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Abstract—This paper studies the potential improvements in
terms of energy efficiency and system throughput of a hybrid
automatic retransmission request (HARQ) mechanism. The anal-
ysis includes both the physical (PHY) and medium access (MAC)
layers. We investigate the trade-off provided by HARQ, which
demands reduced transmit power for a given target outage
probability at the cost of more accesses to the channel. Since the
competition for channel access at the MAC layer is very expensive
in terms of energy and delay, our results show that HARQ leads
to great performance improvements due to the decrease in the
number of contending nodes – a consequence of the reduced
required transmit power. Counter-intuitively, our analys is leads
to the conclusion that retransmissions may decrease the delay,
improving the system performance. Finally, we investigatethe
optimum values for the number of allowed retransmissions in
order to maximize either the throughput or the energy efficiency.

Index Terms—Hybrid Automatic Repeat Request, Cross-Layer,
Energy Efficiency, IEEE 802.11

I. I NTRODUCTION

A more conscious use of energy in the Information and
Communication Technologies (ICT) industry is a subject with
increasing importance due the growth projections in this sector
for the next years. ICT’s energy consumption had an annual
growth rate of 10% between 2007 and 2011, against 3% of
overall electricity consumption [1]. Mobile communication
systems alone are expected in 2020 to have carbon emissions
three times higher than in 2007 [2]. As a consequence, energy
consumption has become a key-factor for future technologies
such as 5G, whose expected traffic volume may lead to an
inevitable energy crunch if present paradigms are used [3].

The energy consumption of a given network architecture
depends on many factors, such as transmit power, circuitry
consumption, data rate, transmission scheme, etc, which are
usually encompassed into an energy efficiency metric defined
by the ratio between the amount of bits correctly transmit-
ted and the energy expenditure [4], [5]. Moreover, energy
efficiency also depends on the density of the network,i.e.,
when many nodes have packets to transmit, the competition for
channel access may become very expensive [6], jeopardizing
both throughput and energy efficiency. A tradeoff analysis
between energy and throughput has been considered by [7], [8]
combining physical (PHY) and medium access control (MAC)
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layers. The PHY layer is modeled assuming Shannon capacity,
providing a bit-rate for error-free communications withina
relay network. As a result, MAC effects were found to be
significant due to the number of nodes contending for channel
access, in a setup based on the 802.11 MAC layer, yielding
longer transmission delays, and consequently very different
conclusions as if the PHY layer is considered alone.

Similarly to relaying, hybrid automatic repeat request
(HARQ) mechanisms also demand smaller transmit power for
a given target outage probability, but at the cost of more
accesses to the channel. As a result, the use of HARQ
may present a trade-off in terms of energy efficiency. In
the literature, optimal power allocation for HARQ has been
considered,e.g., in [9], [10], minimizing the necessary transmit
power in block fading scenarios. Moreover, an energy and
spectral efficiency trade-off was analyzed in [11] and a closed-
form expression for the energy efficiency is provided by [12].
However, contention at the MAC layer was not considered
by the above works, which according to [7], [8] is very
significant in the energy efficiency and throughput analysis.
In addition, [13] recently considers a cross-layer framework
in a MIMO network, showing important energy efficiency
benefits of multiple antenna schemes. Nevertheless, HARQ
mechanisms have not been considered in that scenario as well.

Differently from previous work, we assume single-hop
HARQ within a cross-layer PHY/MAC framework. Moreover,
we consider quasi-static Rayleigh fading where a target outage
probability must be ensured at the receiver, which is common
in practice. In addition, we analyze the system performancein
terms of two metrics: system throughput and energy efficiency.
Then, our results show that, despite the need of more channel
accesses, HARQ provides simultaneous benefits on throughput
and energy efficiency. The great improvements in the MAC
layer are mainly due to the reduced required transmit power,
which decreases the communication radius, and thus, the num-
ber of contending nodes per area, providing major benefits in
terms of throughput and delay. Moreover, we also investigate
the optimum number of retransmissions in order to maximize
either the system throughput or the energy efficiency.

Next, the system model is described in Section II, while the
throughput and energy efficiency formulation are provided in
Sections III and IV, respectively. Section V discusses some
numerical results, while Section VI concludes the paper.



II. SYSTEM MODEL

We consider two communicating nodes, source and desti-
nation, separated by a distanced in an area with other nodes
competing for channel access. A node densityρ per square
meter is considered, as well as a quasi-static Rayleigh fading
setup with additive white Gaussian noise (AWGN). Packets
transmitted by all nodes are constituted of header and payload,
which respectively containH and I bits, and lead to a total
of Q = H + I bits per packet. The received power at the
destination is

Pr =
Ptλ

2

16π2dα
, (1)

wherePt is the transmit power,α is the path loss exponent
andλ the wavelength.

The MAC layer modeling is based on the 802.11 MAC
protocol [6] formulation presented by Bianchi in [14], so
that all nodes, including source and destination, use the same
transmit powerPt, have the same reception sensitivityPth,
same bandwidthB, and are always ready for transmission.
The average signal to noise ratio (SNR) at the destination is

γ̄ =
Pr

N0B
, (2)

whereN0 is the unilateral noise power spectral density. Data
and control bit rates are constant and identical for all nodes,
respectively denoted asR andRc.

A. Physical Layer

In the PHY layer we assume the use of HARQ with Chase
combining, in which previous erroneous transmission attempts
are not discarded, but rather combined at the receiver [9],
[15]. This scheme increases the chance of correct decoding
by allowing up toM transmissions of the same packet in
case of successive outage. The multiple received packets
are merged at the receiver as in maximum-ratio combining
in multiple receive antenna setups. Assuming the use of a
capacity achieving error correcting code, the system outage
probabilityO at the PHY layer can be written as [12], [16]

O(M) = 1− e−γ0/γ̄
M
∑

k=1

(γ0/γ̄)
k−1

(k − 1)!
, (3)

whereγ0 = 2R/B − 1. The transmit powerPt is adapted to
guarantee a sufficient SNR so thatO(M) = O∗, whereO∗ is
the target outage probability, for each distance between source
and destination. The average number of required transmissions
N per data packet then becomes [17]

N(M) =

M−1
∑

k=0

O (k) . (4)

Moreover, due to the quasi-static fading assumption, for
a finite number of allowed transmission attempts the outage
probability is non-zero, leading to an average effective data

rate that can be shown to be

R̄(M) = R
M
∑

k=1

O (k − 1)−O (k)

k

= R
γ̄

γ0
(O (1)−O (M + 1)) < R.

(5)

B. MAC Layer

We employ the IEEE 802.11 MAC protocol [6], which is
based on a four-way handshake mechanism. When the source
has a packet to transmit, it first senses the channel during a
time denoted byTDIFS (distributed interframe space). If the
channel is idle during that period, it starts a random backoff
counter, which is randomly initialized within a contention
window, decrementing at every slot timeσ. Then, as soon
as the backoff counter expires, the source transmits an RTS
(request to send) control packet, and if the destination is
able to communicate at that moment, it replies with a CTS
(clear to send) after a time duration denoted byTSIFS (short
interframe space). When the source node receives the CTS,
it starts data packet transmission and, if the data packet is
successfully received, the destination node replies with an
ACK (acknowledgement) message, with time durationTACK.
Otherwise, in the case of transmit errors, the colliding nodes
choose a new random backoff value to restart the process, but
now with a contention window with twice the previous size.

At the MAC layer, the nodes competing to access the
channel are called contending nodes. Assuming isotropic trans-
mission, the source node provides a received power larger than
the reception sensitivityPth for all nodes within a circular
radius, which contains an amount of contending nodes

n = ρπ

(

Pt

Pth

λ2

16π2

)

2

α

. (6)

According to [14], the probabilityptr of at least one node to
be transmitting at a random time, and the probabilityps that
a transmission occupying the channel is successful (i.e., there
is no collision at the MAC layer), are given by

ptr = 1− (1− τ)n, (7)

ps =
nτ(1 − τ)n−1

1− (1 − τ)n
, (8)

whereτ is the probability that a packet transmission is started
by a node and can be determine by [14]

τ =
2(1− 2p)

(1− 2p)(W + 1) + pW (1− (2p)m)
, (9)

wherep, the probability that a transmitted packet collides, is

p = 1− (1− τ)n−1, (10)

W is the contention window minimum size, andm is defined
by the maximum contention window sizeCWmax = 2mW .



III. SYSTEM THROUGHPUT

The system throughput is directly linked to the transmission
delay, which consists of two parts:i.) the delay at the PHY
layer, for packet transmission; andii.) the delay at the MAC
layer, for channel access and control packet transmissions.

A. Physical Layer Delay

At the physical layer, the transmission delayDPHY depends
on the average effective data rateR̄ and on the overall number
of bits Q per packet, so that

DPHY(M) =
Q

R̄(M)
. (11)

B. MAC Layer Delay

At the MAC layer, we build upon [7], [8], [14], which model
the MAC average delayDMAC as the sum of the time spent
on backoff count, the time consumed by collisions, and the
protocol overhead. As in [7],DMAC can be written as

DMAC = E[X ]E[L] +
pTc

1− p
+ TMAC, (12)

whereE[X ] is the average number of backoff counts needed
for successful channel access,E[L] is the average time for the
backoff counter to decrement,Tc is time the medium is sensed
busy by nearby nodes in case of collisions, andTMAC is the
overhead of the MAC protocol given by

TMAC = TRTS+ TCTS+ 4δ + TACK + 3TSIFS+ TDIFS, (13)

with TRTS and TCTS being the time consumed by RTS and
CTS messages, respectively, andδ is the propagation delay
(the ratio between distance and speed of light).

The time spent on backoff count depends onτ and p in
(9)-(10), and according to [18] can be calculated by

E[X ] =
(1 − 2p)(W + 1) + pW (1− (2p)m)

2(1− 2p)(1− p)
, (14)

E[L] = (1− ptr)σ + ptrpsTs + ptr(1− ps)Tc, (15)

where the amount of time the medium is sensed busy by
nearby nodes in case of a successful transmission (Ts) and
in case of collision (Tc) are respectively evaluated by [7]

Ts = TH + TD + TMAC, (16)

Tc = TRTS+ δ + TDIFS, (17)

whereTH = H/R̄ andTD = I/R̄ are the time consumed by
the header and data packets transmission, respectively.

C. Cross-Layer Delay and Throughput

When both PHY and MAC layer delays are combined, we
notice thatDPHY is independent ofDMAC, since it is a direct
function of the average number of transmission attemptsN
per packet. Nevertheless, the delay at the MAC layer also
depends onN , since every retransmission restarts the process
for channel access. Therefore, we can write the total delay as

Dtotal(M) = DPHY(M) +N(M) · DMAC. (18)

Since the overall number of bitsQ per packet and of allowed
retransmissionsM are constant over distance, if the transmit
power is adapted to keep a fixed outage probability at the des-
tination, thenDPHY is constant over distance as well. However,
in the same conditions,DMAC is monotonically decreasing over
distance because as the transmit power increases, so does the
delay due to the increase in the number of contending nodes.
This causesDtotal to eventually get very dependent onDMAC

as the distance increases.
Moreover, the system throughputT is defined as the ratio

between the number of payload bits and the time taken for
their transmission, yielding

T (M) =
I

Dtotal(M)
. (19)

Finally, as our goal is to analyze the possible benefits of
using retransmissions, we define a throughput gain denoted
by GT (M), which consists on the ratio between a scenario
allowingM transmission trials per packet and a scenario with
only one transmission trial (M = 1), as

GT (M) = 10 log
10

(

T (M)

T (1)

)

. (20)

IV. ENERGY CONSUMPTION

Similarly to the system throughput, the energy consumption
is also linked to the transmission delay so that we split the
following analysis to tackle each layer separately. But first, let
us define the total transmit power consumptionPtx as [7]

Ptx =
Pt

µ
+ Psp, (21)

whereµ is the transmitter power efficiency andPsp denotes
the power consumed by signal processing baseband operations.
Moreover, at the receiver the power consumption is fixed and
we denote it byPrx.

A. Physical Layer Energy Consumption

The energy consumption at the physical layer mainly de-
pends on the delay for data transmission, which takes into
account the bits transmitted during the successful channel
access attempts. Thus,

EPHY(M) = (Ptx + Prx)DPHY(M), (22)

which already encompasses the retransmission attempts dueto
possible outages.

B. MAC Layer Energy Consumption

At the MAC layer, the energy consumption must take into
account the fraction of time spent waiting for the backoff
counter to expire, and the fraction of time spent attempting
to access the channel. Thus,EMAC can be written as

EMAC = Ewait + Eaccess. (23)

While waiting for the backoff counter to expire, three
different scenarios are possible for the neighboring nodes:
successful, unsuccessful and no transmission, yielding [7]

Ewait = PrxE[X ] (ptrTRTS+ (1− ptr)σ). (24)



TABLE I
SIMULATION PARAMETERS

Parameter Value
Payload (I) / Header (H) 2000 / 36 bytes
RTS / CTS / ACK 20 / 16 / 15 bytes
Slot time (σ) / DIFS / SIFS 20 / 50 / 10µs
CWmin / CWmax 32 / 1024 slots
α (Path loss exponent) 4
Rc / R 6 Mbps / 48 Mbps
ρ (Node Density) 0.00001 nodes/m2

µ (RF power efficiency) 50%
Psp / Prx / Pth 140 mW / 150 mW / -110 dBm
Frequency (f ) / Bandwidth (B) 2.4 GHz / 20 MHz
Propagation Speed (c) 3.108 m/s
Target Outage Probability (O∗) 10

−3

On the other hand, if there is no packet collision and channel
access was successful, MAC energy is spent only on flow
control. Otherwise, energy is spent on RTS collision and retrial
attempts, leading to [7]

Eaccess=
p

1− p
PtxTRTS+ (Ptx + Prx)(TRTS+ TCTS+ TACK).

(25)

C. Cross-Layer Energy Efficiency

The total energy consumption combines (22) and (23) as

Etotal(M) = EPHY(M) +N(M) · EMAC, (26)

while the energy efficiency is defined as the ratio

η(M) =
I

Etotal(M)
, (27)

representing the amount of bits successfully transmitted per
Joule of energy. Finally, we define the energy efficiency gain
in a way similar to the throughput gain as

Gη(M) = 10 log
10

(

η(M)

η(1)

)

. (28)

V. NUMERICAL RESULTS

In this section results for throughput and energy, with
different numbers of transmission trialsM in the PHY layer,
are explored according to the numerical parameters in TableI,
based on [7], [8]. The node densityρ is relatively small, but
we consider that nodes are always ready for transmission, and
therefore competition for channel access is high even with
small ρ. The target outage probability,O∗, is the same for
all scenarios, what demands different average SNRs at the
destination for differentM according to (3).

A. Throughput Analysis

As distance increases, each layer contributes differentlyto
Dtotal as shown in Fig. 1. The average PHY throughput for
a given fixed target outage probabilityO∗, as given in (5),
is a decreasing function ofM , but constant over distance.
For a fixedM , with the increase in distance and consequent
increase in the required transmit power to meet the target
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Fig. 1. Throughput in the PHY and MAC layers, as well as the total
throughput, as a function of the distance forM = 1 and5.

0 50 100 150 200

Distance [m]

0

10

20

30

40

50

60
C

on
te

nd
in

g 
N

od
es

M = 1
M = 2
M = 5

Fig. 2. Number of nodes contending for channel access as a function of the
distance forM = 1, 2 and5.

outage probability, so does the number of contending nodes
(6), negatively affecting the throughput at the MAC layer.

However, differently from the PHY layer, in the MAC
layer the throughput does not necessarily decreases withM .
That is because when retransmissions are allowed the required
transmit power to meet a given target outage probability is
reduced, and therefore the number of contending nodes is
also reduced, as illustrated in Fig. 2. As the delay in the
MAC layer is heavily dependent on the number of contending
nodes, allowing for retransmissions in the PHY layer has a
very positive impact in the MAC layer throughput. Moreover,
as with the increase in distance – and therefore in the required
transmit power – the delay in the MAC layer dominates
over the delay in the PHY layer, and therefore improving
the performance of the MAC layer significantly affects the
overall system throughput as shown in Fig. 1. For very short
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Fig. 3. Energy efficiency in the PHY and MAC layers as a function of the
distance forM = 1 and5.

distances retransmissions at the PHY layer do not provide
sufficiently low power to overcome the increased number of
average transmissions, but for sufficiently large distances the
advantages in terms of throughput are very clear.

B. Energy Efficiency Analysis

The energy efficiency of the PHY and MAC layers is shown
in Fig. 3 as a function of the distance for differentM . Clearly,
η is a decreasing function withd in both layers. In the PHY
layer, we observe that the energy consumption in (22) depends
on transmit and receive powers, as well as on the PHY delay.
Thus, an increasing transmit power is needed to maintain the
SNR constant at the receiver with the increase of distance, in
order to meet the target outage probabilityO∗. Therefore,η
decreases withd due to the higher required transmit power,
but increases withM since then the required transmit power
is reduced. At the MAC layer the effects are very similar,
with η decreasing with the increase of the transmit power, but
increasing with the number of allowed transmission trialsM .

Moreover, Fig. 3 shows an interesting behavior at very small
distances. In that case, the fixed power consumption relatedto
Prx andPsp becomes very relevant in the energy consumption,
as can be observed in (22), (24) and (25). Therefore, at small
transmit ranges (smaller than25 m in this particular example),
Fig. 3 also shows that it is better to avoid retransmissions
(imposingM = 1), slightly increasingPt to meet the outage
probability target, achieving better energy efficiency.

C. Combined Energy and Throughput Analysis

Fig. 4 plots the throughput and energy efficiency gains,
GT (M) andGη(M), respectively, forM = 2 andM = 5
as a function of the distance between source and destination.
Notice that gains above0 dB imply in an improvement when
compared to the case without retransmissions (M = 1).
As we can observe from Fig. 4, there are no throughput
improvements for very low distances, asGT (M) andGη(M)
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are below the0 dB margin in this range, what is in accordance
with Fig. 1. However,M = 2 quickly surpasses the0 dB
margin. AsM increases the starting gain decreases due to the
increased average number of transmission trials, however,the
reduced amount of contending nodes provides a larger gain
with M over distance. As for throughput, energy efficiency
also benefits from the decreased number of contending nodes
that is a consequence of allowing multiple transmission trials
and reducing the required transmit power. The starting gain
in terms of energy efficiency is mainly defined by the fixed
energy consumption of some components, such asPrx andPsp

pondered by the average number of transmissions, resultingin
a successive decrease withM .

It is interesting to notice in Fig. 4 that optimum values of
M for energy efficiency and throughput are not necessarily
the same, due to the difference on switching points (change
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of optimal M ) for energy and delay. Fig. 5 presents the
optimumM for the considered scenario, illustrating that the
difference on switching points for energy and throughput leads
to different optimumM , and also that this value changes with
distance due to different starting gains and growth rates for
eachM , as illustrated in Fig. 4.

Two possible optimization scenarios with respect toM arise
from Fig. 4, one which focuses on energy efficiency, and the
other focused on throughput. Fig. 6 presents the behavior of
Gη(M) and GT (M) for both scenarios. It can be noticed
that for up to a distance the performance is very similar for
both energy efficiency and throughput scenarios, because the
optimum M is very similar in both cases. However, as the
distance increases, the difference on the optimumM for each
case starts to grow. When considering an optimization focused
on throughput, the energy gain ever grows with distance,
even though at a decreasing rate. On the other hand, if the
optimization is focused on energy efficiency, the throughput
gain starts to decrease over distance because the optimum
M for energy efficiency is larger than that for throughput,
excessively penalizing the PHY layer delay. Therefore, for
maximum energy efficiency it may be not possible to achieve
the best performance in terms of data throughput.

VI. CONCLUSIONS

In this work, a PHY/MAC cross-layer analysis was ap-
plied to a scenario considering multiple transmission trials
in the PHY layer, under the effect of quasi-static Rayleigh
fading. The main conclusions of this work can be summarized
as follows: i.) Retransmissions improve the data delay, and
therefore the throughput, except for very short distances;ii.)
Retransmissions may provide simultaneous energy efficiency
and throughput improvements;iii. ) There are different op-
timum numbers of maximum transmission trials for energy
efficiency or throughput. Despite the need of more channel

access attempts, retransmissions may provide higher through-
put due to the decreased MAC delay caused by a smaller
required transmit power, leading to a reduced probability of
collision during channel access. As future work, relay nodes
and multiple antennas may be integrated into this framework,
expanding the analysis.
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