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Abstract

We quantify the throughput capacity of wireless multi-hop networks with several medium
access schemes. We analyze pure ALOHA scheme where simultaneous transmitters are dis-
patched according to a uniform Poisson distribution and exclusion schemes where simultaneous
transmitters are dispatched according to an exclusion rule such as node coloring and carrier
sense based schemes. We consider both no-fading and standard Rayleigh fading channel mod-
els. Our results show that, under no-fading, slotted ALOHA can achieve at least one-third
(or half under Rayleigh fading) of the throughput capacity of node coloring scheme whereas
carrier sense based scheme can achieve almost the same throughput capacity as node coloring.

1 Introduction

Measuring the capacity of random wireless multi-hop networks with various medium access protocols
(or schemes) remains a very challenging problem. Seminal work of [I] and later studies, e.g.,
[2,13] quantify the capacity in terms of asymptotic scaling laws or bounds. These results may not
provide detailed insight into the actual performance of various medium access schemes such as exact
achievable capacity or protocol design issues such as any trade-offs involving protocol overheads and
protocol performance, etc. Therefore, we evaluate the throughput capacity of various medium access
schemes and our results provide better insights for performance and overhead trade-off and for
designing medium access schemes for wireless multi-hop networks.

Medium access schemes can be broadly classified into two main classes: continuous time access and
slotted access. Here, our main focus is on slotted medium access although many of our results can be
applied to continuous time medium access. Within slotted medium access category, we distinguish
slotted ALOHA, node coloring and carrier sense multiple access (CSMA) schemes. The main goal
of this article is to quantify the end-to-end throughput capacity of above mentioned medium access
schemes in random wireless multi-hop networks and also see how they compare with each other.
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2 Motivation and Related Works

In one of the first analyses on capacity of medium access schemes in wireless networks, [4] studied
slotted ALOHA under a very simple geometric propagation model. Using a similar propagation
model and assuming that all nodes are within range of each other, [5] evaluated CSMA and compared
it with slotted ALOHA in terms of throughput. [6] used simulations to analyze CSMA under a
realistic signal to interference ratio (SIR) based interference model and compared it with ALOHA,
both slotted and un-slotted. For simulations, [6] assumed that transmitters send packets to their
assigned receivers which are located at a fixed distance.

[7H9] studied the transmission capacity, which is the maximum number of successful transmis-
sions per unit area at a specified outage probability, of code division multiple access (CDMA) and
ALOHA. They assumed that simultaneous transmitters form a homogeneous Poisson point process
(PPP) and used the same model for the location of receivers as in [6]. The fact that the receivers
are not a part of the network (node distribution) model and are located at a fixed distance from
the transmitters is a simplification. An accurate model of wireless networks should consider that
the transmitters, transmit to receivers which are randomly located in the network. Another related
work is [10] which analyzed local (single-hop) throughput and capacity with slotted ALOHA, in net-
works with random and deterministic node placement, and time division multiple access (TDMA),
in 1D line-networks.

With exclusion schemes, like node coloring or CSMA, correlation between the location of simulta-
neous transmitters makes it extremely difficult to develop a tractable analytical model. Some of
the proposed approaches are as follows. [11,[12] modeled interferers as PPP and exclude some of
the interferers in the guard zone around a receiver. [9,[I3] used Matérn point process however [14]
showed that it may lead to an underestimation of the density of simultaneous transmitters and
proposed to use Simple Sequential Inhibition (SSI) or, in case of CSMA, an extension of SSI called
SSI. point process. But, very few analytical results are available on SST and SSI, point processes
and results are usually obtained by simulations.

It can be noticed that most of the related works are limited to single-hop transmissions only and
may not give a realistic view of the actual performance of medium access schemes in wireless multi-
hop networks. In this article, we will develop a hybrid model, based on analytical model and Monte
Carlo method, to compute the throughput capacity of various medium access schemes in random
wireless networks consisting of N nodes. We expect that our results will follow the O(1/N/log N)
scaling law and will also give additional insight into the constant factors associated with this scaling
law. In case of multi-hop networks, some of the related works are as follows. [I5] gave an analysis on
the optimal probability of transmission for ALOHA which optimizes the product of simultaneously
successful transmissions per unit of space by the average range of each transmission. [16] evaluated
the transport capacity of random wireless networks without taking into account any particular
routing scheme and under strong assumptions that interferers form a PPP and relays are equally
spaced on a straight line between source and destination.



3 General Settings

We consider a random wireless network where N nodes are uniformly distributed on a planar disk
of radius r. In slotted medium access, at any given slot, simultaneous transmitters in the network
are distributed like a set of points, S = {21, 29, ..., 2, } where z; is the location of transmitter .

Let ;; denote the channel gain from node ¢ to node j such that the received power at node j is
Pyr;, where P; is the transmit power of node i. We consider that all nodes use unit transmit power
and v;; = F|z — z;|7%, where o > 2 is the attenuation coefficient and F' is a random variable of
unit mean representing the variation in channel gain because of fading. For the distribution of F’,
we consider the following two cases.

- No fading: F' is constant and equal to 1.

- Rayleigh fading: F is exponential with mean equal to 1. For any packet from node ¢ to node j,
an independent F' = Fj;; models the fading on the channel during slot t. We assume that this
fading factor remains constant over the duration of a slot only.

We also assume that the background noise power is negligible. Therefore, the transmission from
node 7 to node j, during slot ¢, is successful only if the following condition is satisfied

Fijalzi — ™ S K
I,

where K is the minimum SIR threshold required for successfully receiving the packet and I, is the
total interference at node j, during slot ¢, given by

4 Parameters of Interest

Our main parameter of interest is the throughput capacity, ((/NV) which is defined as the expected
number of packets delivered to their destinations per slot. The actual throughput capacity depends
on the number of nodes, N, SIR threshold, K, attenuation coefficient, «, as well as the following
factors:

- Medium access scheme employed by the nodes in the network. In g5 we will identify the param-
eters of various medium access schemes to tune the throughput capacity.

- Expected transmission rate of each node, ;(/N). It also depends on the tuning parameters of
medium access schemes.

Computing throughput capacity of random wireless network with various medium access schemes is
a difficult problem. Here, we will develop an analytical model which we will use with Monte Carlo
method to compute the achievable throughput capacity with various medium access schemes. Note
that, we are not investigating the impact of any routing or queueing strategies. For example, [T7,[1§]
investigated delay minimizing routing and optimal throughput back-pressure routing respectively.
In this article, we measure the expected maximum rate of successful end-to-end transmissions in a



random wireless multi-hop network with various medium access schemes and, therefore, our results
can compliment the protocol design, e.g., designing protocols based on [I7,[18].

In order to understand the following computation of the throughput capacity in random wireless
networks, we assume that the network is operating under these assumptions:

- All nodes have an infinite buffer of packets, each destined to a uniformly selected destination. This
buffer also carries the routed packets. Therefore, nodes always transmit on the medium when
allowed by the medium access scheme employed in the network. As we are only computing the
average maximum rate of successful end-to-end transmissions in a random wireless network and
routing does not have any impact on the transmission rate of nodes. Therefore, routing protocol
is considered beyond the scope of this article.

- The number of retransmissions per packet are unlimited and we do not take into account any con-
straints on the expected delay. Therefore, if the random wireless multi-hop network is connected,
end-to-end delivery is guaranteed. Note that a random wireless network is connected if there are
no isolated nodes in the network as discussed in [1].

4.1 Computation of Throughput Capacity

If p;; is the probability of successful transmission from node ¢ to node j, the expected number of
transmissions required to deliver a packet from node i to node j is: ¢;; = 1/p;;. Note that the value
of t;; is an approximation as in case of no fading, interference may be correlated from one slot to
another slot, e.g., in case of typical node coloring scheme. However, in our models of medium access
schemes, discussed in Section [B the state of medium access layer is independent from one slot to
another slot and to further minimize the correlation, we also analyze our model under Rayleigh
fading.

Consequently, the expected minimum number of transmissions required to deliver a packet from
node ¢ to node j, either directly (single-hop) or over a multi-hop path, is given by

mi; = mkiﬂ {mik + tkj} , Y (i,5) M)
such that m; = 0.

Theorem 4.1. The throughput capacity of random wireless networks is bounded by,
(N —1)N 3 Q(N)
Zij My ‘

Proof. During T slots, there are on average T' > €;(IN) packet transmission attempts in the network.
By the definition of throughput capacity, the number of successfully delivered packets is ((N)T.
Since each node sends equal traffic to every other node and there are N(N — 1) source-destination
pairs, the number of packets delivered from a source node 7 to a destination node j during 7" slots is
A%x)_Tl) We know that the expected minimum number of transmissions required to deliver a packet
from node ¢ to node j is m;;. Therefore

¢(N) < (2)




is equal to the expected number of transmission attempts in the network during 7 slots and should
be equal to T > Q;(N). This completes the proof of (2I). O

The challenge is to compute p;; and m;; for all (¢, j) and a satisfactory analytical formulation, with
all medium access schemes discussed in g5l is not feasible. Therefore, we will use Monte Carlo
method to compute p;; and m;;. If node i is isolated, m;;, for all j, is equal to infinity and ((NV)
collapses to zero. Therefore, random network of N nodes must be connected and it is a necessary
condition for the feasibility of throughput capacity [I]. A random network of N nodes is connected
if Q;(N) scales as ¢;/log N and, consequently, throughput capacity, ((IV), scales as cay/N/log N,
for some ¢; > 0 and ¢y > 0 depending on the medium access scheme, interference model, etc. Note
that (2)) incorporates ¢; and ¢y and, therefore, their values can also be determined.

5 Medium Access Schemes

In this article, we will investigate throughput capacity of random wireless networks with three
medium access schemes: node coloring, CSMA and slotted ALOHA.

In the following discussion, the set of all nodes in the network is V.

5.1 Node Coloring Based Schemes

Node coloring schemes use a managed transmission scheme based on TDMA approach. The aim is
to minimize the interference between transmissions that cause packet loss. These protocols assign
colors to nodes that correspond to periodic slots, i.e., nodes that satisfy a spatial condition, either
based on physical distance or distance in terms of number of hops, will be assigned different colors.
For example, in order to avoid collisions at receivers, all nodes within k hops are assigned unique
colors. Typical value of k is 2. Examples of node coloring schemes are [19-22].

In this section, instead of considering any particular scheme, we present a model which ensures
that transmitters use an exclusion condition in order to avoid the use of same slot within a certain
distance. This exclusion distance is defined in terms of euclidean distance d which may be derived
from the distance parameter of a typical TDMA-based protocol. Therefore, a slot cannot be shared
within a distance of d or, in other words, nodes transmitting in the same slot shall be located at a
distance greater or equal to d from each other.

Following is a model of node coloring schemes which constructs the set of simultaneous transmitters,
S, in each slot (this is supposed to be done off-line so that transmission patterns periodically recur
in each slot).

1. Initialize M =N and S = ().

Randomly select a node i from M and add it to the set S, i.e, S =S U {i}.
Remove i from the set M.

Remove all nodes from the set M which are at distance less than d from .
If set M is non-empty, repeat from step 2.
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These steps model a centralized or distributed node coloring scheme which randomly selects the
nodes for coloring while satisfying the constraints of euclidean distance.

Note that the value of d can be tuned at d*(N, K, «) which maximizes the throughput capacity
with node coloring scheme with N nodes, required SIR threshold of K and attenuation coefficient
equal to a.

5.2 CSMA Based Schemes

We discussed that node coloring schemes require sophisticated medium access algorithm to coordi-
nate simultaneously active transmitters in each slot. On the other hand, CSMA based schemes are
simpler but are more demanding on the physical layer. Before transmitting on the channel, a node
verifies if the medium is idle by sensing the signal level. If the detected signal level is below a certain
threshold, medium is assumed idle and the node transmits its packet (with the smallest receive to
transmit transition time). Otherwise, it may invoke a random back-off mechanism and wait before
attempting a retransmission. CSMA/CD (CSMA with collision detection) and CSMA/CA (CSMA
with collision avoidance), which is also used in IEEE 802.11, are the modifications of CSMA for
performance improvement.

We adopt a model of CSMA where nodes contend to access medium at the beginning of each slot. In
other words, nodes transmit only after detecting that medium is idle. We assume that nodes defer
their transmission by a tiny back-off time, from the beginning of a slot, and abort their transmission
if they detect that medium is not idle. We also suppose that detection time and receive to transmit
transition times are negligible and, in order to avoid collisions, nodes use randomly selected (but
different) back-off times. Therefore, the main effect of back-off times is in the production of a
random order of the nodes in competition. We use the following simplified construction of the set

S.

Initialize M =N and S = 0.

Randomly select a node i from M and add it to the set S, i.e., S = S U {i}.

Remove ¢ from the set M.

Remove all nodes from the set M which can detect a combined interference signal of power
higher than 6 (carrier sense threshold), from all transmitters in the set S, i.e., if ). ¢ F'|z —
z;|7* > 60 , remove j from M. Here, z; is the position of i.

5. If set M is non-empty, repeat from step 2.

-~ =

Above steps model a CSMA based scheme which requires that transmitters do not detect an inter-
ference signal of power equal to or higher than 6, during their back-off periods, before transmitting
on the medium. At the end of the construction of set S, some transmitters may experience inter-
ference of signal level higher than 6. However, this behavior is in compliance with a realistic CSMA
scheme where nodes, which started their transmissions, or, in other words, are already added to the
set & do not consider the increase in signal level of interference resulting from later transmitters.

Note that in case of CSMA, € can be tuned at 6*(N, K, «) to optimize the throughput capacity
under given N, K and a.
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Figure 1: Optimization of ((N) with slotted ALOHA scheme under no fading. K = 20.0 and
a = 4.0.

5.3 Slotted ALOHA Scheme

In slotted ALOHA scheme, nodes do not use any complicated managed transmission scheduling
and transmit their packets independently with a certain medium access probability denoted by p,
i.€., in each slot, each node decides independently whether to transmit or otherwise remain silent.

The throughput capacity of slotted ALOHA at given values of N, K and « can be optimized by
tuning p at p*(N, K, a).

6 Evaluation and Results

It does not appear feasible to build a satisfactory and tractable analytical formulation to derive
the accurate values of p*(N, K, «), d*(N, K,«) and 0*(N, K, «) which maximize the throughput
capacity with slotted ALOHA, node coloring and CSMA based schemes respectively. Therefore,
we determine these values using the hybrid model of analytical and Monte Carlo methods. We
distribute N nodes uniformly over a planar disk of radius . With all medium access schemes,
simultaneous transmitters in each slot, i.e. the set S, are elected using the models described in g0l
In order to compute the probability of successful transmission from each node to every other node,
we consider that nodes employ broadcast transmissions and probability of successful transmission
is obtained from the number of received and transmitted packets obtained over 25000 slots. With
this information, throughput capacity, ((/N), can be computed using () and (2]).

6.1 Optimization of Throughput Capacity

In case of slotted ALOHA, we vary the value of probability of transmission, p, to determine
the optimal p*(N, K, ) which maximizes ((N) with given values of N, SIR threshold, K, and
attenuation coefficient «. Figure [ shows ((N) with slotted ALOHA averaged over 100 sam-
ples of node distributions. The value of N is varied whereas K = 20.0 and a =4.0. It can
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Figure 2: Optimization of ((N) with node coloring scheme under no fading. K = 20.0 and o = 4.0.
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Figure 3: Optimization of ((/N) with CSMA based scheme under no fading. K = 20.0 and o = 4.0.

be observed that as p increases, ((N) increases with rate in O(v/N) and a maximum occurs at
p=p*(N,20.0,4.0) = ¢;/log N =~ 0.25/log N. Therefore, in a random wireless network, setting the
expected transmission rate of each node, €;(N), equal to p*(N, K, «) gives the optimal ((N) with
slotted ALOHA under given values of N, K and «.

Similarly, Fig. 2 and [8] show the tuning of node coloring and CSMA based schemes respectively
under given values of N, K = 20.0 and o = 4.0. The optimal values of d*(N, K, ) and 6*(N, K, «)
can be determined to obtain optimal ((/N) with these schemes respectively. Note that, in these
cases, €);(N) is the proportion of slots that each node is expected to be active and transmitting
under the given values of d and 6.

6.2 Observations

Remark 6.1. The optimal tuning of all medium access schemes remain insensitive to the fading
on the channel. As N increases, the values of p*(N, K, ), d*(N, K, ) and 0*(N, K, ) are similar
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Figure 5: Optimal ¢(1000) of slotted ALOHA, node coloring and CSMA based schemes. N = 1000,
K is varied and a = 4.0.

under no fading and Rayleigh fading of mean 1. However, under Rayleigh fading and with low values
of N, we observed that the parameters of node coloring and CSMA, d and 6 respectively, should
be tuned at values such that only 1 transmitter is active in each slot and therefore achieve higher
C(N) =1 in this case (see Fig. [{|(b), N < 500). As N becomes greater than 500, d*(N, K, «) and
0*(N, K, «) of node coloring and CSMA are similar under no fading and Rayleigh fading channel
models.

Remark 6.2. Fig. [ shows ((N) versus N of all schemes at p*(N,20.0,4.0), d*(N,20.0,4.0) and
0*(N,20.0,4.0) respectively and we can see that as N increases, ((N) scales as con/N/log N. In
case of slotted ALOHA, under no fading channel model and K = 20.0 and o = 4.0, c5 =~ 0.0715.
Similarly, the constants ¢y and co can also be determined for node coloring and CSMA based schemes.

Remark 6.3. Figures [A(a) and [@(a) show that under no fading channel model, slotted ALOHA
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Figure 6: Optimal ¢(1000) of slotted ALOHA, node coloring and CSMA based schemes. N = 1000,
K =20.0 and « is varied.

can achieve at least one-third or more of the throughput capacity of node coloring and CSMA based
schemes. However, under Rayleigh fading of mean 1, i.e. Fig. [3(b) and[@l(b), this factor improves
to one-half or even less. From Fig. [J and [0, we can see that Rayleigh fading of mean 1 reduces
¢(1000) with slotted ALOHA by 10 ~ 25% when compared with no fading case. In contrast, fading
reduces ((1000) of node coloring and CSMA by approximately 35%.

Remark 6.4. Figures[{] [4 and[@ show that throughput capacity of CSMA based scheme is slightly
lower than node coloring scheme. The reason is that CSMA uses exclusion rule base on carrier
sense and this results in lower density (packing) of simultaneous transmitters as compared to node
coloring scheme. This can also be observed from the comparison of results on packing densities with
SST and SSIy point processes in [1])]. Moreover, under Rayleigh fading of mean 1, this difference
15 exacerbated but by a very small margin.

7 Conclusions

We evaluated throughput capacity of random wireless networks with various medium access schemes.
Because of the lack of any satisfactory analytical model, we used a hybrid of analytical and Monte
Carlo methods to evaluate slotted ALOHA, node coloring and CSMA based schemes. Our results
show that compared to slotted ALOHA, node coloring can increase throughput capacity by a factor
of 3 (or less). However, this factor reduces to only 2 (or less) under more realistic channel model
with Rayleigh fading. Moreover, CSMA can achieve almost similar capacity as node coloring.

The conclusion of this work is that improvements above slotted ALOHA are limited in performance
and may be costly in terms of protocol overheads, e.g., node coloring schemes which may require
significant protocol overhead. Our results show that incorrect tuning of medium access schemes
under given system parameters can lead to significantly degraded performance. Therefore, efforts
should be diverted to optimizing existing simpler medium access schemes and also to designing
efficient routing strategies. Our results are also relevant when nodes move according to an i.i.d.
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mobility process such that, at any time, the distribution of nodes in the network is homogeneous.
However, designing medium access schemes for mobile networks, e.g., node coloring schemes may
require additional overhead. In the sequel, we will investigate the optimal medium access scheme
in wireless networks and we will also compare it with the schemes discussed here.
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