [6], Yu et al. proposed a mobility-aware proactive edge caching scheme based on

DRAFT August 3, 2022



3

FL which allows multiple vehicles to participate in training the global model to predict popular

contents in VEC, thus the growing demand for computationally intensive and latency-sensitive

vehicular applications can be met. In [7], Chilukuri et al. proposed an adaptive cache allocation

scheme for edge caching based on FL in a dynamic and resource constrained vehicular network.

In [8], Cui et al. designed a FL-based compression algorithm aided by blockchain to predict the

popular contents in VEC. In [9], Lu et al. proposed a FL based scheme consisting of intelligent

data transformation and collaborative data leakage detection to achieve dynamic content caching

in VEC. However, the above methods adopted the synchronous FL to design caching schemes,

where all vehicles have to train and upload their local models before the RSU aggregates all

local models to update the global model, which would cause a very large time to train global

model. In [10], Xie et al. proposed an asynchronous FL to reduce the training time through

updating the global model once a uploaded local model is received. However, the RSU may

receive a local model uploaded from a vehicle which has small staying time in the coverage

area of the RSU, thus the contents required by the VUs of the vehicle may become outdated

quickly, which may further deteriorate the accuracy of the global model. Hence, it is critical to

consider the vehicle mobility in designing the asynchronous FL in VEC to improve the accuracy

of the global model. To the best of our knowledge, there is no work considering the vehicle

mobility in asynchronous FL in VEC, which motivates us to conduct this work.

In this paper, we propose an Asynchronous FL based Mobility-aware Edge Caching (AFMC)

scheme to predict accurate popular contents in the VEC. We first design an asynchronous FL

framework considering the mobility of vehicles to improve the accuracy of the global model.

Then we adopt the autoencoder (AE) to predict the popular contents based on the global model.

The rest of this paper is organized as follows. Section II briefly describes the system model.

Section III presents the implementation of the proposed AFMC scheme in detail. We present

some simulation results in IV, and then conclude them in Section V.

II. SYSTEM MODEL

We consider a three-tier VEC framework shown in Fig. 1, which comprises a macro base

station (MBS) connected with a cloud, a RSU in the coverage area of the MBS and some

vehicles driving in the coverage area of the RSU. The top tier is the MBS which caches all

available contents. The middle tier is the RSU deployed at the edge which only caches part

of contents. The bottom tier is the vehicles. Each vehicle carries serval VUs and caches the

local data, where each data is a vector reflecting the VUs’ personal information and ratings

August 3, 2022 DRAFT



4

MBS

Cloud

RSU

Fig. 1. VEC scenario

for all available contents. The rating for a content may be 0, which represents that the VU is

uninterested in this content or the VU has not requested this content earlier. The local data are

partitioned into the training set and testing set according to a certain percentage.

The VUs in each vehicle generate the information about the requested contents while each

vehicle collects the requested information and sends it to the RSU to fetch the VUs’ requested

contents. If the RSU has the requested contents, the vehicle can fetch the contents from the RSU

successfully; otherwise it has to fetch contents from the MBS.

III. ASYNCHRONOUS FEDERATED LEARNING BASED MOBILITY-AWARE CACHING SCHEME

In this section, we introduce the proposed AFMC. We first design a mobility-aware asyn-

chronous FL algorithm to train an accurate global model. Then a content prediction algorithm

is proposed to predict popular contents based on the trained global model.

A. Mobility-aware asynchronous FL

The asynchronous FL algorithm executes Rmax rounds of training. Each round r comprises

the following steps:

1) Vehicle Selection: Denote V r
i as the ith-vehicle in round r within the coverage area of the

RSU. In each round r, the vehicles with sufficient staying time to participate in asynchronous

FL are first selected. Thus for each selected vehicle V r
i , its staying time within the coverage of

the RSU T staying
r,i should be larger than the sum of the average training time Ttraining and the

inference time Tinference, i.e., T staying
r,i > Ttraining + Tinference, where T staying

r,i is calculated as

T staying
r,i = (Ls − P r

i ) /U
r
i . (1)

here Ls is the coverage range of the RSU, P r
i is the distance from V r

i to the entrance of the

RSU and U r
i is the velocity of V r

i which is generated by a truncated Gaussian distribution within

the velocity limit [Umin, Umax],

DRAFT August 3, 2022



5

f(U r
i ) =



e−
1

2σ2
(Uri −µ)

2

√
2πσ2(erf(Umax−µ

σ
√
2

)− erf(Umin−µ
σ
√
2

))
,

Umin ≤ Uri ≤ Umax,

0 otherwise.

(2)

where σ2 is the variance, µ is the mean and erf(x) is the Gauss error function.

2) Model Download and Local Training: The selected vehicles first download the global

model ωr that is aggregated at the end of the previous round from the RSU. Particularly, the

RSU generates the global model based on AE for the first round. Then each selected vehicle

performs e iterations to update their local models. For each iteration k, the selected vehicle V r
i

randomly retrieves some training data nr
i,k from the training set and feeds each training data x

(x ∈ nr
i,k) into the AE to reconstruct x, where the reconstructed data, denoted as x̂, reflects the

hidden features of the data x. The loss function of V r
i ’s local model is then calculated as

f(ωr
i,k) =

1∣∣nr
i,k

∣∣
|nr

i,k|∑
k=1

li
(
ωr
i,k;x

)
, (3)

where li
(
ωr
i,k;x

)
= (x− x̂)2 is the reconstruction error,

∣∣nr
i,k

∣∣ is the number of training data for

V r
i in iteration k and ωr

i,k is the local model of V r
i in iteration k.

To improve the convergence of the asynchronous FL, the deviation between ωr
i,k and ωr is

incorporated into the loss function as a regularization term, i.e.,

gi
(
ωr
i,k

)
= fi

(
ωr
i,k

)
+
ρ

2

∥∥ωr − ωr
i,k

∥∥2 , (4)

where ρ is the regularization parameter.

However, vehicles may fail to upload the their local models to the RSU, referred to as the

delayed local model, due to the long training time in the previous round. These delayed local

models will be uploaded to the RSU in the later rounds to update global model, which conversely

deteriorates the performance of the global model, thus the local gradient should be aggregated

considering the gradient of the delayed local models ∇gdi , i.e.,

∇ζri,k = ∇g
(
ωr
i,k

)
+ β∇gdi , (5)

where ∇gi
(
ωr
i,k

)
is the gradient of gi(ωr

i,k) and β is the weighting coefficient. Then the local

model is updated as
ωr
i,k+1 = ωr

i,k − ηrl∇ζri,k, (6)

where ηrl is the local learning rate in round r (note that ηrl = ηl ·max{1, log(r)}) ηl is the initial

value of local learning rate. Then V r
i executes iteration k + 1 to update the local model. V r

i

keeps updating the local model until the number of iterations reaches e. Then the local model

is updated as ωr
i .

August 3, 2022 DRAFT



6

3) Upload Updated Model and Asynchronous Aggregation: Once V r
i finishes the local model

updating, it will upload ωr
i to the RSU to update the global model. Considering the vehicles

with different staying time have different effect on the accuracy of the global model, the RSU

would update the global model ωr as

ωr = ωr−1 +
dri
dr
χiω

r
i , (7)

where dri and dr represent the local data size in V r
i and the total local data size of the selected ve-

hicles, respectively, χi = T passing
r,i /T total

r,i is the weight for V r
i , where T passing

r,i = P r
i /U

r
i indicates

the time after the vehicle enters the coverage area of the RSU, and T total
r,i = Lr

i/U
r
i indicates the

total time of the vehicle staying in the RSU coverage area. Thus we have χi = P r
i /L

r
i . Note

that χi is a large value if the vehicle stays in the coverage of the RSU for a longer time and

thus has a higher impact on the global model.

Then the RSU will send the global model to all vehicles for the next round of updates.

The RSU keeps updating the global model the number of rounds reaches Rmax; Then a more

efficient global model ωr is achieved. After that, each vehicle within the coverage area of the

RSU downloads and adopts the trained global model to predict popular contents. The specific

steps about popular content prediction are described in detail in subsection B.

B. Content Popularity Prediction
In this subsection, we describe the popular content prediction algorithm in the following steps.

1) Data Preprocessing: Each vehicle V r
i abstracts the local data from the testing set to form

a rating matrix Rr
i ∈ Rn×m, where the rows of the matrix represent n VUs and the columns of

the matrix represent the ratings for m contents. Nevertheless, the value 0 in the matrix represents

that the VU is uninterested in this content or the VU has not requested this content, thus the

value 0 will incur difficulties to in predicting popular contents. To solve this problem, each

vehicle adopts the trained global model based on AE to reconstruct the rating matrix Rr
i , the

reconstructed the rating matrix R̂
r

i ∈ Rn×l(l < m) contains few zero elements and thus it can

reflect the hidden features of data.

2) Cosine Similarity: Each vehicle V r
i abstracts the personal information matrix Qr

i ∈ Rn×w

from the testing set and then merge it with R̂
r

i to form the matrix Hr
i ∈ Rn×(l+w), where the

rows of the matrix represent n VUs and the columns of the matrix represent w VUs’ information.

Define the first s VUs with largest number of non-zero elements in Rr
i as the active VUs. Then

the similarity between any two active VUs a and b is measured by the cosine similarity, i.e.,

DRAFT August 3, 2022



7

simr,i
a,b = cos (Hr

i (a, :),H
r
i (b, :))

=
Hr

i (a,:)·Hr
i (b,:)

T

‖Hr
i (a,:)‖2×‖H

r
i (b,:)‖2

,
(8)

where Hr
i (x, :) denotes the vector of VU x in matrix Hr

i , and ‖x‖2 is the 2-norm of x.

3) Interested Contents: In each vehicle V r
i , VUs with the K largest similarities of each active

VU are selected as the active VU’s neighboring VUs. Then the ratings of m contents evaluated

by the K neighboring VUs of s active VUs are expressed as ĤK ∈ R(s·K)×m, where the rows

of the matrix represent K neighboring VUs of s active VUs and the columns of the matrix

represent the ratings for m contents. Then each vehicle counts the number of the nonzero value

of each content in ĤK as the content popularity of the content and selects the contents with Fc

largest content popularity as its predicted interested contents.

4) Popular Contents: Each vehicle sends its predicted interested contents to the RSU, the

RSU compares uploaded contents to select the contents with the Fc largest content popularity

as the popular contents.

IV. SIMULATION RESULTS

In this section, we conduct simulation verify the effectiveness of the proposed AFMC scheme.

The performance values of different schemes are obtained through averaging the results con-

ducted in five simulation experiments.

A. Simulation Setup

The simulation tool is Python 3.8. The coverage range of RSU is 1km. The dataset we used

is MovieLens 1M [11], which contains 1 million ratings for 3,883 movies from 6,040 users, as

well as users’ personal information including gender, age, occupation and postcode. Each user

obtain local data randomly from the MovieLens 1M dataset. We randomly allocate 80% data of

the local data as the training set, while the remaining data as the testing set. A part of movies

are randomly sampled from testing set as VU’s requested contents.

B. Performance Evaluation

Cache efficiency is employed to reflect the probability that vehicles fetch requested contents

from the RSU successfully to evaluate the performance of AFMC.

Cache efficiency =
cache hits

cache hits + cache misses
× 100%, (9)

where a cache hit indicates that a requested content is cached in the RSU and thus the vehicle can

fetch requested content from the RSU successfully, while a cache miss means that a requested

content is not cached in the RSU.

August 3, 2022 DRAFT



8

We compare our proposed AFMC with five baseline caching schemes described below:

• Random: N contents are randomly selected from all available contents to cache in the RSU.

• Thompson Sampling: Beta function with parameters α and β is taken as a probability

density function to generate the probabilities that contents are selected to be cached in RSU

within [0, 1], where cache hits and cache misses are taken as α and β, respectively. Then

N contents with the highest probabilities are selected to be cached in the RSU.

• N-ε-greedy: N contents with the largest numbers of requests are selected with probability

1− ε and N contents are randomly selected from the all available contents with probability

ε. In our simulation, ε = 0.1.

• FedAVG: The typical synchronous FL scheme where the RSU needs to wait for all vehicles

to upload their local models and then adopts the weighted average method to update the

global model.

• AFC: Asynchronous FL based caching scheme without considering the high-mobility char-

acteristics of vehicles, i.e., χi in Eq. (7) has not been considered.

TABLE I

CACHE EFFICIENCY UNDER DIFFERENT CACHE CAPACITIES.

Scheme
Cache capacity

50 100 150 200 250 300 350 400

AFMC 11.01% 18.17% 24.17% 29.48% 34.15% 38.35% 42.16% 45.66%

AFC 10.82% 18.06% 24.02% 29.20% 33.94% 38.19% 42.06% 45.56%

FedAVG 10.87% 18.05% 24.00% 29.03% 34.02% 38.31% 42.14% 45.59%

Random 1.28% 2.64% 3.85% 5.18% 6.84% 7.30% 8.64% 9.95%

Thompspon Sampling 3.90% 9.29% 14.46% 19.14% 23.68% 27.34% 30.59% 33.99%

N − ε-greedy 10.04% 16.82% 22.43% 27.44% 31.92% 35.88% 39.57% 42.92%

Table. I shows the cache efficiency of different caching schemes under diverse cache capacities.

The vehicle density is set as 10 vehicles/km. It is seen that the cache efficiency of all schemes

increases with the cache capacity increasing. This is because that more contents are cached when

the cache capacity is large and the vehicles can fetch the requested contents with high probability.

It also can be seen that AFMC scheme is superior to all other schemes. In addition, the random

and thompson sampling scheme which those do not predict popular contents are worsen than

AFMC and N-ε-greedy scheme. It is because that AFMC scheme uses AE to extract hidden

features of data and thus can predict popular contents efficiently. Meanwhile, N-ε-greedy scheme

DRAFT August 3, 2022



9

0 5 10 15 20 25 30
Communication round

0

2

4

6

8

10

12

Ca
ch

e 
ef

fic
ie

nc
y

0

1

2

3

4

5

6

Tr
ai

ni
ng

 ti
m

es
(s

)

Fig. 2. Cache efficiency and training time of AFMC

2 5 10 15 20 25
Vehicle density

6

7

8

9

10

11

12

13

14
Ca

ch
e 

ef
fic

ie
nc

y

Fig. 3. Cache efficiency of AFMC under different vehicle densities

only caches the requested contents with the largest numbers of requests without extracting the

hidden features of the data, and thus its cache efficiency is lower than that of AFMC scheme.

In addition, Table. I also shows that the caching efficiency of AFMC scheme is higher than

those of AFC and FedAVG scheme. It is because that AFMC scheme considers the mobility

characteristics of vehicles to update the global model once a vehicle’s local model is received.

Fig. 2 depicts the cache efficiency and rounds of the AFMC scheme against training time.

The vehicle density is 10 vehicles/km and the cache capacity is 50. We can see that the cache

efficiency always maintains stability around 11%, which demonstrates the stability of the cache

performance of AFMC scheme in dynamic VEC scenarios. We can also see that the training

time of the AFMC scheme for each round has a periodicity of 10 rounds. It is because that 10

vehicles have various distributions of data and the local model can be trained fast if the data

size is small. The RSU first aggregates the local model of the vehicle with the least data size

and the training time gradually increases until the vehicle with the largest data completes the

aggregation. Then the vehicle with the smallest data size data begins to upload the model again.

Fig. 3 depicts the cache efficiency of the AFMC scheme under different vehicle densities

when the cache capacity of RSU is 50. The cache efficiency of AFMC scheme increases from

August 3, 2022 DRAFT



10

0 5 10 15 20 25 30
Communication round

10.6

10.7

10.8

10.9

11.0

11.1

Ca
ch

e 
ef

fic
ie

nc
y

������
����
���

Fig. 4. Cache efficiency under different rounds

7.55% to 13.58% when the number of vehicle density increases from 2 to 25 vehicles/km. In

other words, the caching performance of the AFMC scheme will increase as more vehicles enter

the coverage area of the RSU. It is because that the global model can be trained more accurately

with more data when the number of vehicles increases.

Fig. 4 compares the cache efficiency of the AFMC scheme with that of the FedAVG and

AFC scheme under different rounds, where the number of vehicles is 10 and the cache capacity

of RSU is 50. It is seen that the cache efficiency of the AFMC scheme is higher than AFC

scheme. This is because the AFMC scheme considers the vehicles’ mobility characteristics,

and improves the accuracy of the global model. Moreover, the caching efficiency of FedAVG

scheme is worsen than those of other schemes. It is because that FedAVG scheme must wait for

all vehicles to upload their local models before aggregating the global model; The accuracy of

the global model will be reduced if at least a vehicle has not uploaded the local model before

they leave the RSU coverage. Besides, the caching efficiency of FedAVG scheme fluctuates

drastically since it doesn’t consider the mobility characteristics of vehicles.

V. CONCLUSIONS

In this paper, we have considered the vehicle mobility and proposed an AFMC caching scheme

to improve the cache efficiency. We first proposed an asynchronous FL algorithm to obtain an

accurate global model, and then proposed an algorithm to predict the popular contents based

on the global model. Numerical results show that AFMC outperforms other baseline caching

schemes. The conclusions can be summarized as follows:

• AFMC scheme considers vehicles’ mobility characteristics to select vehicles to participate

in asynchronous FL training, which can improve the accuracy of global model.

DRAFT August 3, 2022



11

• AFMC scheme greatly reduces the training time by aggregating a single vehicle’s local

model in each round.

REFERENCES

[1] L. Liu, C. Chen, Q. Pei, S. Maharjan and Y. Zhang, “Vehicular Edge Computing and Networking: A Survey,” Mobile

networks and applications, vol. 26, no.3, pp. 1145-1168, 2021.

[2] Q. Wu, Y. Zhao and Q. Fan, “Time-Dependent Performance Modeling for Platooning Communications at Intersection,”

IEEE Internet of Things Journal, 2022, doi: 10.1109/JIOT.2022.3161028.

[3] H. Zhu, Q. Wu, X. Wu, Q. Fan, P. Fan and J. Wang, “Decentralized Power Allocation for MIMO-NOMA Vehicular Edge

Computing Based on Deep Reinforcement Learning,” IEEE Internet of Things Journal, vol. 9, no.14, pp. 12770-12782,

2022.

[4] M. A. Javed and S. Zeadally, “AI-Empowered Content Caching in Vehicular Edge Computing: Opportunities and

Challenges,” IEEE Network, vol. 35, no. 3, pp. 109-115, 2021.

[5] M. Yan, C. A. Chan, W. Li, L. Lei, A. F. Gygax and C. -L. I, “Assessing the Energy Consumption of Proactive Mobile

Edge Caching in Wireless Networks,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2931449.

[6] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao and M. S. Hossain, “Mobility-Aware Proactive Edge Caching for Connected

Vehicles Using Federated Learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 5341-

5351, 2021.

[7] S. Chilukuri and D. Pesch, “Achieving Optimal Cache Utility in Constrained Wireless Networks through Federated

Learning,” in 2020 IEEE 21st International Symposium on “ A World of Wireless, Mobile and Multimedia Networks ”

(WoWMoM) , Cork, Ireland, 2020.

[8] L. Cui, X. Su, Z. Ming, Z. Chen, S. Yang, Y. Zhou and W. Xiao, “CREAT: Blockchain-assisted Compression

Algorithm of Federated Learning for Content Caching in Edge Computing,” IEEE Internet of Things Journal, 2020,

doi: 10.1109/JIOT.2020.3014370.

[9] Y. Lu, X. Huang, Y. Dai, S. Maharjan and Y. Zhang, “Federated Learning for Data Privacy Preservation in Vehicular

Cyber-Physical Systems,” IEEE Network, vol. 34, no. 3, pp. 50-56 2020.

[10] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization” arXiv preprint arXiv:1903.03934, 2019.

[11] F. Harper and J. Konstan, “The movielens datasets: History and context,” Acm transactions on interactive intelligent

systems, vol. 5, no. 4, pp. 19, 2015.

August 3, 2022 DRAFT

http://arxiv.org/abs/1903.03934

	I Introduction
	II System Model
	III Asynchronous Federated Learning based Mobility-aware Caching scheme
	III-A Mobility-aware asynchronous FL
	III-A1 Vehicle Selection
	III-A2 Model Download and Local Training
	III-A3 Upload Updated Model and Asynchronous Aggregation

	III-B Content Popularity Prediction
	III-B1 Data Preprocessing
	III-B2 Cosine Similarity
	III-B3 Interested Contents
	III-B4 Popular Contents


	IV Simulation Results
	IV-A Simulation Setup
	IV-B Performance Evaluation

	V Conclusions
	References

