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A B S T R A C T
Cooperative perception, which has a broader perception field than single-vehicle perception, has
played an increasingly important role in autonomous driving to conduct 3D object detection. Through
vehicle-to-vehicle (V2V) communication technology, various connected automated vehicles (CAVs)
can share their sensory information (LiDAR point clouds) for cooperative perception. We employ
an importance map to extract significant semantic information and propose a novel cooperative
perception semantic communication scheme with intermediate fusion. Meanwhile, our proposed
architecture can be extended to the challenging time-varying multipath fading channel. To alleviate
the distortion caused by the time-varying multipath fading, we adopt explicit orthogonal frequency-
division multiplexing (OFDM) blocks combined with channel estimation and channel equalization.
Simulation results demonstrate that our proposed model outperforms the traditional separate source-
channel coding over various channel models. Moreover, a robustness study indicates that only part
of semantic information is key to cooperative perception. Although our proposed model has only
been trained over one specific channel, it has the ability to learn robust coded representations of
semantic information that remain resilient to various channel models, demonstrating its generality
and robustness.

1. Introduction
Dating back to the 1940s, Shannon’s separation the-

orem demonstrates that the separate source and channel
coding can reach optimality with an infinite block length
[1]. However, an increasing number of wireless applications,
such as Internet-of-Things and autonomous driving, require
low latency real-time communication and low computation
complexity, where the infinite coding length is not practical.
Semantic communication with joint source-channel coding
(JSCC) is proposed to optimize source coding and channel
coding to achieve better performance for specific tasks.
Inspired by the significant success of the deep learning tech-
niques, JSCC is first introduced to text transmission through
recurrent neural networks (RNN) [2]. In [3], hybrid auto-
matic repeat request (HARQ) is exploited to reduce semantic
transmission error further. In addition to the reconstruction
task, a multi-task semantic communication system is pro-
posed for various text tasks in [4]. Meanwhile, for wireless
image transmission, a deep JSCC system [5] is proposed,
which directly maps the image pixel values to the complex-
valued channel input symbols instead of relying on explicit
coding for either compression or error correction. Later,
the proposed deep JSCC system is extended to feedback
channels [6], transmission with digital constellation [7], or
image retrieval problem at the edge [8]. Similar to image
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transmission, the JSCC schemes [9], [10] for video trans-
mission map video signals to channel symbols, combining
video compression, channel coding, and modulation steps
into a single neural transform.

In addition to text, speech [11], images [5] and videos
[9], sensor data (LiDAR point clouds) widely in autonomous
driving also contains essential semantic information [12],
[13]. Since the perception field of the autonomous car itself
is usually limited by the objects, such as buildings and trees,
a novel detection scheme with cooperative perception is
investigated for a broader perception field. Through the uti-
lization of V2V communication technology, different con-
nected automated vehicles (CAVs) can exchange and fuse
their sensory information, enabling the provision of multiple
viewpoints for the same obstacle to complement one another
[12], [13], [14], [15], [16], [17]. The exchanged informa-
tion encompasses raw data, intermediate features, detection
outputs from individual CAVs, and metadata such as times-
tamps and poses. From the perspective of the fusion method,
cooperative perception can be categorized into early fusion,
intermediate fusion, and late fusion. Early fusion of raw
data (LiDAR point clouds) requires the most communication
resources. Intermediate fusion of the intermediate feature
extracted from the raw data requires fewer communication
resources than early fusion but can potentially perform as
well as early fusion. Late fusion transmits the detection
outputs from the CAV, which requires the least amount
of resources at the expense of degraded performance. The
intermediate fusion is usually considered in cooperative
perception. Since the data size of shared information in
cooperative perception and the number of CAVs can be huge
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and surpass the communication capability of conventional
vehicular links, it is urgent to optimize the trade-off between
perception performance and communication overhead.

To balance performance and communication bandwidth,
several works have put forth solutions based on intermediate
fusion from different perspectives. A handshake mechanism
that selects the most relevant CAVs is proposed in [18],
which learns how to construct communication groups and
decide when to communicate. Unlike broadcast-based meth-
ods, the approach is inspired by general attention mecha-
nisms and involves decoupling the communication stages,
leading to a reduction in the amount of transmitted data.
Meanwhile, an end-to-end learning-based source coding
method is considered in [19], which utilizes a spatially aware
graph neural network (GNN) to aggregate the information
received from the CAVs. A 1D convolution is adopted in
[20] to compress the message, which is then pushed to the
communication channels. Nevertheless, all previous studies
have made the assumption that once two agents collabo-
rate, they are required to share perceptual information of
all spatial areas equally. However, this may significantly
waste bandwidth, as a considerable portion of spatial areas
may contain irrelevant information for the perception task.
Hence, a spatial-confidence-aware communication strategy
is proposed in [21] to transmit the relevant semantic in-
formation, which can reduce the communication bandwidth
substantially.

These works typically assume perfect communications
between CAVs and ignore underlying channel effects. A
new late fusion method [22] transmits intermediate features
over the wireless channel to fuse the detection outputs. The
communication overhead of the new late fusion method is
as large as the intermediate fusion method. However, the
perception accuracy is less than that of the intermediate
fusion because the essence of the new late fusion is a kind
of late fusion. Hence, it is urgent to propose a novel interme-
diate fusion method over the wireless channel to overcome
the distortion caused by the channel impairments, reduce
the communication overhead, and achieve high perception
accuracy.

In response, we introduce a cooperative perception se-
mantic communication framework, which employs an im-
portance map to extract significant semantic information at
the transmitter and fuses the intermediate feature through
an attention-based mechanism at the receiver. Our proposed
system is designed based on a JSCC architecture and trained
in an end-to-end learning manner, which is optimized to
achieve better semantic performance (perception accuracy).
Our method outperforms the separate coding methods, es-
pecially in the low signal-to-noise ratio (SNR) regimes. Our
main contribution can be summarized as:

• To the best of our knowledge, this is the first time a
joint source-channel coding architecture is trained for
cooperative perception with intermediate fusion over
wireless channels. Our method exploits the semantic
information through the importance map to achieve

better semantic performance and reduce communi-
cation overhead. The extracted semantic information
is then passed to an autoencoder based on the con-
volutional neural network (CNN) to overcome the
distortion caused by the wireless channel.

• We extend our proposed JSCC architecture to the
challenging time-varying multipath fading channels.
OFDM blocks combined with channel estimation and
channel equalization are adopted to combat the time-
varying multipath fading and enhance the system per-
formance.

• Through evaluating the proposed method over AWGN
channel, Rayleigh fading channel, and a time-varying
multipath fading channel based on the 3GPP specifica-
tions [23], our proposed JSCC communication scheme
outperforms the traditional separate source and chan-
nel coding methods. Moreover, our proposed method
avoids the ’cliff effect’ in the low SNR regimes, which
prevents catastrophic perception performance reduc-
tion.

• Through a robustness study, we verify that only a few
parts of the feature map are essential for the intermedi-
ate fusion and 3D detection, which demonstrates that
the communication bandwidth can be reduced sig-
nificantly. Moreover, our proposed method can learn
robust coded representations of the semantic informa-
tion that are resilient to various channel models even
if our proposed model is trained under one specific
channel model.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the system model and problem formula-
tion, including different channel models. Section 3 describes
our proposed method, module designs, and training strate-
gies. Section 4 demonstrates the superiority of the proposed
model and conducts a robustness study. Section 5 concludes
this paper.

2. System Model and Problem Formulation
We consider that one CAV would share data with an ego

car as an illustrative example, where the shared data is fused
with ego cars for 3D detection. The intermediate fusion is
considered in our system to achieve a balance between the
performance and communication resources. Fig. 1 illustrates
the framework of the cooperative perception process with
intermediate fusion. The cooperative perception system with
intermediate fusion comprises four main modules: feature
extraction, feature sharing, feature fusion, and detection
result generation.

Feature extraction. We have chosen the anchor-based
PointPillar method [24], [25], [26] as the backbone for 3D
detection to extract features from LiDAR point clouds. The
raw data would be scattered to form a 2D pseudo-image and
subsequently passed to the backbone for further processing.
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Figure 1: Framework of the cooperative perception with intermediate fusion.

Feature sharing. In this module, the ego vehicle re-
ceives feature maps from the CAV after the feature extraction
process. The received intermediate features are then passed
to the remaining networks within the ego vehicle. How-
ever, in real-world scenarios, due to channel impairment,
the transmission of feature maps would often suffer from
distortion, resulting in performance degradation.

Feature fusion. The received intermediate feature and
the feature extracted in the ego car would be fused to a
new feature tensor through the attention network for further
processing.

Detection result generation. Upon receiving the final
fused feature maps, the prediction header would be em-
ployed for the tasks of box regression and classification.

We focus on feature sharing and feature fusion, which are
impacted by impairments caused by wireless channels to the
most extent. We consider two different channel models to de-
scribe the channel impairment. First, we consider Rayleigh
fading channels as well as simple additive white Gaussian
noise (AWGN) channels. If 𝑥 is sent, the signal received at
the receiver will be represented as

𝑦𝑖 = ℎ𝑥𝑖 + 𝑛, (1)
where ℎ represents the channel distortion caused by the
Rayleigh fading and 𝑛 represents the noise. Furthermore,
we consider an orthogonal frequency-division multiplexing
(OFDM) system for a time-varying multipath fading chan-
nel. The received signal 𝑦𝑖,𝑘 for the 𝑖th OFDM symbol over
the 𝑘th subcarrier 𝑥𝑖,𝑘 is represented as

𝑦𝑖,𝑘 = ℎ𝑖,𝑘𝑥𝑖,𝑘 + 𝑛, (2)
where ℎ𝑖,𝑘 represents the channel frequency response for
the 𝑖th OFDM symbol over the 𝑘th subcarrier and and 𝑛
represents the noise. ℎ𝑖,𝑘 can be represented as

ℎ𝑖,𝑘 =
𝑀−1
∑

𝑚=0
𝑎𝑚(𝑖)𝑒−𝑗2𝜋𝑘Δ𝑓𝜏𝑚 , (3)

where 𝑀 represents the number of taps, Δ𝑓 represents the
subcarrier spacing, and (𝑎𝑚(𝑖), 𝜏𝑚) represent the amplitude
and delay of the 𝑚th channel tap.

For the given channel models, our goal is to develop an
encoder and decoder to share the intermediate feature over

the wireless channel and optimize the cooperative perception
performance. We consider the conventional communication
method as the benchmark, which overcomes the distor-
tion caused by the wireless channel through source coding,
channel coding, and modulation. However, the traditional
method may suffer from the ’cliff effect’ in the sense that
the perception accuracy drops dramatically when the SNR
falls below a threshold. In contrast, we propose to use the
autoencoder-based end-to-end learning structure to transmit
the intermediate features at the semantic level in order to
achieve a desirable balance between communication load
and perception accuracy.

3. Algorithm based on Importance Map
In this section, we first introduce the cooperative percep-

tion model based on the importance map. Next, we describe
the network structure for our proposed semantic encoder and
decoder. Then, We extend the cooperative perception model
to an OFDM-based system to efficiently deal with the time-
varying multipath fading channel. Finally, we illustrate the
loss function and training algorithm of our proposed method.
3.1. Cooperative Perception Model based on

Importance Map
Fig. 2 illustrates the structure of the cooperative per-

ception model with the importance map. As demonstrated
before, our proposed system focuses on feature sharing
and feature fusion, where the data is transmitted over the
wireless channel. As illustrated in Fig. 2, feature tensor 𝐹𝑖,representing the semantic information of the 𝑖th sample, is
extracted from the raw data 𝑋𝑖 (LiDAR point clouds) in the
CAV through a backbone network, such as PointPillar [18],

𝐹𝑖 = Φ(𝑋𝑖), (4)
where 𝐹𝑖 ∈ ℝ𝐶×𝐻×𝑊 and 𝐶 represents the number of
channels. 𝐻 and 𝑊 are the height and width of the feature
tensor. Similarly, the feature tensor of ego car 𝐹 ′

𝑖 is also
extracted from raw data 𝑋′

𝑖 in the ego car through the same
neural network Φ(⋅), given by

𝐹
′

𝑖 = Φ(𝑋
′

𝑖 ). (5)
For the purpose of more efficient transmission, we en-

deavor to identify the significant parts of the feature tensor
First Author et al.: Preprint submitted to Elsevier Page 3 of 13
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Figure 2: Structure of the cooperative perception model based on the importance map.

and leverage the importance map [21]. Specifically, feature
tensor 𝐹𝑖 is processed through an importance map generator
based on neural network 𝑃 (⋅) to obtain an importance map
𝐶𝑖, after which 𝐹𝑖 will be element-wise multiplied by the
generated importance map 𝐶𝑖 to generate transmitted data
𝑀𝑖, denoted by

𝐶𝑖 = 𝑃 (𝐹𝑖), (6)
and

𝑀𝑖 = 𝐹𝑖 ⊙ 𝐶𝑖, (7)
where 𝐶𝑖 ∈ [0, 1]𝐻×𝑊 and 𝑀𝑖 ∈ ℝ𝐶×𝐻×𝑊 . In this paper,
we define the non-zero element ratio of the importance map
as compression rate (CR), which indicates the data size of the
transmitted information deemed as important. Intuitively,
CR is a hyperparameter. Through extensive experiments,
we can find that CR could achieve a balance between the
transmission overhead and performance when set on the
order of 10−2. Hence, after the element-wise multiplication,
the feature tensor becomes sparse and only the non-zero part
of the tensor needs to be communicated. Then, we develop
a joint source-channel coding scheme for transmitting and
receiving the shared data. Unlike traditional communication
systems that require source coding, channel coding, and
modulation, our method integrates these processes to opti-
mize the transmission of semantic feature tensors. Semantic
information 𝑀𝑖 would be mapped into a complex symbol
stream 𝑇𝑖 in the semantic encoder to overcome channel
distortion and noise. Complex symbol stream 𝑇𝑖 can be
represented as

𝑇𝑖 = Ψ𝑠(𝑀𝑖), (8)
where 𝑇𝑖 ∈ ℂ𝐻 ′×𝑊 ′ and Ψ𝑠(⋅) represents the semantic
encoder. Following the encoding operation, joint source-
channel coded sequence 𝑇𝑖 is sent over the communication
channel defined via (1) or (2).

At the receiver side (the ego car), received symbol 𝑇 ′

𝑖 is
first passed to semantic decoder Ψ𝑑(⋅), which demaps the
complex symbol into semantic information 𝑅𝑖 for further
fusion, denoted by

𝑅𝑖 = Ψ𝑑(𝑇
′

𝑖 ). (9)
Through feature fusion methods, such as attention mecha-
nisms, the semantic information 𝑅𝑖 is fused with 𝐹 ′

𝑖 into a
single fusion tensor that contains the semantic information
from the CAV and the ego car. The output of the feature
fusion 𝐷𝑖 can be represented as

𝐷𝑖 = 𝜒(𝑅𝑖, 𝐹
′

𝑖 ), (10)
where 𝐷𝑖 ∈ ℝ𝐶×𝐻×𝑊 , 𝑅𝑖 ∈ ℝ𝐶×𝐻×𝑊 , and 𝜒(⋅) represents
the feature fusion network. We remark that the self-attention
fusion method is adopted in this paper. Since feature vectors
in the feature map, 𝑅𝑖 and 𝐹 ′

𝑖 , correspond to specific spatial
regions in the LiDAR point clouds, the spatial relationship
can be captured through the self-attention fusion.

After the attention fusion, the prediction header will
generate bounding box proposals and their corresponding
confidence scores. Detection output 𝑌𝑖 generated by the
detection network Γ(⋅) can be represented as

𝑌𝑖 = Γ(𝐷𝑖), (11)
where 𝑌𝑖 consists of the regression output and classification
output. The regression output consists of seven parameters
(𝑥, 𝑦, 𝑧, 𝑤, 𝑙, ℎ, 𝜃), representing the position, the size, and
the yaw angle of the predefined anchor boxes, respectively.
These parameters are used to refine the anchor boxes and fit
the objects accurately. On the other hand, the classification
output is the confidence score assigned to each anchor box,
indicating the probability of an object or background. The
score helps distinguish whether an anchor box contains an

First Author et al.: Preprint submitted to Elsevier Page 4 of 13
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Figure 3: Network structure for our proposed semantic encoder and decoder. The parameters for blue boxes are in the format of
𝑖𝑛𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 × 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 × 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 × 𝑠𝑡𝑟𝑖𝑑𝑒.

object of interest or is just background. Together, the regres-
sion and classification outputs compose the final predictions
made by the object detection model for object detection and
localization.
3.2. Semantic Encoder and Decoder

The network structure for our proposed semantic encoder
and decoder is shown in Fig. 3. At the transmitter, the seman-
tic encoder transforms input feature map 𝑀 ∈ ℝ𝐶×𝐻×𝑊

into complex-valued channel input samples 𝑇 ∈ ℂ𝐻 ′×𝑊 ′ .
This transformation is achieved by using a deterministic
encoding function Ψ𝑠 ∶ ℝ𝐶×𝐻×𝑊 → ℂ𝐻 ′×𝑊 ′ , which
satisfies the average power constraint. Firstly, feature map
𝑀 is reshaped to 𝑀 ′ ∈ ℝ1×𝐻 ′×𝑊 ′ , which neglects the zero
part of the feature. Since the magnitude of CR is set as 10−2,
𝐻 ′𝑊 ′ is much smaller than 𝐶𝐻𝑊 , thus giving rise to a
dramatic reduce in both the transmission overhead and the
computational complexity. Afterward, the 𝑀 ′ is mapped to
𝑇 with a CNN, which consists of a series of convolutional
layers, normalization layers, and parametric ReLU activation
functions.

At the receiver, the semantic decoder demaps received
complex-valued channel output samples 𝑇 ′ ∈ ℂ𝐻 ′×𝑊 ′ into
reconstructed feature map 𝑅 ∈ ℝ𝐶×𝐻×𝑊 . This demapping
process is performed using a deterministic decoding func-
tion Ψ𝑑 ∶ ℂ𝐻 ′×𝑊 ′

→ ℝ𝐶×𝐻×𝑊 . In this paper, we apply the
transconvolutional layers to reconstruct the received signal,
which is more complex than the convolutional layers at the
encoder. After the transconvolutional layers, a reshape layer
is applied to map the reconstructed signal into 𝑅. Note that
the number of layers in the encoder and decoder can be
optimized through experiments.
3.3. Cooperative Perception Model with OFDM

extension
We extend the cooperative perception model to an

OFDM-based system to deal with the time-varying mul-
tipath fading channel. In our assumption, each frame of
LiDAR point clouds is transmitted within a single time slot,
which includes𝑁𝑝 pilot OFDM symbols and𝑁𝑠 information
OFDM symbols. We use block-type pilots for channel
estimation by sending known symbols on all subcarriers over
a few OFDM symbols. Complex symbol stream 𝑇𝑖 is initially

normalized to 𝑇𝑛 according to

𝑇𝑛 =
√

𝐻 ′𝑊 ′𝑃
𝑇𝑖

√

𝑇 ∗
𝑖 𝑇𝑖

, (12)

where 𝑇𝑛 ∈ ℂ𝐻 ′×𝑊 ′ , 𝑇 ∗
𝑖 is the conjugate transpose of 𝑇𝑖,and 𝑃 is the average transmit power constraint. 𝑇𝑛 would be

reshaped to 𝑇𝑚 ∈ ℂ𝑁𝑠×𝐿fft , where 𝐿fft denotes the number
of subcarriers in an OFDM symbol.

In case 𝐻 ′𝑊 ′ < 𝑁𝑠𝐿fft, we would reshape 𝑇𝑛 into 𝑇𝑚through zero-padding. The pilot symbols 𝑇𝑝 ∈ ℂ𝑁𝑝×𝐿fft are
used for channel estimation, which are known to both the
transmitter and receiver. In this paper, we assume that the
𝑁𝑝 pilot symbols are generated by the QAM modulation
symbols of randomly generated bits. After that, we apply the
inverse fast Fourier transform (IFFT) to generate 𝑇𝑝 and 𝑇𝑚and add the cyclic prefix (CP) to them. Subsequently, the
transmit signal 𝐸 ∈ ℂ(𝑁𝑝+𝑁𝑠)×(𝐿fft+𝐿cp) travels through the
multipath channel as described in (2). Upon receiving the
noisy channel output 𝐸′, the receiver removes the CP and
performs the fast Fourier transform (FFT) to generate the
frequency domain pilots 𝑇 ′

𝑝 and data symbols 𝑇 ′
𝑚. Thus, the

received pilot and information symbols can be represented
as

𝑇 ′
𝑚[𝑖, 𝑘] = 𝐻[𝑖, 𝑘]𝑇𝑚[𝑖, 𝑘] +𝑍, (13)

and
𝑇 ′
𝑝[𝑗, 𝑘] = 𝐻[𝑗, 𝑘]𝑇𝑝[𝑗, 𝑘] +𝑍, (14)

where 𝐻[𝑗, 𝑘] denotes the channel frequency response at the
𝑘th subcarrier of the 𝑗th OFDM symbol, and 𝑍 denotes the
AWGN. Meanwhile, 𝑇 ′

𝑚[𝑖, 𝑘] ∈ ℂ𝑁𝑠×𝐿fft and 𝑇𝑝 ∈ ℂ𝑁𝑝×𝐿fft
represent the received frequency domain symbols of the
pilots and information, respectively.

One feasible method for estimating the source infor-
mation is to aggregate 𝑇 ′

𝑝 , 𝑇 ′
𝑚, and 𝑇𝑝 and directly input

them into a neural network as proposed in [27]. However,
this approach relies on the neural network and treats the
entire decoder as a black box, which may converge slowly.
Hence, we apply explicit signal processing kernels, such
as channel estimation and equalization, to reconstruct the
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source information. In this work, we adopt the minimum
mean-squared error (MMSE) channel estimation method.
Estimated channel response 𝐻MMSE[𝑗] can be represent as

𝐻MMSE[𝑗] = 𝑅𝐻𝐻LS

(

𝑅𝐻𝐻 + 1
SNR𝐼

)−1
𝐻LS, (15)

where 𝑅𝐻𝐻𝐿𝑆
represents cross-correlation matrix between

real channel response of the 𝑗th pilot symbol 𝐻 and least
squares (LS) channel estimation 𝐻LS, and 𝑅𝐻𝐻 represents
the autocorrelation matrix of 𝐻 . Meanwhile, SNR denotes
signal-to-noise ratio of the signal and 𝐼 represents the iden-
tity matrix, which is in the same shape as 𝑅𝐻𝐻 . For sim-
ulation, we use 𝐻LS to approximate 𝐻 when computing
𝑅𝐻𝐻 and 𝑅𝐻𝐻LS because the real channel response cannot
be exactly known at the receiver. The LS channel estimation
of the 𝑗th pilot symbol 𝐻LS can be represented as

𝐻LS =
𝑇 ′
𝑝[𝑗]

𝑇𝑝[𝑗]
, (16)

where 𝑇𝑝[𝑗] represents the 𝑗th transmitted pilot symbol and
𝑇 ′
𝑝[𝑗] represents the 𝑗th received pilot symbol. For equaliza-

tion, we adopt a conventional MMSE equalizer, which can
be represented as

𝑇 ′[𝑖, 𝑘] =
𝐻MMSE[𝑖, 𝑘]∗𝑇 ′

𝑚[𝑖, 𝑘]
|𝐻MMSE[𝑖, 𝑘]|2 + 𝜎2

, (17)

where𝐻MMSE[𝑖, 𝑘] represent the estimated channel response
of the 𝑖th OFDM symbol over the 𝑘th subcarrier, and 𝜎2
represents the noise power.
3.4. Loss function and Training Algorithm

By optimizing the reconstruction loss, the semantic en-
coder and decoder can minimize the average distortion be-
tween feature map 𝑀 and its reconstruction 𝑅 produced by
the decoder. The reconstruction loss can be represented by
the average mean-squared error (MSE) between 𝑀 and 𝑅,

𝐿𝑟𝑒𝑐 =
1
𝑁

𝑁
∑

𝑖=1
||𝑀𝑖 − 𝑅𝑖||

2
2, (18)

where 𝑖 represents the 𝑖th sample and 𝑁 denotes the number
of samples. Meanwhile, in order to measure the performance
of cooperative perception, we adopt smooth 𝐿1 loss for
regression and a focal loss for classification [12], denoted
by

𝐿𝑝𝑒𝑟 =
1
𝑁

𝑁
∑

𝑖=1
𝐿(𝑌𝑖, 𝑌𝑖), (19)

where 𝐿(⋅) denotes the perception loss for one sample. The
total loss function can be represented by

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑟𝑒𝑐 + 𝜆2𝐿𝑝𝑒𝑟, (20)
where 𝜆1 denotes the weight for the reconstruction loss and
𝜆2 denotes the weight for the perception loss. Minimizing

𝐿𝑟𝑒𝑐 amounts to encouraging the transmitted and recovered
messages to be as similar to each other as possible, and
can thus be roughly characterized as improving the bit-level
accuracy. On the other hand, minimizing 𝐿𝑝𝑒𝑟 drives down
the perception loss and therefore can be seen as the semantic-
level optimization. Hence, the system can achieve a balance
between semantic and bit accuracy through choosing appro-
priate hyperparameters 𝜆1 and 𝜆2.

Algorithm 1: Training Algorithm
Input: The raw data 𝑋𝑖 (LiDAR point clouds)
Output: The detection output 𝑌𝑖
Step 1: Train the semantic encoder and decoder.
while not converge do

for 𝑋𝑖 in batch samples do
𝐹𝑖 = Φ(𝑋𝑖);
𝑀𝑖 = 𝐹𝑖 ⊙ 𝐶𝑖, 𝐶𝑖 = 𝑃 (𝐹𝑖);
𝑇𝑖 = Ψ𝑠(𝑀𝑖);
𝑅𝑖 = Ψ𝑑(𝑇

′

𝑖 );
end
Compute 𝐿𝑟𝑒𝑐 ;Compute the gradient;
Update the network Ψ𝑠(⋅),Ψ𝑑(⋅) using SGD;

end
Step 2: Train the whole network.
while not converge do

for 𝑋𝑖 in batch samples do
𝐹𝑖 = Φ(𝑋𝑖);
𝐹 ′

𝑖 = Φ(𝑋′

𝑖 );
𝑀𝑖 = 𝐹𝑖 ⊙ 𝐶𝑖, 𝐶𝑖 = 𝑃 (𝐹𝑖);
𝑇𝑖 = Ψ𝑠(𝑀𝑖);
𝑅𝑖 = Ψ𝑑(𝑇

′

𝑖 );
𝐷𝑖 = 𝜒(𝑅𝑖, 𝐹

′

𝑖 );
𝑌𝑖 = Γ(𝐷𝑖);

end
Compute 𝐿𝑡𝑜𝑡𝑎𝑙;Compute the gradient;
Update the whole network using SGD;

end

As illustrated in Algorithm 1, the training process of the
proposed model consists of two steps. The first step is to train
the semantic encoder and decoder until convergence. Partic-
ularly, we first generate 𝑅𝑖 and compute the loss between 𝑅𝑖and 𝐹𝑖 in (18). Then, we compute the gradient and update
semantic encoder Ψ𝑠(⋅) and decoder Ψ𝑑(⋅) using stochastic
gradient descent (SGD) methods. As for the second step,
the detection output 𝑌𝑖 is generated and passed through the
whole network to compute the loss in (20). Finally, the
whole network would be updated until convergence. It is
necessary to adopt the first step when training since training
the whole network directly may lead to slow convergence
or even divergence. Moreover, the second step would enable
the whole network to perform well at the semantic level.
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4. Evaluation
To demonstrate the potential of our proposed cooperative

perception model with the importance map, we evaluate
the architecture depicted in Fig. 3. Our proposed model is
evaluated on the OPV2V dataset [12], which is a vehicle-
to-vehicle cooperative perception dataset co-simulated by
OpenCDA [12] and Carla [28]. The dataset includes 12K
frames of 3D point clouds and RGB images with 230K
annotated 3D boxes. The perception range is 40𝑚×40𝑚. For
Lidar-based 3D object detection task, our proposed model
leverages PointPillar backbone [24], which transforms the
field of view into a bird’s eye view map. The whole network
is implemented in Pytorch and trained with two RTX 3080
GPUs. We employ the Adam optimization framework for
back-propagation, which represents a variant of stochastic
gradient descent.

The performance of our proposed model is evaluated in
terms of Average Precision (AP) at the Intersection-over-
Union (IoU) threshold of 0.50 and 0.70. AP is a commonly
used evaluation metric to assess the performance of object
detection algorithms. It quantifies the accuracy and trade-
off between precision and recall by calculating precision
at different recall levels and taking their average. A higher
AP value indicates that the algorithm is more accurate and
reliable in detecting objects. The AP is defined as

AP@𝐼 = ∫

1

0
max{𝑝(𝑟′|𝑟′ > 𝑟)

}

𝑑𝑟, (21)

where 𝑝(𝑟) is the precision-recall curve at IoU threshold
𝐼 ∈ {0.5, 0.7}. For instance, AP@0.5 represents the area
under the precision-recall curve at IoU threshold 0.5. Mean-
while, the performance of AP@0.5 is intuitively better than
AP@0.7 since the higher IoU threshold would decrease the
precision accuracy.

The channel SNR can be defined as
SNR = 10 log10

𝑃
𝜎2

, (22)
where SNR represents the ratio of the average power of
the coded signal (channel input signal) to the average noise
power. In the proposed scheme, 𝑃 denotes the average power
of the channel input signal after the power normalization
layer applied at the encoder, and 𝜎2 represents the average
noise power. For the benchmark schemes that utilize explicit
signal modulation, 𝑃 refers to the average power of the sym-
bols in the constellation. To ensure generality, the average
signal power is set to 𝑃 = 1 for all experiments.
4.1. Comparison with Separate Coding Schemes

In this section, we compare our proposed method with
a baseline separate source and channel coding scheme. The
baseline separate coding scheme uses uniform quantization
for the feature generated by the backbone network, i.e., 𝑀𝑖in (7). In the baseline scheme, we set the 8-bit quantization
method as source coding. Note that the performance of the
perception model will not decrease under the 8-bit quanti-
zation method by selecting the appropriate quantization step

size and zero point. Furthermore, the 1∕2 rate low-density
parity check (LDPC) coding with a 1,000 code length are
considered for channel coding, and 16QAM or 256QAM is
applied for modulation after channel coding.

Meanwhile, different channel coding schemes combined
with different modulation methods may cause different chan-
nel uses for the same input. For a fair comparison, we adjust
the CR of the importance map to ensure the same channel
uses for different combinations of modulation and coding
schemes (MCS). The size of raw data can be represented
by 𝐷𝑟, and the channel uses of baseline schemes can be
represented as

Channel uses = 𝐷𝑟 × CR × 8
𝑙𝑜𝑔2𝑀𝑐 × 𝑅𝑐

, (23)

where 𝑅𝑐 represents the coding rate and 𝑀𝑐 represents the
order of QAM. Thus, CR = 0.00125 and CR = 0.0025
can be set for 1/2LDPC+16QAM and 1/2LDPC+256QAM,
respectively, which can ensure the same channel uses as our
proposed methods with CR = 0.005.

Fig. 4 illustrates the performance of our proposed method
compared with baseline schemes at different SNRs over the
AWGN channel, where Ours-AWGN denotes our scheme.
The upper bound can be obtained assuming perfect com-
munication. In Fig. 4(a), in terms of AP@0.5, our pro-
posed method outperforms the separate coding schemes
with the same channel uses since our proposed method
is designed and trained with joint source-channel coding,
which can jointly optimize the whole system to preserve
more semantic information given the same communication
resources used. Meanwhile, the proposed method exhibits
smoother performance in low SNR regimes without the
cliff effect, which is commonly observed in traditional
communication systems. Hence, our proposed method can
prevent catastrophic perception performance loss in the
low SNR regimes, which is critical to autonomous driving.
Moreover, our method significantly outperforms traditional
schemes and approaches the performance upper bound
constrained by the cooperative perception module at SNR
= 6 dB. On the one hand, traditional coding combined with
low-order modulation achieves better performance in the
low SNR regimes and reaches its maximum performance
at SNR = 9 dB. On the other hand, despite performing
worse than low-order modulation in the low SNR regimes,
high-order modulation reaches its maximum performance at
SNR = 18 dB and surpasses the performance of low-order
modulation. This is because high-order modulation allows
the transmission of more semantic information, especially
in high SNR regimes. In Fig. 4(b), our proposed method
is compared to the traditional method evaluated in terms
of AP@0.7. We observe that our proposed method still
outperforms traditional methods while the performance of
AP@0.7 drops compared to the AP@0.5. The decrease in
the performance of AP@0.7 compared to that of AP@0.5 is
because AP at higher IoU would judge the detection outputs
more strictly. Hence, AP@0.7 is more sensitive to noise
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Figure 4: Performance of our proposed method compared with baseline schemes at different SNRs over the AWGN channel. The
baseline schemes and our proposed method exploit the same channel uses for fairness. (a) Average precision performance at the
IoU threshold 0.5; (b) Average precision performance at the IoU threshold 0.7.
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Figure 5: Performance of our proposed method compared with baseline schemes at different SNRs over the Rayleigh fading channel.
The baseline schemes and our proposed method exploit the same channel uses for fairness. (a) Average precision performance at
the IoU threshold 0.5; (b) Average precision performance at the IoU threshold 0.7.

than AP@0.5. Accordingly, in our proposed methods, the
performance of the AP@0.5 approaches the upper bound at
SNR = 6 dB while the performance of AP@0.7 approaches
the upper bound at SNR = 12 dB.

Next, the performance of our proposed scheme is consid-
ered under the assumption of a slow Rayleigh fading channel
with AWGN. In this case, the channel transfer function
is 𝑦(𝑥) = ℎ𝑥 + 𝑛, where ℎ ∼  (0,𝐻𝑐) represents
the channel distortion caused by the Rayleigh fading and
𝑛 ∼  (0, 𝜎2) represents the noise. We set 𝐻𝑐 as 1 and
simulate different channel SNRs through varying 𝜎2. In this
experiment, we assume perfect channel state information
at the receiver, which can be represented by 𝑦̂ = 𝑦

||ℎ|| .Fig. 5 illustrates the performance of our proposed method
compared to baseline schemes at different SNRs over the
Rayleigh fading channel, where Ours-Rayleigh denotes the

proposed method. From Fig. 5(a) and 5(b), the performance
of both ours and baseline schemes decreases compared to
the static AWGN channel while the proposed method still
outperforms other traditional schemes. Comparing Fig. 4(b)
with Fig. 5(b), our proposed method approaches the upper
bound at SNR = 18 dB over the Rayleigh fading channel
while reaching the upper bound at SNR = 12 dB over the
AWGN channel, which has a gap of 6 dB. This gap remains
consistent in other baseline schemes or evaluated in terms
of AP@0.5. Fig. 5 demonstrates that due to the distortion
caused by the Rayleigh fading, both the proposed method
and baseline schemes approach the upper bounds in the
higher SNR regimes than the AWGN channel.
4.2. Ablation study

In this section, we investigate the impact of different
training steps with respect to the channel SNR over an
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Figure 6: Performance of our proposed method with different
training steps over an AWGN channel.

Figure 7: Kronecker-based pilot for channel estimation of a
time-varying OFDM channel.

AWGN channel. As Algorithm 1 illustrates, our training
algorithm includes two steps, to train the channel encoder
and decoder with the MSE loss in (18) and to train the whole
model jointly with loss in (20). From Fig. 6, the perfor-
mance of going through 2 training steps evaluated in terms
of both AP@0.5 and AP@0.7 has increased significantly
than that training for only Step 1 in Algorithm 1. This is
because training with one step can only allow the system to
transmit accurately at the bit level while two-step training
can reach accuracy at the semantic level. Meanwhile, a
joint end-to-end training scheme for task loss (perception
loss) can provide valuable insights to the semantic encoder
regarding the essential semantic information that needs to
be transmitted. Moreover, despite that the MSE loss of
different training steps may be roughly the same (e.g, the
MSE loss is 0.008 and 0.01 for AWGN-step1-AP@0.5 and
AWGN-step2-AP@0.5, respectively), the semantic accuracy
between different training steps would have an explicit gap,
which demonstrates that the accuracy at the bit level may not
correspond to that at the semantic level.
4.3. Performance over the Time-varying

Multipath Fading Channel
We train and test our proposed system over a time-

varying multipath fading channel, which is modeled based
on the specifications provided by 3GPP [23], where the
tapped delay line (TDL) model is used for evaluations. The

Table 1
Example scaling parameters for TDL models.

Model DSdesired
Very short delay spread 10 ns

Short delay spread 30 ns
Nominal delay spread 100 ns

Long delay spread 300 ns
Very long delay spread 1000 ns

Table 2
Simulation parameters for OFDM channel.

Parameters Values
Number of subcarriers 2048

Number of OFDM symbols 14
Subcarrier spacing 15 kHz
Carrier frequency 3.5 GHz

DSdesired 30/100/300 ns

channel coefficients are generated using a sum-of-sinusoids
(SoS) model to simulate the multipath propagation. In ad-
dition, we simulate channel aging to account for mobility
scenarios, which can be represented by the speed of the
users. The power delay profiles (PDPs) of the TDL models
are normalized to have a total energy of one for simplified
evaluation. We construct three TDL models, namely TDL-
A, TDL-B, and TDL-C, to represent different channel pro-
files for Non-Line-of-Sight (NLOS) conditions. For Line-of-
Sight (LOS) scenarios, we construct TDL-D and TDL-E,
with their parameters specified in [23]. The Doppler spec-
trum for each tap in the channel model follows a classical
(Jakes) spectrum shape, and the maximum Doppler shift
is denoted as 𝑓𝐷. In TDL-D and TDL-E, which include a
LOS path, the first tap follows a Ricean fading distribution.
Additionally, the Doppler spectrum for these taps contains
a peak at the Doppler shift 𝑓𝑆 = 0.7𝑓𝐷, with an amplitude
adjusted to achieve the specified K-factor for the resulting
fading distribution.

The RMS delay spread values of the TDL models are
normalized, and they can be scaled in delay to achieve a de-
sired RMS delay spread. The scaled delays can be calculated
using the following equation

𝜏𝑛,model = 𝜏𝑛,scaled ⋅ DSdesired, (24)
where 𝜏𝑛,scaled is the normalized delay value of the 𝑛𝑡ℎ
cluster in a TDL model, 𝜏𝑛,model is the new delay value (in
ns) of the 𝑛th cluster, and DSdesired is the desired RMS delay
spread (in ns). The scaling parameters for the example are
chosen based on Table 1. These values are selected to cover
the range of RMS delay spreads typically observed in 5G
deployments.

As Table 2 illustrates, we set the number of subcarriers as
𝐿fft = 2048, the subcarrier spacing as 15 kHz, and the carrier
frequency as 3.5 GHz. The number of information symbols
𝑁𝑠 is set as 12 and the number of pilots 𝑁𝑝 is set as 2, which
means that one frame of Lidar point can be transmitted in
14 OFDM symbols. Meanwhile, various values of DSdesired
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Figure 8: Performance of our proposed method compared with baseline schemes at different SNRs over a time-varying multipath
fading channel. The baseline schemes and our proposed method exploit the same channel uses for fairness. (a) Average precision
performance at the IoU threshold 0.5; (b) Average precision performance at the IoU threshold 0.7.

can be set to simulate different scenarios. Moreover, as
for channel estimation, three methods are under consid-
eration, including perfect channel estimation, Kronecker-
based pilots estimation, and estimation with one pilot. Fig. 7
shows the structure of the Kronecker-based pilots for channel
estimation of the proposed time-varying OFDM channel,
where the third and the twelfth symbols are reserved for
pilot transmission. Hence, the whole channel of 14 OFDM
symbols can be estimated through linear interpolation to
represent the time-varying channel state information (CSI).
Meanwhile, the first OFDM symbol is reserved for pilot
transmission when estimating with one pilot.

Fig. 8 illustrates the performance of the proposed method
compared with baseline schemes at different SNRs over
a time-varying OFDM channel. In this figure, We eval-
uate both the proposed method and baseline schemes in
the TDL-A channel with DSdesired = 300 ns. Compared
to schemes that use separate channel source coding, our
proposed method outperforms the benchmark digital trans-
mission schemes in time-varying channels in very low SNR
regimes and very high SNR regimes. While the conventional
transmission schemes perform well only in channel con-
ditions for which they have been optimized, our proposed
method is more robust to channel quality fluctuations. It is
noted that in this time-varying multipath fading channels, all
evaluated methods suffer from imperfect channel estimation,
in addition to additive noise. Hence, the performance of our
proposed method under the time-varying channel has a gap
with that under the AWGN channel and Rayleigh fading
channel, especially in low SNR regimes if we compare the
performance with that in Fig. 4 and 5.

Next, we consider the impact of channel estimation,
which depends on specific channel estimation methods. Fig.
9 illustrates the performance of our proposed method with
three different channel estimation schemes while Fig. 10
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Figure 9: Performance of our proposed method with three
various channel estimation schemes.
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Figure 10: The MSE of various channel estimation schemes.
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(a) SNR = 0 dB (b) SNR = 3 dB

(c) SNR = 10 dB (d) SNR = 20 dB

Figure 11: Examples of 3D detection outputs produced by our proposed method.

shows the corresponding MSE of different channel esti-
mation schemes. The performance evaluated with perfect
CSI (labeled as Perfect CSI) serve an upper bound. As
Fig. 9 illustrates, Kronecker-based pilot estimation (labeled
as Kronecker-based pilot) outperforms estimation with one
pilot (labeled as One pilot). This is because Kronecker-based
pilot estimation can estimate the channel more precisely than
that with only one pilot over the time-varying channel, espe-
cially in the low SNR regimes, which can be shown in Fig.
10. Hence, transmitted information would be reconstructed
more accurately with more accurate channel estimation re-
sults through equalization. This result emphasizes the impact
of the channel estimation schemes when communicating
over a time-varying multipath fading channel, which further

demonstrates the importance of channel estimation design.
Finally, a visual example of 3D detection results produced
by our proposed method under different SNRs over the mul-
tipath fading channels is presented in Figs. 11. The red boxes
represent the predicted detection results, and the green boxes
denote the ground truth. Since the transmitted intermediate
feature is corrupted severely in low regimes, several vehicles
are not detected in Fig. 11(a) and Fig. 11(b). In Fig. 11(c) and
Fig. 11(d), the red boxes and green boxes literally overlap,
demonstrating that our proposed method performs well in
high SNR regimes.
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Figure 12: Performance of our proposed method with different
training SNRs over an AWGN channel evaluated in terms of
AP@0.7.

4.4. Robustness Analysis
In this section, we first train our proposed method with

different SNRs. Fig. 12 illustrates the performance of our
proposed method with different training SNRs over an
AWGN channel, which is evaluated in terms of AP@0.7.
We observe that the training SNRs have a substantial impact
on the test performance. On the one hand, a high training
SNR would decrease the robustness of the model to noise,
resulting in poor performance in low SNR regimes. On the
other hand, a low training SNR can increase robustness
but may affect the accuracy of performance in high SNR
regimes. For instance, when SNRtrain is set as 5 or 10 dB,
the performance is not satisfactory at high SNRs, which
demonstrates that it is important to choose an appropriate
SNRtrain.
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Figure 13: Performance of our proposed method with different
compression rates over an AWGN channel evaluated in terms
of AP@0.7.

Fig. 13 illustrates the performance of our proposed
method with different compression rates over an AWGN

channel, which is evaluated in terms of AP@0.7. We train
our model under CR = 0.005 and test ours under the con-
dition of different compression rates without extra training.
As Fig. 13 illustrates, despite the mismatched compression
rates, our proposed system still maintains excellent per-
formance, which demonstrates its robustness. Meanwhile,
since CR represents the compression ratio, which indicates
the size of the transmitted data, the overall model exhibits
significant performance improvement in both low SNR and
high SNR scenarios, as the compression ratio increases.
However, with the increase of CR, the performance under
different SNRtest would reach the upper bound due to the
full exploitation of semantic information. Hence, only a few
parts of the feature map are key to the intermediate fusion
and the 3D detection, demonstrating that the communication
bandwidth can be reduced significantly by our proposed
method.

Moreover, our proposed system, which is trained in only
one channel model, is evaluated over different channel mod-
els, including TDL-A30, TDL-B100, TDL-C, and TDL-D.
On the one hand, the DSdisired of TDL-A30 and TDL-B100
is 30 ns and 100 ns, which represents short delay spread and
nominal delay spread. On the other hand, the DSdisired of
TDL-C and TDL-D is 300 ns, which represents a long delay
spread. The PDPs of the four TDL models are normalized to
have a total energy of one for simplified evaluations.

As Fig. 14 illustrates, despite being trained for a spe-
cific channel model, our proposed method is able to learn
robust coded representations of the semantic information
that are resilient to various channel models. Despite that the
delay spreads of four channel model are different from each
other, they all reach the upper bound in high SNR regimes.
However, due to the difference in the channel models, TDL-
D reaches the upper bound AP@0.7 = 0.66 while TDL-
B100 and TDL-C reach the upper bound AP@0.7 = 0.65,
which has a slight gap. This is because there is a direct path
between the transmitter and the receiver in LOS channels
(TDL-D), allowing the signal to propagate directly without
significant interference or attenuation along the propagation
path. Hence, due to the reduced multipath effects in LOS
channels, the signal is more stable and reliable since it suffers
from less distortion caused by multipath fading. Contrary
to the LOS channel, the transmitted signal over the NLOS
channels (TDL-A30, TDL-B100, TDL-C) is more sensitive
to the distortion caused by the multipath fading and noise,
which leads to worse performance. Overall, despite slight
performance differences between different channel models,
our proposed method is proven to perform reasonably well
in all SNR regimes even in the mismatched channel models
without any fine-tuning, which demonstrates our generality.
Furthermore, our semantic communication system shows
its potential to maintain reliable and robust communication
without requiring specialized adaptations, contributing to
the scalability and versatility of the system.
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Figure 14: Performance of our proposed method in various
channel models.

5. Conclusion
We have proposed a novel JSCC architecture for Li-

DAR point clouds transmission and intermediate fusion
over wireless channels. In this architecture, the semantic
encoder maps the input LiDAR point clouds directly to
channel inputs. The encoder and the decoder functions are
modeled as complementary CNNs and trained in an end-to-
end manner to minimize the cooperative perception loss and
reconstruction loss. Besides AWGN and Rayleigh channel
fading channels, we also integrate the JSCC scheme with ex-
plicit OFDM blocks to overcome the time-varying multipath
fading channel. Our approach involves a meticulous design
of the decoder, leveraging expert domain knowledge (e.g.,
channel estimation and equalization). The simulation results
demonstrate the superiority of the proposed model in vari-
ous channel models, which outperforms the combination of
state-of-the-art conventional high-performing channel codes
and OFDM systems. Our proposed method demonstrates
its generality by learning robust coded representations of
semantic information that remains resilient to various chan-
nel models even though we train the model using only one
specific channel model.
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