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Abstract

A modified zero forcing decoder (MZF) for Multi-Input Multi-Output (MIMO) systems in case of ill-

conditioned channels is proposed. The proposed decoder provides significant performance improvement

compared to the traditional zero forcing for ill-conditioned channels. The proposed decoder is the result

of reformulating the QR decomposition of the channel matrix by neglecting the elements which represent

the correlation in the channel. By combining the traditional ZF with the MZF decoders, a hybrid decoder

can be formed that alternates between the traditional ZF and the proposed MZF based on the channel

condition. We will illustrate through simulations the significant improvement in performance with little

change in complexity over the traditional implementation of the zero forcing decoders.
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I. INTRODUCTION

In multi-input multi-output (MIMO) systems with additive Gaussian noise, the Maximum-

likelihood (ML) decoder is the optimum receiver. However, due to the high complexity of

the ML decoders, lattice-based decoding algorithms such as the sphere decoding algorithms

have been proposed [1]. Although the sphere decoder (SD) achieves near-ML performance, its

complexity is highly dependent on the received signal to noise ratio (SNR). In order to achieve

ML performance at low SNR, the SD algorithm requires severe pre-processing operations that

involve iterative column vector ordering [2]. On the other hand, the zero-forcing decoder has a

very low complexity at the expense of poor performance due to its inherent noise enhancement.

In this paper, we propose a modified zero forcing decoder which provides significant per-

formance improvement by limiting the inherent noise enhancement. The proposed algorithm

performs a simple reformulation of the QR factorization of the channel by considering the

diagonal elements of the upper-triangular matrix R, which represent the well-condition part of

the channel.

Consider the complex-valued baseband MIMO model in Rayleigh fading channels with M

transmit and N received antennas. Let the N × 1 received signal vector ẏ [2],

ẏ = Ḣẋ+ ẇ (1)

with the transmitted signal vector ẋ ∈ ZM
C whose elements are drawn from q-QAM constellation

and ZC is the set of complex integers, the N×M channel matrix Ḣ whose elements hij represent

the Rayleigh complex fading gain from transmitter j to receiver i with hij ∼ CN(0, 1) . In this

paper, it is assumed that channel realization is known to the receiver through preamble and/or

pilot signals, and N ≥ M . The N×1 complex noise vector ẇ has independent complex Gaussian

elements with variance σ2 per dimension. Throughout the paper, we will consider the real model

of (1)

y = Hx+ w (2)

where, m = 2M , n = 2N , then y = [R(ẏ) I(ẏ)]T ∈ Rn, x = [R(ẋ) I(ẋ)]T ∈ Zm, w =

[R(ẇ) I(ẇ)]T ∈ Rn, and H =





R(Ḣ) −I(Ḣ)

I(Ḣ) R(Ḣ)



 ∈ Rn×m, where R(.) and I(.) are the real

and imaginary parts, respectively. The ML solution, X̂ML, that minimizes the 2-norm of the

residual error is found by solving the following integer-least squares

X̂ML = argmin
x⊂Λ

‖y −Hx‖2 (3)
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where Λ is the lattice whose points represent all possible codewords at the transmitter and

Zm is the set of integers of dimension m. It should be noted that (3) is, in general, NP-hard [3].

II. TRADITIONAL DECODERS

In this section, we provide a brief overview of the sphere decoder (SD) and the zero forcing

decoders.

A. Sphere Decoder

The sphere decoder (SD) reduces the search complexity by limiting the search space inside

a hyper-sphere of radius ρ centered at the received vector y [3], [4]. In particular, the solution

should satisfy

‖y −Hx‖2 < ρ2 (4)

The sphere decoder transforms the closest-point search problem into a tree-search problem by

factorizing the channel matrix H = QR, where Q is a n ×m unitary matrix which represents

the orthonormal bases of the channel H , and R is an upper triangular matrix of size m×m that

represents the correlation in the channel. The energy of the residual error be written recursively

as [3]

‖y −Hx‖2 = ‖y −QRx‖2 = ‖Q∗y − Rx‖2 < ρ2 (5)

The SD traverses the tree and computes the path metric for each node in the tree. Any branch

that has a path metric exceeding the pre-defined pruning constraint ρ will be discarded. Thus,

only a subset of the tree is visited and the complexity is reduced.

B. Zero Forcing

The zero forcing (ZF) decoder provides low complexity through decorrelating the channel by

directly inverting the channel matrix H [3], [5]. In particular, for non square MIMO systems,

multiplying both sides of (2) by the pseudo-inverse of the channel, the residual error can be

written as

wZF = H+w. (6)
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Where H+ = (H∗H)−1H∗ is the pseudo-inverse of the channel. It is clear that if the channel

is ill-conditioned, then noise enhancement is significant. The ZF solution, X̂ZF , minimizes the

2-norm of the residual error. In particular [3],

X̂ZF = ⌊H+y⌉ (7)

where ⌊.⌉ is a slicing operation.

III. THE MODIFIED ZERO FORCING

In order to reduce the noise enhancement which is a result of ill-conditioned channels, the MZF

only considers the diagonal elements of the upper-triangular matrix R, in the QR factorization

of the channel matrix, H = QR. It should be noted that since Q is an orthogonal matrix, then

cond(H) = cond(R) [6].

In particular, let rij be the ijth element of R, j ≥ i; and let R = R̂RD where R̂ is a unit

upper triangular matrix with elements r̂ij = rij/rjj, j > i, r̂ii = 1 and RD is a diagonal matrix

whose diagonal elements are rii.

It should be noted that the strict upper-diagonal elements r̂ij represent the correlation elements

which are responsible for channel bad conditioning. On the other hand, the diagonal elements

rii represent the energy of the channel. In order to see this, figure 1 illustrates the effect of

decomposing the channel matrix H on the condition number. In particular, the horizontal access

represents the condition number of the full channel matrix H , and the horizontal access represents

the condition umber of the factored matrices, R̂, RD. The blue curves represent the condition

number of RD while the red curves represent the condition number of R̂ for channel matrices of

size 2×2 and 4×4. It is clear that even for highly ill-conditioned channel matrix, the condition

number of RD remains low. It should be noted that figure 1 is generated by averaging 10, 000

runs. Using the above results, the MZF decoder solves

X̂MZF = ⌊R−1

D QHy⌉ (8)

IV. HYBRID DECODER

Based on the previous findings, a hybrid decoder (HD) can be formed by alternating between

the MZF and the ZF decoders based on channel condition number. In particular, the MZF decoder

provides performance improvement in case of ill-conditioned channels due to considering only
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Figure 1. The effect of decomposition of the channel matrix H on the condition number.

the well conditioned elements of the channel. On the other hand, in case of well-conditioned

channels, the ZF decoder can be used without loss of performance. Hence, the hybrid decoder

alternates between the traditional ZF decoder and the MZF according to the state of the channel

and can be described by the following pseudo-code.

1) Compute the condition number of the channel cond(H).

2) Set a threshold γ > 1.

3) If cond(H) < γ, then X̂ZF = ⌊H+y⌉.

4) If cond(H) > γ, then X̂MZF = ⌊R−1

D QHy⌉.

V. COMPLEXITY ANALYSIS

The complexity of the proposed algorithm can be measured by computing the number of

floating point operations (flops) consumed for execution; which also can be converted into the

execution time. It should be noted that (7) is solved using the QR factorization algorithm [7].

So (7) can be re-written as

RX̂ZF = QHy (9)

Which can be solved using back substitution method with cost [7]:

flpsZF ≈ 2nm2 −
2

3
m3 (10)

Similarly, for the MZF decoder,

RDX̂MZF = QHy (11)
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The cost of the previous algorithm is the same as the cost of the algorithm of eq. (10) without

the cost of back substitution. Where the cost of back substitution is m2, the number of flops of

MZF algorithm is:

flpsMZF ≈ flpsZF −m2 (12)

In HD algorithm; the number of flops is greater than the average between flpsZF and flpsMZF

by the number of flops consumed in channel condition number calculations.

VI. SIMULATION RESULTS

For comparison purpose, the performance of the proposed decoders ,(MZF) and (HD), are

compared to the SD and the ZF for uncoded systems. It is assumed that the transmitted power is

independent of the number of transmit antennas, M , and equals to the average symbols energy.

We have assumed that the channel is Rayleigh fading channel. Let P be the percentage of ill-

conditioned channels in the runs. Figures 2, 3, and 4 illustrate the performance of the traditional

and proposed decoders for N = M = 2 ,16−QAM for well-conditioned channels P = 0%, ill-

conditioned channels with cond(H) = 103 for P = 100% and P = 50% versus different values

of signal to noise ratio. Figure 5 illustrates the performance for different values of channel

condition numbers for SNR = 15dB. As it is clear from the figures, the SD is superior while

the ZF and the MZF decoders are inferior. It should be noted that in the well-conditioned channel

case, as illustrated in figure 2, the MZF decoder performance has an error floor. This is a natural

byproduct of neglecting of one of the well-conditioned channel component, R̂, as expected.

Thus, the HD typically follows the ZF because it acts as a ZF in well-conditioned channels,

P = 0%, as indicated before. Similarly, for the ill-conditioned channels, P = 100, illustrated

in figure 3, the performance of the ZF decoder produces an error floor. This is expected due to

the noise enhancement inherent in the ZF decoder [6]. Figure 4 shows that as the percentage

of ill-conditioned channels increases, the performance of HD is very close to SD performance

especially in low SNR. Also, as shown in figures 5 and 6 the performance of the HD approaches

the SD performance with the increase of the channel condition number especially in low SNR

as shown in figure 6 .

The complexities of the SD, ZF, MZF, and HD are measured by the execution time in finding

the solution. In particular, figures 7 illustrates the complexity for the 2×2 MIMO with 16−QAM

modulation as a function of the SNR. It is clear that the SD has high complexity while the MZF
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Figure 2. Performance of 2×2 MIMO 16-QAM well-conditioned channels (P = 0%)

Figure 3. Performance of 2×2 MIMO 16-QAM ill-conditioned channels with cond(H) = 10
3 (P = 100%)

and the ZF decoders has low complexity. As it is clear from (12), the complexity of MZF

decoder is less than the complexity of the ZF decoder by a small margin according.

VII. CONCLUSIONS

A Hybrid MIMO decoder that is based on neglecting the cross correlation elements of the

channel correlation matrix, R, in ill-conditioned channels and acting as ZF in well-conditioned

channels has been proposed. The proposed decoder has better performance in ill-conditioned

channels than the corresponding ZF decoder. The complexity of the proposed decoder is as low

as the ZF decoder.
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Figure 4. Performance of 2×2 MIMO 16-QAM (P = 50%)

Figure 5. Channel performance varies with a channel condition number for 2×2 MIMO 16-QAM at SNR = 15dB

Figure 6. Channel performance varies with a channel condition number for 2×2 MIMO 16-QAM at SNR = 5dB
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Figure 7. Average Execution Time per Bit for 2×2 MIMO 16-QAM
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