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On the Optimal Transmission Scheme to Maximize Local

Capacity in Wireless Networks

Salman Malik∗, Philippe Jacquet†

Abstract

We study the optimal transmission scheme that maximizes the local capacity in two-
dimensional (2D) wireless networks. Local capacity is defined as the average information
rate received by a node randomly located in the network. Using analysis based on analytical
and numerical methods, we show that maximum local capacity can be obtained if simultaneous
emitters are positioned in a grid pattern based on equilateral triangles. We also compare this
maximum local capacity with the local capacity of slotted ALOHA scheme and our results
show that slotted ALOHA can achieve at least half of the maximum local capacity in wireless
networks.

1 Introduction

Seminal work of Gupta & Kumar [1] and the following works, e.g., [2, 3] quantify the capacity
in wireless networks in the form of asymptotic scaling laws. However, these results may not be
very useful for network protocol designers in comparing different medium access schemes that have
different protocol overhead but follow the same scaling behavior. Our goal is to investigate the
medium access scheme which optimizes the local capacity. Note that any such scheme may have
no practical implementation but its evaluation is interesting in order to establish an upper bound
on the local capacity in wireless networks. In our analysis, we will use first and second order
differentiation of local capacity to prove that simultaneous emitters arranged in a grid pattern are
locally optimal and, in 2D wireless networks, only square, hexagonal and triangular grid patterns
are most optimal patterns.

This article is organized as follows. In Section 2, we will discuss the model of our wireless network
and define the local capacity. We will summarize some important related works in Section 3. The
optimality of grid pattern based medium access schemes will be discussed in Section 4 and their
local capacity will be analyzed in Section 5. Section 6 will discuss the local capacity of simple
ALOHA based scheme. In Section 7, we will evaluate the local capacity of grid pattern schemes
and slotted ALOHA and concluding remarks can be found in Section 8.
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2 System Model

We consider a wireless network where nodes are uniformly distributed over an infinite plane centered
at origin (0, 0). We assume that time is slotted and at any given slot, simultaneous emitters in the
network are distributed like a set of points, S = {z1, z2, . . . , zn, . . .}, where zi is the location of
emitter i. The distribution of set S depends on the medium access scheme employed by the nodes
and we only assume that, in all slots, the set S has a homogeneous density equal to λ.

Let Pi be the transmit power of node i and γij be the channel gain from node i to node j such that
the received power at node j is Piγij . Therefore, transmission from node i to node j is successful if
the following condition is satisfied

Piγij
N0 +

∑

k 6=i Pkγkj
≥ β ,

where N0 is the background noise power and β is the minimum signal to interference ratio (SIR)
required for successfully receiving the packet. We assume that all nodes use unit nominal transmit
power and we only consider large-scale pathloss characteristics, i.e., γij = |zi − zj |−α, where α > 2
is the pathloss exponent and |.| is the Euclidean norm of the vector. We also assume that N0 is
negligible. Therefore, the SIR of emitter i at any point z in the plane is given by

Si(z) =
|z − zi|−α

∑

j 6=i |z − zj |−α
. (1)

We call the reception area of emitter i, the area of the plane, Ai(λ, β, α), where this emitter is
received with SIR at least equal to β. The area, Ai(λ, β, α), also contains the point zi since here
the SIR is infinite. The average size of Ai(λ, β, α) is σ(λ, β, α) and it is independent of the location
of zi.

We are interested in local capacity which is defined as the average information rate received by a
node randomly located in the network. Consider a node at a random location z in the plane and
let N(z, β, α) be the number of reception areas it belongs to. The expected value of N(z, β, α) is
given by [4]

E(N(z, β, α)) = λσ(λ, β, α) . (2)

The average information rate received by the node, c(z, β, α), is equal to E(N(z, β, α)) multiplied
by the nominal capacity. We assume unit nominal capacity and we have

c(z, β, α) = E(N(z, β, α)) = λσ(λ, β, α) . (3)

3 Motivation and Related Works

In related works, focus has been on the medium access schemes like ALOHA, carrier sense multiple
access (CSMA) or, in some instances, node coloring as well. Some of these works are as follows. [5]
studied slotted ALOHA using a very simple geometric propagation model. Under a similar propa-
gation model, [6] evaluated CSMA and compared it with slotted ALOHA in terms of throughput. [7]
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used simulations to analyze CSMA under a realistic SIR based interference model and compared it
with ALOHA (both slotted and un-slotted). [8–10] introduced the concept of transmission capacity,
defined as the maximum number of successful transmissions per unit area at a specified outage prob-
ability, and evaluated ALOHA, CSMA and code division multiple access (CDMA) protocols. [11]
analyzed local (single-hop) throughput and capacity with slotted ALOHA, in networks with random
and deterministic node placement, and TDMA, in 1D line-networks only. [12] determined the opti-
mum transmission range under the assumption that interferers are distributed according to Poisson
point process whereas [13] gave a detailed analysis on the optimal probability of transmission for
ALOHA which optimizes the product of simultaneously successful transmissions per unit of space
by the average range of each transmission. In contrast to these works, we investigate the most op-
timal medium access scheme which optimizes the local capacity in wireless networks. We will also
compare this optimal scheme with slotted ALOHA. More detailed comparison with other schemes
will be done in the continuation of our work.

4 Optimality of Grid Pattern Schemes

It can be argued that optimal local capacity in wireless networks can be achieved if simultaneous
emitters are positioned in a grid pattern. However, designing a medium access scheme, which ensures
that simultaneous emitters are positioned in a grid pattern, is very difficult because of the limitations
introduced by wave propagation characteristics and actual node distribution. Specification of a
distributed protocol that allows grid pattern transmissions is beyond the scope of this article. Note
that wireless networks of grid topologies are studied in, e.g., [14, 15]. In contrast, we assume that
only the simultaneous emitters form a regular grid pattern.

4.1 Definitions

In order to simplify our analysis, we define the following functions.

1. The density of the set S is given by the limit as

ν(S) = lim
R→∞

1

πR2

∑

i

1|zi|≤R .

2. We define a function g(z) as

gi(z) =
|z − zi|−α

∑

j |z − zj |−α
,

where α > 2. The function gi(z) is similar to the SIR function Si(z) except that the summa-
tion in the denominator factor also includes the numerator factor. In order to simplify the
notations, we will remove the reference to z when no ambiguity is possible.

3. We define a function f(gi) as
f(gi) = 1gi(z)≥β′ ,

for some given β ′. We consider without loss of generality that the value of β ′ is given by
β ′ = β

β+1
. Therefore, if transmitter i is received successfully at location z (i.e. with SIR at

least equal to β), then gi(z) ≥ β ′ and f(gi) is equal to 1.
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4. Reception area of an arbitrary emitter i is given by

σi =

∫

f(gi)dz
2 .

Note that the integration is over the plane and the notations are simplified by taking dxdy
equal to dz2.

5. We define a function h(z) as

h(z) =
∑

i∈S

f(gi) ,

and it is equal to the number of emitters which can be successfully received at z. Note that
if β > 1, the maximum value of h(z) is 1.

6. We also define E(h(z)) by the limit as

E(h(z)) = lim
R→∞

1

πR2

∫

|z|≤R

h(z)dz2 ,

= lim
R→∞

1

πR2

∑

i

1|zi|≤Rσi = ν(S)E(σi) ,

with

E(σi) = lim
n→∞

1

n

∑

i≤n

σi ,

where n is the number of emitters on a disk of radius R centered at (0, 0). As R approaches
infinity (because of an infinite plane), n approaches infinity. Our objective is to find the
spatial distribution of the set S which optimizes E(h(z)). Note that E(h(z)) is equivalent to
E(N(z, β, α)) and local capacity given by expressions (2) and (3) respectively.

4.2 First Order Differentiation

Let us denote the operator of differentiation w.r.t. zi by ∇i. For i 6= j, we have

∇igj = αgigj
z − zi
|z − zi|2

and

∇igi = α(g2i − gi)
z − zi
|z − zi|2

.

Therefore

∇ih(z) = ∇i

∑

i

f(gi) = f ′(gi)∇igi +
∑

j 6=i

f ′(gj)∇igj

= αgi
z − zi
|z − zi|2

(

− f ′(gi) +
∑

j

gjf
′(gj)

)

.
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We know that
∫

h(z)dz2 = ∞, we nevertheless have a finite ∇i

∫

h(z)dz2. In other words, the sum
∑

j ∇iσj converges for all i. For all j in S,
∑

i∇iσj = 0. Indeed this would be the differentiation
of σj when all points in S are translated by the same vector. Similarly,

∑

i

∇i

∫

h(z)dz2 = 0 .

Theorem 4.1. If the points in the set S are arranged in a grid pattern then ∇i

∫

h(z)dz2 =
∑

j ∇iσj = 0, and grids patterns are locally optimal.

Proof. If S is a set of points arranged in a grid pattern, then: ∇i

∫

h(z)dz2 =
∑

j ∇iσj would be

identical for all i and, therefore, would be null since
∑

i ∇i

∫

h(z)dz2 = 0.

We could erroneously conclude that,

- all grid sets are optimal and
- all grid sets give the same E(h(z)).

In fact this is wrong: we could also conclude that E(σi) does not vary but this will contradict that
ν(S) must vary. The reason of this error is that a grid set cannot be modified into another grid
set with a uniformly bounded transformation, unless the two grid sets are translated by a simple
vector.

4.3 Numerical Differentiation of First and Second Order

In order to prove that grid patterns are also locally maximum, we must show that ∇2
i

∫

h(z)dz2 < 0.
Obviously, analytical formulation to prove this property is very challenging. However, we can
develop a numerical differentiation technique to show that this is true in case of grid patterns.

We know that
∫

h(z)dz2 = ∞, and we are only interested in the behavior of ∇i

∫

h(z)dz2 and
∇2

i

∫

h(z)dz2. Therefore, we define a function U as

U =

∫

A

h(z)dz2 , (4)

where the integration is over a large area, A, with location of emitter i, zi, at the center of this
area. Note that the area, A, is large enough so that a slight perturbation in the location of zi may
have infinitesimal effect on the reception areas of the emitters near the edges of A. Let Ui,j denote
the result of the integration in (4) and we denote the differentiation of U w.r.t. zi as

∇iU =
( ∂

∂xi

U,
∂

∂yi
U
)

= (Ux, Uy) .

We will compute ∇iU and ∇2
iU with slight perturbation in zi and use the following method.

Using central difference equations, we can write Ux ≈ 1
2∆x

(Ui+1,j − Ui−1,j), and Uy ≈ 1
2∆y

(Ui,j+1 −
Ui,j−1), where ∆x and ∆y are slight perturbations in the location of zi along x−axis and y−axis
respectively. The value of Ui+1,j is computed from (4) with perturbed position of emitter i given
by z′i = (xi +∆x, yi), and this also applies to other notations.
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Similarly, the second order partial derivatives can be written as Uxx ≈ 1
∆x2 (Ui+1,j − 2Ui,j + Ui−1,j),

Uyy ≈ 1
∆y2

(Ui,j+1−2Ui,j+Ui,j−1), and mixed derivative can be written as Uxy = Uyx ≈ 1
4∆x∆y

(Ui+1,j+1−
Ui+1,j−1 − Ui−1,j+1 + Ui−1,j−1).

In order to prove that grid patterns are locally maximum, we will analyze the eigenvalues of the
2× 2 Hessian Matrix,

H(U) =
[ Uxx Uxy

Uyx Uyy

]

.

In other words, we can prove that the grid patterns are locally maximum if, in this case, we can
show that the determinant, |H(U)|, is greater than zero and Uxx < 0.

We will introduce the analytical method to compute U and its first order and second order partial
derivatives in §5 and present the results of numerical differentiation in §7.1.
We prove that the grid sets are locally optimal and maximum within sets that can be uniformly
transformed between each other. In order to cope with uniform transformation and to be able to
transform a grid set to another grid set, we will introduce the linear group transformation.

4.4 Linear Group Transformation

Here, we assume that the points in the plane are modified according to a continuous linear transform
M(t) where M(t) is a matrix with M(0) = I, e.g., M(t) = I + tA where A is a matrix. Without
loss of generality, we only consider σ0, i.e., the reception area of the emitter at z0 which can be
located anywhere on the plane. Under these assumptions, we have

∂

∂t
σ0 =

∑

i

(Azi.∇iσ0) = tr
(

∑

i

AT zi ⊗∇iσ0

)

.

In other words, using the identity ∂tr(AT
B)

∂A
= B, the derivative of σ0 w.r.t. matrix A is exactly

equal to D =
∑

i zi ⊗∇iσ0, such that D =

[

Dxx Dxy

Dyx Dyy

]

.

We can write the following identity

tr
(

AT ∂

∂A
σ0

)

=
∂

∂t
σ0(t,A)

∣

∣

∣

t=0
,

where σ0(t,A) is the transformation of σ0 under M(t), i.e., σ0(t,A) = det(I +At)σ0. We assume
that M(t) = (1 + t)I with A = I, i.e., the linear transform is homothetic.

Theorem 4.2. D is symmetric and tr(D) = 2σ0.

Proof. Under the given transform, σ0(t,A) = σ0(t, I) = (1 + t)2σ0. As a first property, we have
tr(D) = 2σ0, since the derivative of σ0 w.r.t. identity matrix I is exactly 2σ0 (i.e., tr(ATD) =
tr(D) = σ′

0(0, I) = 2σ0). The second property that D is a symmetric matrix is not obvious. The

easiest proof of this property is to consider the derivative of σ0 w.r.t. matrix J =

[

0 −1
1 0

]

, which

is zero since J is the initial derivative for a rotation and reception area is invariant by rotation.
Therefore, tr(JTD) = Dyx −Dxy = 0, which implies that D is symmetric.
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Note that D can also be written in the following form

D =
∑

i

zi ⊗∇iσ0 =

∫

dz2
∑

i

zi ⊗∇if(g0) .

Let T be defined as T =
∫

dz2
∑

i(z − zi) ⊗ ∇if(g0) , such that D =
∫
∑

i z ⊗ ∇if(g0)dz
2 − T .

The purpose of these definitions will become evident from theorems 3 and 4.

Theorem 4.3. We will show that
∫
∑

i z⊗∇if(g0)dz
2 is equal to σ0I and, therefore, D = σ0I−T.

We will also prove that T is symmetric.

Proof. From the definition of T, we can see that the sum
∑

i(z − zi)⊗∇if(g0) leads to a symmetric
matrix since

T = α

∫

f ′(g0)
( g20 − g0
|z − z0|2

(z − z0)⊗ (z − z0) +

∑

i 6=0

g0gi
|z − zi|2

(z − zi)⊗ (z − zi)
)

dz2 ,

and the left hand side is made of (z − zi)⊗ (z − zi) which are symmetric matrices. This implies
that T is also symmetric.

We can see that
∑

i ∇if(g0) = −∇f(g0), and using integration by parts we have
∫

∑

i

z ⊗∇if(g0)dz
2 = −1×

[

∫

x ∂
∂x
f(g0)dxdy

∫

x ∂
∂y
f(g0)dxdy

∫

y ∂
∂x
f(g0)dxdy

∫

y ∂
∂y
f(g0)dxdy

]

=

[

σ0 0
0 σ0

]

,

which is symmetric and equal to σ0I. The sum/difference of symmetric matrices is also a symmetric
matrix and, therefore, D is a symmetric matrix and D = σ0I−T.

Now, we will only consider grid patterns and, by virtue of a grid pattern, we can have

E(σi) = σ0 =

∫

f(g0)dz
2 ,

and E(h(z)) = ν(S)σ0. Under homothetic transformation, ν(S) and σ0 are transformed but ν(S)σ0

remains invariant.

Theorem 4.4. If the pattern of the points in set S is optimal w.r.t. linear transformation of the

set, D = σ0I and T = 0.

Proof. The derivative of σ0 w.r.t. matrix A is exactly equal to D. Similarly, under the same
transformation ∂

∂t
ν(S) = 1

det(I+At)
ν(S), and for A = I, it can be written as ν ′(S)(t, I) = ν(S)/(1 +

t)2.

In any case, the derivative of ν(S) w.r.t. matrix A is exactly equal to −Iν(S). We also know that
if the pattern is optimal w.r.t. linear transformation, the derivative of ν(S)σ0 w.r.t. to matrix A

shall be null. This implies that ν(S)D − Iν(S)σ0 = 0 , which leads to D = σ0I and T = 0.
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Figure 1: Square, Hexagonal and Triangular grids.

We know that T is symmetric and T = 0. Thus, tr(T) = 0, i.e., Eigen values are invariant by
rotation. When a grid is optimal, we must have T = 0 and the matrix T must be invariant w.r.t.
isometric symmetries of the grid. On 2D plane, the grid patterns which satisfy this condition are
square, hexagonal and triangular grids only. The square grid is symmetric w.r.t. any horizontal
or vertical axes of the grid and, in particular, with rotation of π/2 represented by J. Therefore,
the Eigen system must be invariant by rotation of π/2. This implies that the Eigen values are the
same and therefore null since tr(T) = 0. Same argument also applies for the hexagonal grid with
the invariance for π/3 rotation and for the triangular pattern with invariance for 2π/3 rotation.

5 Local Capacity of Grid Pattern Schemes

We consider that the set S is a set of points arranged in a grid pattern and, for every slot, the grid
pattern is the same modulo a translation. We have covered grid layouts of square, hexagonal and
triangle which are also shown in Fig. 1. Grids are constructed from d which defines the minimum
distance in-between neighboring emitters and can be derived from the hop-distance parameter of
a typical TDMA-based protocol. The density of grid points, λ, depends on d. However, the local
capacity is independent of the value of d or λ as it is invariant for any homothetic transformation
of the set of emitters.

Our aim is to compute the size of the reception area, Ai(λ, β, α), around each emitter i. By
consequence of the regular grid pattern, all reception areas are the same modulo a translation (and
a rotation for the hexagonal pattern), and their surface area size, σ(λ, β, α), is the same. If Ci(β, α)
is the closed curve that forms the boundary of Ai(λ, β, α) and z is a point on Ci(β, α), we have

σ(λ, β, α) =
1

2

∫

Ci(β,α)

det(z − zi, dz) , (5)

where det(a, b) is the determinant of vectors a and b and dz is the vector tangent to Ci(β, α) at
point z. det(z − zi, dz) is the cross product of vectors (z − zi) and dz and gives the area of the
parallelogram formed by these two vectors. Equation (5) remains true if zi is replaced by any
interior point of Ai(λ, β, α). The SIR Si(z) of emitter i at point z is given by (1). We assume that
at point z, Si(z) = β. On point z we can also define the gradient of Si(z), ∇Si(z). ∇Si(z) is inward
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Figure 2: Computation of the reception area of emitter i.

normal to the curve Ci(β, α) and points towards zi. The vector dz is co-linear with J ∇Si(z)
|∇Si(z)|

where

J is the anti-clockwise rotation of 3π/2 (or clockwise rotation of π/2) given by J =

[

0 1
−1 0

]

.

Therefore, we can fix dz = J ∇Si(z)
|∇Si(z)|

∆t and in (5)

det(z − zi, dz) = (z − zi)× J
∇Si(z)

|∇Si(z)|
∆t

= −(z − zi).
∇Si(z)

|∇Si(z)|
∆t ,

where ∆t is assumed to be a small step size. The sequence of points z(k) computed as

z(0) = z

z(k + 1) = z(k) + J
∇Si(z(k))

|∇Si(z(k))|
∆t ,

gives a discretized representation of Ci(β, α). Therefore, (5) reduces to

σ(λ, β, α) ≈ −1

2

∑

k

(z(k)− zi).
∇Si(z(k))

|∇Si(z(k))|
∆t , (6)

assuming that we stop the sequence z(k) when it loops back on or close to the point z. Figure 2 is
the figurative representation of the computation of the reception area of an emitter.

The point, z(0) = z, can be found using Newton’s method. First approximate value of z, required
by Newton’s method, can be computed assuming only one interferer nearest to the emitter i. The
negative sign in (6) is automatically negated by the dot product of vectors (z(k)−zi) and ∇Si(z(k)).

The local capacity is given by

c(z, β, α) = E(N(z, β, α)) = N(z, β, α) = λσ(λ, β, α) ,

where σ(λ, β, α) is computed using above described method.

6 Local Capacity of Slotted ALOHA Scheme

In slotted ALOHA scheme, the set of simultaneous emitters, in each slot, can be given by a uniform
Poisson distribution of mean λ emitters per unit square area [4, 9, 13]. Therefore, using the results

9



Ux Uy Uxx Uxy = Uyy |H(U)|
Uyx

Square 0 0 −.0052 0 −.0052 .00002704
Hexagonal 0 0 −.0102 0 −.0102 .00010404
Triangular 0 0 −.0041 0 −.0041 0.0000168

Table 1: Numerical differentiation (first and second order partial derivatives) of local capacity of grid pattern
schemes. β = 10.0 and α = 4.0.

from [4], we can derive the analytical expression for the local capacity with slotted ALOHA scheme.

The average size of the reception area around an arbitrary emitter is

σ(λ, β, α) =
1

λ

sin( 2
α
π)

2
α
π

β− 2

α . (7)

Therefore, the analytical expressions (3) and (7) lead to

c(z, β, α) = λσ(λ, β, α) = σ(1, β, α) . (8)

7 Evaluation

In order to approach an infinite map, we perform numerical simulations in a very large network
spread over 2D square map of 10000 × 10000 square meters. The emitters are spread over this
network area in square, hexagonal or triangular pattern. For all grid patterns, d is set equal to 25
meters although it will have no effect on the validity of our conclusions as local capacity, c(z, β, α),
is independent of the value of d or λ.

7.1 Optimality of Grid Pattern Schemes

The area, A, over which the function U , in (4), is evaluated is in the center of the network area
and is equal to 2500× 2500 square meters with zi located at its center: zi = (xi, yi) = (0, 0). We
set β = 10.0, α = 4.0 and ∆x = ∆y = 0.1, such that the perturbation in the location of zi has an
infinitesimal effect on the reception areas of the emitters on the borders of A. Note that the function
U is numerically evaluated using the analytical method of §5. The first and second order partial
derivatives of U are computed according to §4.3 and results, shown in Table 1, show that square,
hexagonal and triangular grid patterns are locally maximum. Similar results can also be obtained
for all values of β and α with the same conclusions.

7.2 Local Capacity of grid patterns and slotted ALOHA

In this case, we compute the size of the reception area of transmitter i, located in the center of the
network area: zi = (xi, yi) = (0, 0). The network area is large enough so that the reception area of

10



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

SIR threshold (β)

Triangular grid

Square grid

Honeycomb grid

Slotted ALOHA

Figure 3: Local capacity, c(z, β, α), when β is varying and α is fixed at 4.0.
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Figure 4: Local capacity, c(z, β, α), when β is fixed at 10.0 and α is varying.

transmitter i is close to its reception area in an infinite map. λ depends on the type of grid and
it is computed from the total number of transmitters spreading over the network area. In case of
slotted ALOHA, c(z, β, α) is computed from analytic expressions (7) and (8).

Figures 3 and 4 show c(z, β, α) of grid patterns and slotted ALOHA. As α approaches infinity,
reception area around each transmitter turns to be a Voronoi cell with an average size equal to
1/λ. Therefore, as α approaches infinity, c(z, β, α) approaches 1. For slotted ALOHA scheme, (7)
and (8) arrive at the same result. For grid patterns, we computed c(z, β, α) with α increasing up
to 100 and from the results, we can observe that asymptotically, as α approaches infinity, c(z, β, α)
approaching 1 is true for all protocols. We can also see that the maximum capacity in wireless
networks can be obtained with triangular grid pattern and its local capacity is at most double the
capacity of slotted ALOHA.
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8 Conclusions

Our analysis shows that transmission scheme, based on triangular grid pattern is locally optimal.
Moreover, compared to slotted ALOHA, which does not use any significant protocol overhead,
triangular grid pattern can only increase the local capacity by a factor of 2. The conclusion of this
work is that improvements above ALOHA are limited in performance and may have significantly
higher protocol overheads. Note that, considering the associated protocol overheads, our results
may encourage network protocol designers to concentrate on designing robust protocols based on
simpler medium access schemes. In the continuation of this work, we extend this analysis to include
more practical schemes like node coloring and carrier sense based schemes and see how do they
compare with the schemes discussed in this article.
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