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Abstract—Network Virtualization is one of the key technolo-
gies for developing the future mobile networks. However, the
performance of virtual mobile entities may not be sufficientfor
delivering the service required for future networks in terms
of throughput or service time. In addition, to take advantage
of the virtualization capabilities, a criterion to decide when to
scale out the number of instances is a must. In this paper we
propose an LTE virtualized Mobility Management Entity queue
model to evaluate its service time for a given signaling workload.
The estimation of this latency can serve to decide how many
processing instances should be deployed to provide a target
service. Additionally, we provide a compound data traffic model
for the future mobile applications, and we predict theoretically
the control workload that it will generate. Finally, we evaluate
the virtualized Mobility Management Entity overall delay by
simulation, providing insights for selecting the number ofvirtual
instances for a given number of users.

Index Terms—virtualized MME, queue model, NFV, LTE.

I. I NTRODUCTION

Nowadays, telecom industry is regarding Network Virtual-
ization as one of the key technologies in the future cellular
networks. Network Functions Virtualization (NFV) offers the
operators the possibility of running the network functions
on industry standard high volume servers instead of using
expensive and vendor-dependent hardware [1][2]. The decom-
position of a service in a set of Virtual Network Functions
(VNF) which can be executed in standard servers, allows
for instantiating these VNFs in different network locations as
needed. Concretely, NFV promises to enable organizations to:
i) reduce capital and operational expenditures, ii) accelerate
time-to-market of new services, iii) deliver agility and flexi-
bility, and iv) scale up services on demand [1].

However, it is unclear whether virtualized entities will be
able to cope with the demanding requirements that future
mobile networks will have to face, such as tight service
latency deadlines or very high data and signaling traffic rates.
Some works have addressed the study of the feasibility of the
virtualization of the LTE Evolved Packet Core (LTE/EPC). For
instance, the authors of [3] implement an entire EPC in general
purpose processors. They show that servicing the synthetic
workload generated by 50000 users is viable. However, they do
not analyze the impact of scaling the resources on the overall
service time. In [4], the authors point out potential bottlenecks
of a virtualized EPC (vEPC). To that end, they propose a
simple queue model to estimate the service time of their vEPC

implementation. Experimentally, they show that theServing
Gateway (S-GW) may represent the bottleneck of a vEPC,
and demonstrate that the control plane signaling may interfere
with the user plane packet processing. They conclude that the
direct implementation of the EPC entities in virtualized servers
degrades the system performance, requiring thus a thorough
new design.

The present work focuses on estimating how the signaling
plane workloads expected for the near future affects the service
time of a virtualized Mobility Management Entity (vMME)
which can scale its resources. This is the first step to predict
the resources needed to provide low latency services. The
contribution of this paper is threefold. First, we propose a
detailed queue model of a Virtual MME in a datacenter. To
do that, we calculate experimentally the service rates of the
vMME processes. Second, we characterize theoretically and
by simulation the control messages rate generated by the
users’s activity. Third, we characterize the service time of a
vMME for different control plane workloads. As a result, we
provide the estimation of the system delay depending on the
number of network users and vMME instances.

The paper is organized as follows. Section II describes the
architecture of the vMME analyzed. In sections III and IV,
the user and control planes traffics are modeled. In section
V we present a queue system model for the vMME, which
is simulated and evaluated in section VI. Finally, section VII
draws the main conclusions of this study.

II. SYSTEM MODEL

In this work, we assume a general LTE/EPC network
architecture (see Figure 1), with a logically centralized vMME,
which runs in a cloud computing facility. For simplicity, we
will assume that every processor in the data center provides
the same computational power.

A. System Architecture

For the LTE/EPC considered in this work, the principal
system entities are:

• The User Equipment (UE). The UE represents the ter-
minals which allow each user to connect to the network
via the eNodeB base stations. The UEs run the users’
applications which generate or consume network traffic.
The activity of the UE and the generation of network
traffic trigger the network control procedures.
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Fig. 1. Overall system model.

• The virtualized Mobility Management Entity (vMME).
This is the main control entity, and the responsible of
maintaining the mobility state of the UE, and the manage-
ment of bearers and QoS provision of flows from and to
the UE. In this architecture, the vMME is implemented as
NVF instances in the virtualization facility. This allows to
deploy several MME instances to scale with the network
growth, sharing the processing between the active MME
instances. To do this, protocol and users’ state are stored
in a shared database. To ease the processing sharing, the
datacenteringress switch acts as a balancer, scheduling
each process request to the MME instance with the lowest
processing load. To increase the scalability, resilience and
performance of the NFV processing, each procedure is
split into request and response transactions. When an
NFV finishes its processing, it saves the transaction state
into the shared database. When a subsequent request
arrives to an MME instance, it first gathers the transaction
state from the database to continue from. This way, if a
procedure comprises several stages which depend on the
completion of the precedent stage, the NVF function will
not be blocked.

B. Control Plane Procedures

There exist several signaling procedures in LTE that allow
the control plane to manage the UE mobility and the data
flow between the UE andPacket Data Network Gateway
(PDN-GW). From all of them, we only concentrate on the
ones that generate most signaling load [3]. Each procedure
typically implies an exchange of signaling messages between
the control plane entities [5]. When the MME receives one of
these messages, it processes the message, and later it possibly
sends a new message to the another entity. In the following
subsections, we describe the processing carried out by the
MME during the main control plane procedures [5].

1) Service Request (SR): When a UE does not have
available resources and new traffic is generated, either from
this UE, or from the network to this UE, the UE starts a
Service Request (SR) procedure. We focus on the UE-triggered
SR. During this procedure the MME receives three different

messages: an Initial UE Message (SR1), an Initial Context
Setup Response (SR2), and a Modify Bearer Response (SR3).

To process the Initial UE Message (SR1) the MME has
to carry out UE integrity check and message decrypting.
Additionally, it generates identifiers for the bearers to be
established. Moreover, it stores and retrieves parametersand
variables related to the UE context. Some of them are included
in the subsequent Initial Context Setup Request message.
During the processing of the Initial Context Setup Response
message (SR2), the MME also retrieves information of the
UE context, and includes this information in the subsequent
Modify Bearer Request message. The processing of the Mod-
ify Bearer Response (SR3) is minimum as this message is
only a confirmation.

2) Service Release (SRR): The Service Release (SRR)
procedure is triggered by user inactivity. Its purpose is to
release a data plane bearer and its control plane connectionfor
a UE. During the SRR, the MME processes three messages: a
UE Context Release Request (SRR1), a Release Access Bear-
ers Response (SRR2), and a UE Context Release Complete
(SRR3).

To process both the UE Context Release Request message
(SRR1) and the Release Access Bearers Request (SRR2),
the MME needs to retrieve information of the UE context,
and include this information in the subsequent messages. The
processing of the UE Context Release Complete message
(SRR3) mainly implies the deletion of the bearer’s context
information by the MME.

3) X2-Based Handover: The MME participates in the X2-
based Handover (HO) during the handover completion phase.
Its purpose is to switch the bearers end point from the source
to the target eNB. The MME receives two messages during this
phase: a Path Switch Request message (HR1) and a Modify
Bearer Response (HR2).

To process both the Path Switch Request message (HR1)
and the Modify Bearer Response (HR2), the MME also needs
to retrieve information of the UE context, and include this
information in the subsequent messages. To process the Path
Switch Request message, the MME also needs to store new
information such as the ids of the new serving cell and new
tracking area.

III. A PPLICATION TRAFFIC MODELS

This section describes the application models considered in
this work along with their statistical characterization.

Applications generate traffic during theapplication activity
periods of a session. A session is the UE activity comprised
between the instant the user launches a network application
and the time the user closes or stops using it. Theapplication
activity periods are time intervals in which the application is
transmitting or receiving data.

A session consists ofN application activity periods (Ton)
separated byN−1 reading times. Thereading time (D) is the
time period between two successive activity periods. During
the reading time the user does actions such as reading the
downloaded webpage or deciding the next video to watch.



TABLE I
TRAFFIC MODELS CHARACTERIZATION

Traffic Type Parameters Statistical Characterization

Web
browsing
(HTTP)

Papp = 0.74

Main Object Size Truncated Lognormal Distribution:µ=15.098σ=4.390E-5 min=100 Bytes
max=6 MBytes

Embedded Object Size Truncated Lognormal Distribution:µ=6.17 σ=2.36 min=50 Bytes max=2
MBytes

Number of Embedded Objects per PageTruncated Pareto Distribution: mean=22 shape=1.1
Parsing Time Exponential Distribution: mean=0.13 seconds
Reading Time Exponential Distribution: mean=30 seconds
Number of pageviews per session Geometric Distribution: p=0.893 mean=9.312

HTTP
progressive

video
Papp = 0.03

Video Encoding Rate Uniform distribution with ranges:(2.5, 3.0) Mbps / (4.0,4.5) Mbps /
(12.5, 16.0) Mbps / (20.0, 25.0) Mbps, for equiprobable itags: 137 / 264 /
266 / 315 respectively.

Video Duration Distribution extracted from [6]
Reading Time Exponential Distribution: mean=30 seconds
Number of videoviews per session Geometric Distribution: p=0.6 mean=2.5

Video calling
Papp = 0.23

Call Holding Time Pareto Distribution: k=-0.39 s=69.33 m=0
Number of calls per session Constant = 1

The time between the start of two consecutive sessions is the
inter arrival session time IAST . Based on [7], we configure
IAST to follow an exponential distribution with a mean of
1200 seconds.

When a session begins, the user chooses a certain applica-
tion with a given probabilityPapp (see Table I). Three types of
applications are considered in this work: i) web browsing, ii)
HTTP progressive video and iii) video calling. To provide the
data rates of the future mobile traffic, we have followed the
predictions assumed in the METIS project [8]. The statistical
characterization of these application models are summarized
in Table I and described in the following subsections.

A. Web Browsing

The characterization of this traffic is described in [9]. The
amount of data downloaded for an application activity period
(i.e., webpage size) of a web browsing session is determined
by the main object size (i.e. the HTML file), the number
of embedded objects and their sizes. During a session, the
number of downloaded webpages per session is set to follow
a geometric distribution which fits the data of [10].

The download time is determined by the webpage size, the
link data rate, and theparsing time. The parsing time is the
time the web browser takes to parse the embedded objects.

We have set the future webpages sizes by extrapolating the
data series of [11], and scaling main objects size accordingly.

B. HTTP Progressive Video

This application model follows the YouTube operation de-
scribed in [6], in which a video is transferred at a constant
limited rate during athrottling phase after an initial period
of high downloading rate, calledinitial burst. The number of
downloaded video clips per session is set to follow a geometric
distribution which fits the data of [12]. Thereading time is
assumed to be similar to the one of the web browsing case
(see table I).

The size of each video is calculated from its duration and
encoding rate. The video encoding rate depends on the video

format selected. Each video format, identified by anitag num-
ber, determines a container file format, an encoding algorithm,
and a video resolution. To meet the METIS predicted data
rates, we have considered the YouTube video formats with
the highest encoding rates and resolutions.

The video download time (i.e., activity period) is determined
by the bottleneck link data rate during the initial burst, and
limited by the media server during the throttling phase [6].

C. Video calling

For this application, a session starts when the user opens
a video calling client and makes a single call to someone.
This application generates constant bit rate traffic of 1.5 Mbps
which is the recommended download/upload speed of Skype
for HD video calling.

The call duration orcall holding time determines the appli-
cation activity period duration. The statistical characterization
for the call duration has been extracted from [13].

IV. SIGNALING PROCEDURES RATE CHARACTERIZATION

User’s activity may trigger network control procedures
which the vMME has to process. The frequency of these
requests affects the vMME performance. In this section we
derive mathematical expressions to predict the rate of proce-
dure requests, which depend on the user’s activity.

An SR procedure occurs whenever a user application is
going to start an activity period without network resources
assigned. When an application activity period finishes, auser
inactivity timer with a value ofTI starts. If this timer expires
before the user application starts a new activity period, the
SRR procedure is triggered.

The mean SR arrival rate per userλSR
U is defined as the

average number of SR procedures triggered by a user per
unit time. Hence, theλSR

U can be computed by multiplying
the mean number of SRs procedures per session by the mean
session arrival rateλS . In turn, the mean number of SRs per
session is the mean number of application activity periods



per sessionN times the probability that the inactivity timer
expires. The first activity period begins after an inter session
time TIS (i.e. the time elapsed from the end of a session to
the beginning of the next one), while the followingN − 1
activity periods begin after each reading time. Thus,λSR

U can
be calculated as:

λSR
U = λS · ((N − 1) · P (D > TI) + P (TIS > TI)) (1)

Since each SR have a corresponding SRR, the mean SRR
rateλSRR

U = λSR
U .

An HR procedure takes place when a user performs a cell
changing while being active. A user is considered active from
the triggering of the SR procedure to the triggering of the
associated SRR event. LetPUA be the likelihood that a user
is active at a given time, andCCR the mean user cell crossing
rate, i.e., the mean number of cell crossings per unit time. Then
the mean HR arrival rate per user (λHR

U ) is:

λHR
U = CCR · PUA (2)

On the one hand, assuming that each user moves at constant
speed with a random direction uniformly distributed between
[0, 2π) (fluid-flow mobility model), theCCR is:

CCR =
v · B

π · S
(3)

wherev is the mean user speed andB is the perimeter of
the cell coverage areaS.

On the other hand, to calculatePUA we have to define the
time extension of a user activity period (Tua) as the interval
from the end of an application activity period to the inactivity
timer expiration or the next activity period, whichever comes
first. If X is a generic random variable to model the elapsed
time from the end of an activity period to the start of the next
one, Tua will follow the same distribution as X, but upper
truncated to the value ofTI . Thereby, the expected value of
Tua can be computed with eq. 4:

Tua(X) = TI · P (X > TI) +

∫ TI

0

x · fX(x) dx (4)

Finally, PUA is λS times the amount of time that a user is
active within a session:

PUA = λS · (N · T on + (N − 1) · Tua(D) + Tua(TIS)) (5)

V. QUEUING MODEL

To simulate the system architecture described in section II,
in this work we provide a queue model based on [14] which
considers the layout of a typical cloud processing chain.

Our queue model assumes that in the ingress of the com-
puting cloud, a balancer schedules each control request to the
proper NFV instance (see Figure 2). Each NFV instance can
access a shared database and response with control messages
via an egress switch.

Fig. 2. Queue model of the virtualization facility.

A. Model Description

In our model, the shared database and the server which
balances the control requests among the NVF processors are
modeled with a single processor queue (fig. 2). The processing
NVF pool is modeled by a set of queues and processors to
allow the parallel processing of the control messages.

The common database is accessed during each transaction
with a probabilityδ. Since in this work we consider that every
transaction requires querying the database,δ = 1.0.

The service time of the ingress switch and database queue
processors have been obtained experimentally (see section
VI-B). The egress switch service time is calculated by using
the output line rate. vMME NVF service times depend on the
type of message received.

VI. N UMERICAL RESULTS

A. Experimental Setup

Our evaluation framework includes two software tools: a
generator of procedure calls and a queuing system simulator.

The generator of procedure calls is implemented in the ns-
3 simulator [15]. It implements the traffic models presented
in section III and the corresponding network signaling. The
simulation scenario is based on the dense urban information
society scenario of the METIS project [8]. It is composed of
12 access points distributed regularly in a4x3 grid over a rect-
angular area of size387mx 552m. The coverage area for each
access point is rectangular with dimensions of138mx 129m.
The users move across the area following a fluid-flow mobility
model. The user speed is uniformly distributed between0 and
4.2m/s.

The percentage of traffic generated for each type of appli-
cation has been adjusted to meet the simulation guidelines of
METIS project (see Table I). All users have an independent
and constant uplink and downlink data rate of300Mbps [8].
During the simulation, each control procedure taking place
generates control messages which are dumped to a trace file.

The queuing system simulator implements the queuing
model presented in section V using the Matlab Simulink
framework. The queuing model is fed with the traces produced
by the previous tool. The load balancer has a service rate of
120000 packets per second [16]. The database service rate has
been obtained by assuming that the database deployed in the
Amazon Cloud is the Amazon Aurora database [17], which



Procedure Number of instructions processing time (s)

SR1 1.45e+06 12.74e-05
SR2 1.07e+06 9.40e-05
SRR1 1.07e+06 9.40e-05
SRR2 1.07e+06 9.40e-05
SRR3 1.06e+06 9.32e-05
HR1 1.07e+06 9.40e-05
HR2 1.07e+06 9.40e-05

TABLE II
PROCESSING TIMES FOR THE NUMBER OF INSTRUCTIONS MEASURED,

AND THEIR PROCESSING TIME FOR THEm3.xlarge INSTANCE.
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Fig. 3. Control procedures arrival rates versus user inactivity timer

is reported to serve100000 transactions per second [18]. The
egress switch is a 10G Ethernet and able to serve5000000
packets per second. Table II shows the NVF processing times
of the control messages used.

B. NVF Processing Time Estimation

To calculate the system delay, we need to estimate the time
a NFV spends processing each control message. This value
depends on the type of control procedure served. Given a CPU
processing capacity, we can estimate the delay of processing a
message by assessing the average number of CPU instructions
required for running a particular procedure.

To do this, we have considered the CPU characteristics of a
real cloud service configuration from theAmazon Elastic Com-
pute Cloud (EC2) [17]. Additionally, we have implemented in
C the code of the functions which are invoked in the vMME
for each procedure. Although our implementation may differ
from real MME implementations, we think that our version
executes similar tasks as the real ones.

After compiling the code, we measured the number of
CPU instructions executed for every procedure by means of
profiling tools. Table II provides the delays calculated forthe
EC2 m3.xlarge virtual instance of the Amazon EC2 service
[17]. The average computing capacity of this type of instance
is been measured in [19] as11.38 · 109 float operations per
second.

C. Signaling Procedures Rate

To characterize the control messages arrival rate, we gen-
erated a signaling trace for 20000 users. The mean arrival

rates for the different signaling procedures were computedfor
severalTI values (see Figure 3). The results show that the
SRs and SRRs rates decreases withTI . That is because the
higher the timer value, the smaller the probability the timer
runs out within an inter activity period. Thus, the user stays
in the active state between consecutive application activity
periods, avoiding the need for triggering procedures to reserve
and release resources. Conversely, the HRs rate increases with
the timer value, since the user remains active longer after
an application activity period. Consequently, there is a higher
chance that a user is active when a cell crossing event takes
place. The root-mean-square errors between the experimental
and predicted rates for SR and HR procedures (4.07 · 10−5

and 5.0 · 10−4, respectively) demonstrate that the analytical
expressions proposed are well fitted to the experimental data.
The higher prediction error for the HR procedure rate is due
to the fluid-flow mobility model implementation: a bounce-
back strategy is employed when a user reaches an edge of
the geographical area. That decreases theCCR per user
in comparison with the predicted by the fluid flow model
expression.

D. System Delay

Most mobile networks standards requirements define a delay
budget to perform the control procedures. In order to evaluate
the delay of our system, we generated a signaling trace for
1200000 users and aTI = 10 seconds. Figure 4 depicts the
system delay versus the number of users and vMME instances.
The system delay grows exponentially with the number of
users. There is a point where the number of vMME instances
cannot withstand the control messages arrival rate and the
system delay shoots up. At this point, a new MME instance
must be added to cope with the control plane workload within
the budget delay.

Observing the results in Figure 4, we could derive a simple
criterion to calculate how many vMME instances are needed
to maintain the overall latency below the a given threshold in
this scenario.

For instance, if we consider a system delay budget of 1
ms, the experimental results show that the system describedis
able to cope with up to374740, 773210 and1173900 users for
one, two and three vMME instances respectively. The resulting
control loads are3883, 8016 and12169 signaling procedures
per second, respectively. With these results, we can predict the
number of vMME instancesm given a number of usersu as
m(u) = ⌈2.50·10−6 ·u+6.36·10−2⌉. Please note that with the
traffic models parameters considered, these control workloads
correspond up to1.2 · 106 users. Other traffic and processing
times parameters may need a different equation.

VII. C ONCLUSIONS

In this paper we propose a queue model of a virtual MME
in a datacenter, estimating its processing time for several
types of control procedures. Additionally, we have developed
analytical expressions to predict the rate of UE signaling
events for a given application traffic model. The accuracy
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of the proposed expressions has been verified by simulation.
Using this framework we have characterized the service delay
of the control signaling of a vMME which serves the traffic
workloads expected in future mobile networks.

This characterization will help to design virtual resources
allocation algorithms to provide, given a number of users,
the desired service within the allowed delay threshold. Ex-
perimentally, we have shown that, given a processing delay
threshold of 1 ms and a per user parameterized application
traffic model, three vMME instances are able to cope with the
signaling control traffic generated by more than 1170000 users
in a datacenter with nowadays processing power.
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