
Machine Learning for Cooperative Driving in a
Multi-Lane Highway Environment

Aashik Chandramohan, Mannes Poel, Bernd Meijerink, Geert Heijenk
Department of Computer Science, University of Twente, The Netherlands
{a.chandramohan, m.poel, bernd.meijerink, geert.heijenk}@utwente.nl

Abstract—Most of the research in automated driving currently
involves using the on-board sensors on the vehicle to collect
information regarding surrounding vehicles to maneuver around
them. In this paper we discuss how information communicated
through vehicular networking can be used for controlling an
autonomous vehicle in a multi-lane highway environment. A
driving algorithm is designed using deep Q learning, a type
of reinforcement learning. In order to train and test driving
algorithms, we deploy a simulated traffic system, using SUMO
(Simulation of Urban Mobility). The performance of the driving
algorithm is tested for perfect knowledge regarding surrounding
vehicles. Furthermore, the impact of limited communication
range and random packet loss is investigated. Currently the
performance of the driving algorithm is far from ideal with
the collision ratios being quite high. We propose directions for
additional research to improve the performance of the algorithm.

Index Terms—Autonomous driving, Cooperative driving, Re-
inforcement Learning, Q learning, SUMO, Highway environment

I. INTRODUCTION

With the current developments in technology, autonomous
vehicles have become a reality. Autonomous vehicles are the
type of vehicles that are capable of sensing their environment
and navigating without human input [1]. One of the approaches
for realizing autonomous driving, is to use cooperative driving
based on vehicular networking for obtaining information re-
garding surrounding vehicles. In cooperative driving vehicles
can communicate information such as their current position
and velocity with each other. A driving algorithm can then
learn based on the information received and the actions
performed by the autonomous vehicle such that over time the
autonomous vehicle starts taking the correct actions to move
through the traffic.

There is already some research done that involves con-
trolling an autonomous vehicle in a highway environment.
Shota Ishikawa et al. discuss how cooperative learning among
autonomous vehicles can reduce traffic jams [2]. In [3], Xin Li
et al. discuss an approach of using reinforcement learning for
controlling an autonomous vehicle in a 2-lane highway envi-
ronment using actions of lane change and constant acceleration
and deceleration by the autonomous vehicle.

This paper investigates how and to what extent reinforce-
ment learning can be used for cooperative driving to control an
autonomous vehicle in a multi lane highway environment. It
also investigates how the performance of the driving algorithm
is affected by the communication range and by random packet

loss in the underlying vehicular networking. In order to do so,
a simulated traffic environment is set up.

This paper is organized as follows. In Section II, we
explain how we designed, trained, and tested the machine
learning algorithms for cooperative driving. The design of
the algorithm itself is discussed in Section III. Section IV
discusses test results for our algorithms, after which we draw
some conclusions, and sketch how to continue this research in
Section V.

II. DESIGNING, TRAINING, AND TESTING MACHINE
LEARNING FOR COOPERATIVE DRIVING

Machine learning algorithms require extensive training and
testing. Because the cost and risks of training algorithms in
real cars in real traffic scenario’s is prohibitive, we have set
up a simulated traffic environment. We use SUMO (Simulation
of Urban Mobility) [4] to create traffic scenario’s, where non-
autonomous vehicles are behaving according to certain driver
models. Using its TraCI (Traffic Control Interface) interface,
one or more autonomous vehicles can be controlled using the
machine learning algorithm under development. Our machine
learning algorithms are developed in Python, using Keras [5]
as a high level neural network API, on top of the Tensorflow
library for dataflow graphs [6].

In the remainder of this section we will first explain why and
how we use reinforcement learning as the machine learning
algorithm of choice. We will then give some background
information on Q learning, the used reinforcement learning
type, in Section II-B. Finally, we will explain how we trained
and tested the designed algorithms in Section II-C.

A. Reinforcement Learning

Our driving algorithms use reinforcement learning because
it is a type of learning algorithm that adapts based on changes
in the environment [3]. Fig. 1 shows the interaction between
the driving algorithm and the simulation environment. The
block diagram of reinforcement learning taken from [7] is
shown inside the driving algorithm. Here the environment is
the unit that interacts with the simulation environment and
defines the input state, St at time t for the the agent. Based
on St, the agent takes an action At, which is passed on to
the simulation environment by the environment in the driving
algorithm. Due to the taken action, there would be some
change in the simulation environment which leads to a new
state St+1. Based on whether the outcome of the action was

2019 Wireless Days (WD)

978-1-7281-0117-0/19/$31.00 ©2019 IEEE

favourable or not, rewards are given (positive for favourable
actions and negative rewards for unfavourable actions). The
accumulated rewards are used to train the agent with the aim
of the agent being able to take the actions that lead to the
maximum overall rewards.

B. Q Learning

Q learning is a type of model-free reinforcement learning. It
provides agents with the capability of learning to act optimally
by experiencing the consequences of actions, without requiring
them to build maps of the environment domain [8]. Here the
actions are taken based on the Q value for the state action pair.
The Q value is the expected discounted reward for executing
action A from state S and following the best policy to select
the next action [8]. The action contributing to the maximum
Q value from that state is chosen as the action of the driving
agent for the corresponding input state. As at the start of the
training the driving agent is unaware of the correct actions to
be taken, initially a large portion of the actions are taken at
random, according to an Exploration rate (ε), and the Q table
is updated based on the calculated Q values. With progress in
training the exploration rate is decreased so that actions are
taken more based on the Q values and not at random. For
a driving environment the number of possible input states are
quite high. Hence it is difficult to maintain a Q table. Therefore
a Deep Q Network (DQN) is used in the driving agent. In
DQN the input state is passed on to a neural network which
consists of different nodes in different layers and the nodes
in the output layer correspond to the possible actions of the
driving agent. During the training period the weights of these
nodes are modified such that the nodes of the output layer
correspond to the Q values for the actions.

Fig. 1: Interaction between driving algorithm and simulation environment.

C. Training and Testing

a) Scenario: A 3-lane and a 2-lane highway environment
is set up using SUMO. Only the autonomous vehicle is
controlled by reinforcement learning. All other vehicles in the
simulation are controlled by SUMO itself. All vehicles are
considered to be of the same length of 3 meters. Other vehicles

are inserted into the simulation at random times following a
Poisson distribution, a slower moving type of vehicle which
the autonomous vehicle can overtake, and a faster moving type
of vehicle with maximum velocity similar to the autonomous
vehicle. The probability of inserting the slower moving vehicle
(max speed = 11.1m/s) into the simulation is 0.1 per second
and for the other type of vehicle (max speed = 55.55m/s) it
is set to 0.01 per second. All these vehicles are configured
to follow all traffic rules (a.o. driving on the right, no right
overtaking) and maintain a minimum distance with the vehicle
in front. This means that none of these vehicles would initiate
a collision and hence collisions could only be caused by the
autonomous vehicle. In the autonomous vehicle, a collision
avoidance system external to the learning algorithm is used
which detects if the vehicle in front is very close and automat-
ically brakes to avoid rear end collisions by the autonomous
vehicle. This is used as trying to avoid collisions using just
the learning algorithm was ineffective with the number of
collisions being very high. Hence now the collisions are only
possible during lane changes. The speed limit on the highway
is set to 22.22m/s.

Each episode of a simulation consists of 160 time steps
with each time step representing 1 second. The autonomous
vehicle is entered into the simulation at the 60th time step,
so that there will already be vehicles on the road before
the autonomous vehicle. As the learning algorithm is for
controlling the autonomous vehicle, it is active only while the
autonomous vehicle is in the simulation. In case of a collision
the current episode is ended.

b) Training the Driving Agent: Experience Replay is
used for training the neural network in the driving agent. The
input state, new state, action, reward and the episode end status
during each time step is saved in memory and a number of
these past experiences are chosen at random to train the neural
network [9] as consecutive time steps are highly correlated.

The exploration rate is set to a high value of 0.9 at the
start of training and it is decreased exponentially during each
time step by a factor of 0.9992 such that by the end of the
training most of the actions by the agent are taken based on
the maximum Q value for the actions.

c) Testing the Driving algorithm : The driving algorithm
is also tested in random traffic scenarios similar to the training.
The difference between training and testing is that, in training
actions are also taken at random whereas in testing actions are
only taken based on the Q values.

III. COOPERATIVE DRIVING ALGORITHM DESIGN

In this section, we introduce the design of the cooperative
driving algorithm, based on Q learning with a DQN. In the
following subsections, we define the basic elements of our Q
learning algorithm: (1) actions and (2) input features of the
driving agent, and (3) the reward mechanism for its training.

A. Actions of the driving agent

Possible actions for a vehicle in a highway environment are:
1) Change to the left lane.

2) Change to the right lane.
3) Accelerate.
4) Decelerate.
5) Idle Action.
The idle action states that the autonomous vehicle can

remain in the same lane and with the same velocity that it
had during the previous time step.

B. Input features of the driving agent

As the main actions of the vehicle in a highway environment
is either changing lanes or changing its velocity, in this design
the autonomous vehicle is only using the vehicle information
of the vehicles immediately surrounding it as shown in Fig. 2.
The input consists of the current distance, di, to and the veloc-
ity, vi, of each of the surrounding vehicles (i = 1, 2, 3, 4, 5, 6),
where i = 1 and i = 2 denote the vehicle in front and behind
in the same lane, i = 3 and i = 4 denote the vehicle in front
and behind one lane to the left, and i = 5 and i = 6 denote the
vehicle in front and behind one lane to the right. If such a lane
to the left or to the right does not exist because the autonomous
vehicle is already driving in the leftmost or rightmost lane, the
relevant distance is set to a maximum value, and the speed is
set to 0. Finally, the current state of the autonomous vehicle,
i.e., its velocity, va, acceleration rate, aa, and lane index, La,
are used as input.

C. Reward mechanism for training the driving agent

Rewards are the most important part of reinforcement learn-
ing. The effectiveness of the learning algorithm depends on
the reward mechanism used. Based on the reward system, the
driving agent can be very cautious, trying to avoid collisions
by moving really slow, or it can be very aggressive by trying to
reach maximum speed and reduce travel time at all cost. Hence
it is important to design the reward mechanism properly.
Rewards are given such that the autonomous vehicle tries to
follow the basic traffic rules and initiates an overtake whenever
possible. A high negative reward is given in case of a collision,
as it is the most unfavorable result. Also a negative reward
is given if the velocity of the vehicle is zero to discourage
the driving agent from stopping the vehicle in the middle of
the highway. Negative rewards are also given if the vehicle
is close to the vehicle in front or if it is in the overtaking
lanes unnecessarily, i.e. if there are no vehicles nearby in the
lower lane. To encourage the vehicle to drive at the speed
limit, a positive reward is given if it maintains the speed
limit and a negative reward is given when its velocity goes
over the speed limit. Also positive rewards are given if the
vehicle tries to overtake slower moving vehicles. The full

Fig. 2: Input features of the driving algorithm.

TABLE I: Reward Calculation

S.No Reward Reward Condition
1 −101 Collision
2 −50 Else & va = 0
3 −5 Else & La 6= Lmax & d1 < dproximity
4 50− d5 Else & La 6= L0 & d5 < dproximity & aa > 0
5 −1.5× d5 Else & La 6= L0 & d5 > dproximity
6 0.5 Else & La = Lmax & d1 < dproximity & aa < 0
7 −0.5 Else & La = Lmax & d1 < dproximity & aa > 0
8 −1 Else & va > SpeedLimit
9 1 Else & aa > 0
10 2 Else & va = SpeedLimit
11 0 Else

list of rewards and the conditions used is given in Table I.
Here, L0 is the rightmost lane of the road, and Lmax is the
leftmost lane. dproximity is the distance between the vehicles
that is considered to be too close. Detailed motivation for the
values of the rewards is explained in [10].

IV. EVALUATION

In this section, we will evaluate the performance of the
driving algorithm. We have trained and tested our agent in
both a 2-lane and a 3-lane highway. After extensive exper-
imentation, we choose a training period of 7000 episodes,
and a testing period of 500 episodes. We also experimented
with different number of hidden layers and different number
of nodes per layer for the DQN. The results presented here
are for 3 hidden layers with 1500 nodes each, which seems to
give most consistent performance. In the Q learning, we used
a learning rate α = 0.001, and a discount factor γ = 0.9. We
measure the percentage of training or test episodes resulting
in a collision and the average speed during the episodes. More
extensive results can be found in this report [10].

The cumulative collision percentage during the training
period of the driving agent in a 3-lane scenario is shown in
Fig. 3. It can be seen that initially almost all episodes result in
a collision. The collision percentage starts decreasing as the
exploration rate (ε) starts to decrease from 0.5, as then the
actions are taken mainly based on the Q values. Towards the
end of the training period, the cumulative collision percentage
decreases to around 30%. At this point, only a rather small
percentage of the new episodes result in a collision.

The results after training has been completed, during the
test episodes, are summarized in Table II. From these results,
it can be observed that our current results are far from ac-
ceptable for a real autonomous vehicle. Furthermore, it can be
observed that the collision percentage in a 2-lane environment

Fig. 3: Cumulative collision percentage during the training period.

TABLE II: Test Results

95% conf. interval of collision % average speed
3-lane scenario [8%− 14%] 18.4 m/s
2-lane scenario [1.5%− 4.8%] 13.4 m/s

is significantly better than in a 3-lane environment. This is due
to the fact that collisions result from lane changes, and in a
2-lane highway, there are fewer opportunities for lane change.
Because of this the autonomous vehicle also was slowed down
by a slow vehicle more often, resulting in lower average speed.

We also experimented with limiting the communication
range of the autonomous vehicle as that could be one of
the major issues in cooperative driving. To this end, the
driving agent, which was trained in a regular situation would
only have accurate information regarding surrounding vehi-
cles when they are within the communication range. Below
a communication range of 70 meters, collision percentages
became very high. Above 70 meters, results were in the range
given in Table II. Next, we also experimented with packet loss.
In this case, the agent, trained in a situation without packet
loss, would at random occasions not have accurate information
regarding surrounding vehicles. We used an error concealment
technique, where the agent would be fed the last known values
of di and vi in that case. The results of this experiment for a 3-
lane highway are shown in Figure 4. Here, it can be observed
that the collision percentage of the agent is decreasing with
increasing packet loss probability. The reason for the collision
percentage to be 0% when no communication is received at all
is because, in such a case the driving agent believes that there
are no vehicles in the vicinity and hence drives the vehicle only
in the driving lane. When a vehicle is encountered in the front,
the external collision avoidance system in the vehicle becomes
active and prevents a rear-end collision. The corresponding
average speed measured for the autonomous vehicle at such a
scenario was found to be very low at 9m/s. The exact reason
for fewer collisions at intermediate values for the packet loss
probability is still unclear. At these values, the autonomous
vehicle does achieve a reasonable average speed.

V. CONCLUSIONS AND FUTURE WORK

The main goal of this research was to investigate to what
extent reinforcement learning can be used with cooperative
driving in a highway environment. The collision percentage
achieved with this design is currently prohibitively high and
hence further design improvements need to be carried out to
decrease the collision ratio. Another goal was to find how the
driving algorithm performed with change in communication
range and with packet loss during communication. It was
found that communication range plays a vital role in the per-
formance of the driving algorithm and that the communication
range should be large enough so that the driving algorithm has
enough time to react to the vehicles around it. We did not find
a strong effect of packet losses on the performance of the
driving algorithm.

We see a number of research directions to improve the
performance of a reinforcement learning approach for coop-
erative driving. (1) We would like to experiment more with

Fig. 4: Collision percentage for varying packet loss probability.
variation in the neural network configuration like the number
of hidden layers, number of nodes in each layer, and the
activation function of each node in the neural network. (2)
Different agents can be used for different driving aspects, such
as speed control and lane changing. (3) We want to explore
longer training periods and different learning strategies. (4)
The collision ratio can be further reduced by also including
information of the vehicles ahead of the vehicle in front in
the input features of the driving agent, as then the vehicle will
have more time to react based on the change in state of those
vehicles. (5) We might be able to further improve the reward
structure to achieve better performance. (6) We can have the
vehicles negotiate among each other before changing lanes, so
that the other vehicle which might be on a path to collision
can either decrease its speed to allow the vehicle to change
lanes or send a negative response so that the vehicle does not
undertake lane changing.

Summarizing, we conclude that cooperative driving us-
ing reinforcement learning is a prospective approach for
autonomous driving, but much more research needs to be
conducted before it can be put into practice.

REFERENCES

[1] S. K. Gehrig and F. J. Stein, “Dead reckoning and cartography using
stereo vision for an autonomous car,” in Intelligent Robots and Systems,
1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference
on, vol. 3. IEEE, 1999, pp. 1507–1512.

[2] S. Ishikawa and S. Arai, “Cooperative learning of a driving strategy
to suppress phantom traffic jams,” in Agents (ICA), IEEE International
Conference on. IEEE, 2016, pp. 90–93.

[3] X. Li, X. Xu, and L. Zuo, “Reinforcement learning based overtaking
decision-making for highway autonomous driving,” in Intelligent Control
and Information Processing (ICICIP), 2015 Sixth International Confer-
ence on. IEEE, 2015, pp. 336–342.

[4] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–
simulation of urban mobility,” in The Third International Conference
on Advances in System Simulation (SIMUL 2011), Barcelona, Spain,
vol. 42, 2011.

[5] F. Chollet et al., “Keras,” 2015. [Online]. Available: https://keras.io
[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[7] R. S. Sutton, A. G. Barto et al., Reinforcement learning: An introduction.
MIT press, 1998.

[8] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[9] R. Liu and J. Zou, “The effects of memory replay in reinforcement
learning,” arXiv preprint arXiv:1710.06574, 2017.

[10] A. Chandramohan, “Machine learning for cooperative auto-
mated driving,” Master’s thesis, 2018. [Online]. Available:
https://essay.utwente.nl/76407/

