
S-PRAC: Fast Partial Packet Recovery with
Network Coding in Very Noisy Wireless Channels

Kurniawan D. Irianto1,2, Juan A. Cabrera1, Giang T. Nguyen1, Hani Salah1 and Frank H. P. Fitzek1

1Deutsche Telekom Chair of Communication Networks, TU Dresden, Germany
2Department of Informatics, Universitas Islam Indonesia, 55584 Yogyakarta, Indonesia

E-mail: {kurniawan_dwi.irianto@tu-dresden.de, k.d.irianto@uii.ac.id}, {juan.cabrera | giang.nguyen |
hani.salah | frank.fitzek}@tu-dresden.de

Abstract—Well-known error detection and correction solutions
in wireless communications are slow or incur high transmission
overhead. Recently, notable solutions like PRAC and DAPRAC,
implementing partial packet recovery with network coding, could
address these problems. However, they perform slowly when there
are many errors. We propose S-PRAC, a fast scheme for partial
packet recovery, particularly designed for very noisy wireless
channels. S-PRAC improves on DAPRAC. It divides each packet
into segments consisting of a fixed number of small RLNC-
encoded symbols, and then attaches a CRC code to each segment
and one to each coded packet. Extensive simulations show that S-
PRAC can detect and correct errors quickly. It also outperforms
DAPRAC significantly when the number of errors is high.

Index Terms—Partial packet recovery, wireless communica-
tions, noisy channels, packet segmentation, network coding

I. INTRODUCTION

Errors are inevitable in wireless communications. They
can be attributed, for instance, to signal fluctuation, fading,
or interference. Nevertheless, applications usually require a
certain level of reliability for data transmission. Audio and
video applications can only tolerate some errors to recover
without significant distortion. Data applications even require
error-free transmission.

To detect errors, parity check and Cyclic Redundancy Check
(CRC) schemes have been proposed and implemented exten-
sively. To tackle the bit error issue, well-known solutions like
Forward Error Correction (FEC) [1] and Automatic Repeat
Request (ARQ) [2] have been proposed. Approaches based
on FEC add significant redundant information into transmitted
packets, so that the original packets can be recovered even with
the presence of some corrupted bits. In a different approach,
ARQ explicitly triggers a retransmission of a packet when
an error is detected inside the packet. However, both of the
above approaches are inefficient when only a few bits of the
whole data block are corrupted. In particular, FEC introduces
a significant overhead to the transferred payload, while ARQ
introduces latency due to retransmission.

Packetized Rateless Algebraic Consistency (PRAC) [3] and
Data Aware PRAC (DAPRAC) [4] are notable solutions for
the above issues. They use a combination of an Algebraic
Consistency Rule (ACR) and CRC checks at the decoder
side to recover corrupted bits. Subsequently, they reduce the

overhead of FEC and latency due to retransmission in ARQ.
Specifically, for encoding, they employ a linear cross-packet
code over a block of k packets. Furthermore, they divide each
packet into l symbols. Such a block of packets and symbols
is considered as a matrix of size k× l. The coded packets are
the result of multiplying the matrix with a randomly generated
matrix of coefficients. As a result, the receiver only needs x out
of k encoded packets to decode and find original packets. More
importantly, this formulation allows to apply ACR, meaning
that linear combinations of the x packets can be use to express
the remaining (k − x), to detect corrupted symbols.

Correction in PRAC and DAPRAC is an iterative process,
following ACR checks. A search algorithm is used to identify
the correct symbols until the ACR check for the specific
column is satisfied. By the end of each iteration, the CRC
code is updated. The main drawback of PRAC and DAPRAC
is the prolonging search process which is required for testing
all combinations of symbols to correct corrupted packets. This
results in a very slow partial packet recovery, especially when
the number of errors is high.

Our main contribution in this paper is Segmented Packetized
Rateless Algebraic Consistency (S-PRAC), a new scheme
for partial packet recovery with network coding. S-PRAC is
effective and fast in very noisy channel conditions. Whereas
in the previous works, such as PRAC [3] and DAPRAC [4],
the performance tends to decrease when the number of errors
increase in noisy channels.

In fact, our main goal is to reduce the total time required
for detecting and correcting errors. Following the divide-
and-conquer approach, S-PRAC strives to identify corrupted
symbols. The key idea is twofold: First, S-PRAC divides the
packets into segments, each consists of a fixed number of
encoded symbols. Second, S-PRAC adds two CRC codes: (1)
CRC-32 code attached to the end of the coded packet (i.e.
outer CRC) like in DAPRAC and (2) CRC-8 code attached to
the end of each segment (i.e. inner CRC). This design helps
to significantly lower error detection and correction times.
Specifically, using a small number of symbols inside each
segment, S-PRAC can reduce the number of permutations in
the correction process. In addition, using the inner CRC codes
can accelerate the detection and correction of errors because
both processes are performed on the segment level.

ar
X

iv
:1

90
2.

10
64

5v
1

 [
cs

.N
I]

 2
7

Fe
b

20
19

1 0 1

1 1 1

1 0 0

0 1 1

CRC
X X OK

Decoder chooses
a subset of
received packets

1 1

1 1

1 0

0 1

m’1

Original
packet

Coded
packet

Bit
flipped

m’3m’1 m’2 m’3

(a) ACR: step 1

Decoder tries to
guess original
packets

1 1

1 1

1 0

0 1

m’1

Original
packet

Coded
packet

Bit
flipped

m’3

1 0

1 0

1 1

0 1

x’1 x’2

G
ues sed o rigina l pac kets

(b) ACR: step 2

Decoder re-encodes the
non chosen packet
using the guessed
original packets

Original
packet

Coded
packet

Bit
flipped

1 0

1 0

1 1

0 1

x’1 x’2

0

0

1

1

m’’2

(c) ACR: step 3

Decoder compares the
new coded packet with
the received coded
packet

Original
packet

Coded
packet

Bit
flipped

0

0

1

1

m’’2

0

1

1

m’2

0

=

≠
≠

=

(d) ACR: step 4

Fig. 1: Steps in algebraic consistency rule (ACR) check

The rest of the paper is organized as follows: we discuss the
background and related work in Section II and elaborate the
design of S-PRAC in Section III. Next, Section IV describes
our evaluation setup and results. Lastly, we conclude in Section
V.

II. BACKGROUND AND RELATED WORK

In this section, firstly, we describe the background of alge-
braic consistency rule (ACR) check in Subsection II-A. ACR
check plays an important role for detecting error locations in
this paper. Secondly, in Subsection II-B, we discuss the most
notable literature on partial packet recovery (PPR).

A. Overview of ACR check

Algebraic consistency rule (ACR) check in network coding
is, firstly, proposed in [3]. The authors utilize the consistency
of coded packets with network coding to estimate the error
bit locations. When a sender wants to send data, it will create
encoded packets from the original data and send them through
the channel.

Assuming that xi is original packet, mi is coded packet at
the sender and m′

i is received coded packet at the receiver,
where i ≥ 1 . The receiver will receive m′

i and try decoding
it to retrieve xi. Let x′

i be the retrieved original packet
after decoding using m′

i and m′′
i be re-encoded packet after

encoding using x′
i at the receiver. In network coding, encoded

and re-encoded packets should be identical. Therefore, if the
packet transmissions are received without errors, then m′

i and
m′′

i are identical. In this case, a packet is said to be consistent
when xi = x′

i or mi = m′
i = m′′

i. In other words, if
the packets are not consistent, there should be errors in the
packets. With this consistency rule check, we could identify
the error locations in the partial packets.

Fig. 1 shows an illustrative example of ACR. Assuming the
sender wants to send two original packets (i.e. x1 and x2) and
creates three encoded packets (i.e. m1, m2, and m3). Then the
receiver will receive three encoded packets, namely m′

1, m′
2,

and m′
3, where the first and second packets contain an error bit

and false CRC code. However, the receiver does not know the
location of errors. It only can detect the errors through CRC
check. Therefore, in order to estimate the error locations, the

receiver needs to run ACR check, and later correct the errors
with permutation rule in error correction process.

As shown in Fig. 1, ACR check consists of the following
four steps:

1) Choose a subset of received encoded packets: here,
the decoder selects m′

1 and m′
3. The selected packets

should consist of valid and invalid packets. It is prefer-
able to have more valid packets than invalid packets.

2) Guess the original packets: decoder tries to retrieve the
original packets (i.e. x′

1 and x′
2) by decoding using

random linier network coding (RLNC).
3) Re-encode the non chosen packet: by using the guessed

original packets, the decoder needs to re-encode the non
chosen packet (i.e. m′′

2).
4) Compare the re-encoded packets with the received en-

coded packets: lastly, the decoder estimates the error
locations of m′

2 by comparing m′
2 and m′′

2, where the
different bits point out the location of errors.

B. Related Work

To the best of our knowledge, PPR was firstly proposed
in [5]. The author suggests to buffer packets received with
errors, instead of discarding them, since they may contain
useful information. If the retransmission of the same packet
also contains errors, the joint information present in the first
packet and the retransmission can be used to correct errors
in the two packets. If errors remain, further retransmissions
are performed until enough redundancy is present for correc-
tion. In [6], PPR is proposed for IEEE 802.11 WLANs. In
particular, the end device performs PPR on multiple copies
of the same packet received from different access points. A
similar approach, called ZipTx, is proposed in [7]. It uses
error correction codes and known pilot bits in each packet
when bit error rates (BER) are low and high, respectively.
ZipTx recovers corrupted packets using retransmission without
coding.

Some PPR approaches exploit physical layer information.
For instance, the authors of [8] propose two PPR approaches:
(1) SoftPHY which provides hints from physical layer in-
terface to higher layers and (2) a postamble scheme for
recovering packets with corrupted preambles. Jamieson and

Balakrishnan [8] design a link layer protocol named PP-ARQ.
In this protocol, the receiver specifies in the acknowledgment
the parts of the packet that are received without errors. The
transmitter, in turn, retransmits only the parts of the packet that
are not listed in the acknowledgment, i.e. the corrupted parts.
MIXIT [9] employs two methods for improving the throughput
in wireless mesh networks: (1) increased concurrency and
(2) congestion-aware forwarding. In SOFT [10], which aims
to handle dead spots and high loss rates, the physical layer
transfers its confidence in bits to the higher layers. A recent
solution, called CodeRepair, is proposed by Huang et al [11].
CodeRepair uses the single parity code (SPC) for correcting
bit errors in packets. SPC offers a simple error detection code.
In addition, CodeRepair integrates several techniques, such
as code reversing, selective re-decoding, and parity sampling
rate optimization, to utilize SPC for a high efficient FEC in
correcting errors.

Other works propose PPR approaches based on bit rate
adaptation. For instance, SampleRate [12], aiming to optimize
the throughput on wireless links, adjusts the bit rate according
to estimation of per-packet transmission time. Each bit rate
uses a particular modulation scheme to transform a data
stream into a series of encoded symbols. Vutukuru et al.
[13] propose SoftRate, a protocol that is highly resposinve to
channel conditions. More precisely, SoftRate uses both bit rate
adaptation and physical layer information. It estimates channel
BER using confidence information calculated from the phys-
ical layer, and passes it to higher layers. Implementation and
measurement of a cross-layer framework for rate adaptation
in urban and vehicular environments are presented in [14].
The study considers fast-fading, multi-path, and interference
for measuring rate adaptation accuracy in diverse channel
conditions.

Other PPR approaches, commonly called segment-based
PPR, divide the packet into segments, and retransmit only
the corrupted segments. Notable examples include [15], [16],
and [17]. Other approaches [3], [4], [18], [19] exploit the
properties of network coding. The approach presented in [18]
and [19] is based on random linear network coding (RLNC),
sparse error recovery, and compressive sensing. It exploits
partial packets by solving a set of standard sparse recovery
problems for error estimation and correction. PRAC [3], [20]
performs error detection and correction on partial packets
by applying multiple rounds of algebraic consistency rule
(ACR) checks. It does not use physical layer information,
and requires minimum feedback for notification of completion.
Error detection and correction times in PRAC are slow, and
they are not affected by the number of errors. DAPRAC [4]
is a modification of PRAC that aims to reduce the time of the
decoding process. The solution that we present in this paper
improves on DAPRAC. Given this relevance of DAPRAC to
our work, we provide a detailed overview below.

DAPRAC implements a column-based approach for locating
errors, where each column represents a symbol over a finite
field. It performs an ACR iteration to identify corrupted bits
in each column. It corrects the errors using a brute-force

Fig. 2: S-PRAC concepts: segmentation of coded packets, adding an inner
CRC-8 code to each segment, and adding an outer CRC-32 code to each
coded packet after segmentation.

method with permutation of corrupted bits. More precisely,
once corrupted bits are located, DAPRAC counts the number
of possible permutations of these bits, and matches each
permutation with CRC values. The incorrect CRC values
are then updated with the correct ones. After correcting the
corrupted bits, the decoder decodes the coded packets, using
RLNC, to retrieve the original information. Although this
design lowers the decoding time achieved with PRAC, it still
results in slow decoding in very noisy channels, i.e. when the
number of errors is high. This is because the more the errors,
the higher the number of needed permutations.

Our proposed approach for PPR with network coding,
named S-PRAC, is different from the previous works. In
particular, we utilize the segmentation over packets to make
error detection and correction faster. Moreover, we insert a
CRC code to each segment so that S-PRAC can only focus
on the corrupted segments. As a result, the needed time for
detection and correction is remarkably reduced. Therefore, our
scheme is faster than prior solutions when the error numbers
are high, especially in noisy channel environments.

III. PARTIAL PACKET RECOVERY WITH S-PRAC

We describe in this section S-PRAC, our solution for partial
packet recovery. We present the design concepts of S-PRAC
in Subsection III-A. After that, we detail how packets are
encoded and decoded in Subsection III-B and Subsection III-C,
respectively.

A. Design Concepts

Channel noise can cause bits flipping. A packet with one or
more flipped bits is called corrupted packet or invalid packet.
S-PRAC aims to detect and correct corrupted packets quickly
in very noisy wireless channels. Towards that end, it performs
RLNC-based encoding and decoding on partial packets. More
precisely, as can be seen in Fig. 2 , the transmitter divides
each packet into equal-sized segments. Each segment contains
symbols encoded with network codes, over a Galois field [21].
The transmitter also adds an outer CRC-32 code at the end of
the segmented packet (like PRAC [3] and DAPRAC [4]) and,
additionally, an inner CRC-8 code at the end of each segment.

Recovery of segments in S-PRAC, at the receiver side,
is illustrated in Fig. 3a. The receiver cannot determine the
exact locations of corrupted bits. It rather estimates these
locations by applying multiple rounds of ACR checks. The
correction process is triggered immediately after each ACR
round, before starting the next ACR round. In the correction

(a)

(b)

Fig. 3: (a) S-PRAC’s error estimation and error correction processes run at the
decoder side for each segment; (b) The number of permutations in S-PRAC
and DAPRAC (in this example, number of corrupted bits is 6, and number
of segments in S-PRAC is 3).

process, the receiver performs a brute-force search for the
correct permutation of corrupted bits, i.e. the permutation that
matches the segment’s inner CRC. The more the corrupted
bits, the more the number of permutations, thus the longer
the time needed to find the right permutation. Segmentation
can reduce the correction time by limiting the number of
permutations required for correction and by distributing the
errors over the segments. S-PRAC performs error estimation
and correction on the segments one by one, in order. After
the last segment, the outer CRC code is updated. Lastly, the
corrected packet is decoded with RLNC.

The number of permutations (N) required for correction
depends both on the symbol’s field size (q) as well as on the
number of corrupted bits (n). N can be calculated in DAPRAC
as

NDAPRAC = qn (1)

while in S-PRAC as

NS-PRAC =

i=k∑
i=1

qi
n (2)

where i (1 6 i 6 k) is number of segments.

The example in Fig. 3b compares the number of permuta-
tions (N) in DAPRAC and S-PRAC. Applying Eq. 1 and Eq.
2, using q = 2 and n = 6, will result in N = 64 in DAPRAC
and N = 12 in S-PRAC. That is to say, the correction is more
than five times faster with S-PRAC than with DAPRAC, in
this example.

B. Encoding Process

We assume that there are K original packets
M 1,M 2, ...,MK produced by one transmitter and need
to be sent to one receiver. Each packet is T bits long,
i.e. M j = {mj1,mj2, ...,mjT}. The encoder transforms the
K original packets into N coded packets X1, X2, ..., XN,
where N > K. Each coded packet X i = {xi1, xi2, ..., xiT}
is related to a series of randomly selected coefficients
Gi = {gi1, gi2, ..., giK}. It creates a linear combination of the
original packets, and is equivalent to

xit =

K∑
j=1

gij ×mjt, (3)

where 1 ≤ t ≤ T and 1 ≤ i ≤ N . We assume that the coded
packet has the coefficients g, a named coding coefficient, and
the encoded data x (Eq. 3). In matrix notation, the encoding
process can be defined as

X = G×M (4)

where M is the matrix of the original packets, G is the matrix
of the coding coefficients, and X is the matrix of the coded
packets.

Segmentation is performed after encoding the packets. Then,
one inner CRC-8 code is inserted to each segment, and one
outer CRC-32 code is inserted to each encoded packet. While
increasing the number of segments will increase the number
of inner CRC codes, thus computations, it can significantly
decrease the correction time.

C. Decoding Process

The decoding process consists of two subsequent phases:
(1) the estimation and correction phase and (2) the decoding
phase. In general, the decoder receives the coded packets,
checks their outer CRC values, and classifies them accordingly
into valid packets and invalid packets. The packets then stay in
a buffer awaiting for the estimation and correction phase. The
decoder starts the first phase after receiving g + 1 packets,
where g is the number of symbols (i.e. generation size in
RLNC). The decoding phase is initiated directly after the first
phase.

Before starting correction of partial packets in the first
phase, we need to estimate error locations using Algebraic
Consistency Rule (ACR) checks, as proposed in [3], [20].
Essentially, the ACR mechanism consists of four steps. First,
it selects a subset of received coded packets, containing the
valid and invalid packets. Second, it reconstructs the uncoded
packets by guessing them. Third, using the guessed uncoded
packets, ACR re-encodes the non chosen packet. Fourth and
last, it compares the re-encoded packets with the received en-
coded packets. The details of ACR check are already explained
in subsection II-A.

ACR is performed segment by segment over the matrix
of received coded packets. Therefore, multiple ACR rounds
are needed to find all corrupted bits in all segments. The
decoding phase is initiated after the successful completion of

the estimation and correcting phase. In this phase, the coded
packets are decoded using RLNC.

IV. EVALUATION

In this section, we describe our evaluation for S-PRAC and
compare it with DAPRAC [4], the most notable related work.
We describe the setup and metrics in Subsection IV-A. After
that, we present and discuss the results in Subsection IV-B.

A. Experimental Setup and Evaluation Metrics

We implement S-PRAC and DAPRAC using C++ and the
fifi library [22].1 We use two nodes, one as transmitter with
encoder and one as receiver with decoder, and a point-to-point
communication scheme. The transmission medium is very
noisy, which causes many errors in the transmitted packets.
Similar to [3] and [4], we use RLNC for network coding.

We experiment with different generation sizes (i.e. number
of symbols), with a symbol size of 20 bytes. We first ex-
periment with a small segment size of 8 bits. After that, we
increase the segment size gradually to evaluate its impact on
the performance. We repeated each experiment 10000 times.
We plot below the average as well as the standard deviation.

In all the experiments, we selected a Galois field of two
elements. A number of g coded packets are created in the
encoder with a systematic code fashion. Then, a varying
number of corrupted bits are added to the first and the second
coded packets. The receiver starts S-PRAC algorithm after
receiving g+1 packets.

We measure the performance of S-PRAC, and compare
it to DAPRAC, using the following four metrics: (1) error
estimation time (i.e. the time required to estimate locations
of errors), (2) error correction time, (3) encoding time, and
(4) decoding time which, as described in Subsection III-C,
counts both the time required for running the scheme (S-PRAC
or DAPRAC) as well as the time required for decoding the
corrected packets. In addition, we calculate the overhead of
S-PRAC by normalizing the total size of the inserted inner
CRC-8 codes by the size of the original packet.

B. Evaluation Results

Error estimation time: As shown in Fig. 4a, S-PRAC out-
performs DAPRAC in terms of the time needed for estimating
error locations, as long as the number of corrupted bits is low.
However, this time increases in S-PRAC, and remains constant
in DAPRAC, with the increase in the number of errors. These
results are to be expected, and can be explained as follows:
S-PRAC runs only on corrupted segments, which are likely
few when the number errors is small, and high otherwise. In
contrast, DAPRAC always checks the entire packet.

Error correction time: Fig. 4b plots the time required for
correcting the errors. Here, S-PRAC remarkably outperforms
DAPRAC. The figure also shows that the more the errors, the
larger the difference between S-PRAC results and DAPRAC
results. For instance, when the number of errors is 10, S-PRAC

1 Our code can be found here: https://bitbucket.org/kirianto/sprac-cpp/src

could reduce the error correction time incurred by DAPRAC
by more than 98%. The superiority of S-PRAC is attributed to
segmentation of packets, which results in fewer permutations,
compared to DAPRAC (see Eq. 1 and Eq. 2).

Total of estimation time and correction time: The supe-
riority of S-PRAC is confirmed through the results plotted in
Fig. 5a. In particular, we can see that the total time required
for both estimation and correction is always lower in S-PRAC
than in DAPRAC. This superiority is more notable when the
number of errors is high. For example, with 10 corrupted bits,
the total time needed with S-PRAC is more than 90% lower
than the total time needed with DAPRAC.

Fig. 5b shows the impact of the number of segments on the
total time needed for estimation and correction with S-PRAC.
We can see that the more the segments, the lower the total
time. This result is to be expected, because more segments
translates into smaller segment sizes.

Encoding time and decoding time: Fig. 6 complements
the performance results discussed above. In particular, it shows
the encoding and decoding times in S-PRAC and DAPRAC,
under different generation sizes and two error values (e = 2
errors and e = 10 errors). We can see in Fig. 6a that the
encoding, regardless of the number of errors, is slower in S-
PRAC than in DAPRAC. This is because the encoding process
in S-PRAC, in addition to encoding the packets using RLNC,
includes two actions not existing in DAPRAC: (1) breaking
down the packets into segments and (2) inserting the inner
CRC codes.

As for the decoding time, Fig. 6b shows that S-PRAC is
slower when the number of errors is low (e = 2), because the
decoder in S-PRAC has to merge the segments back into a
packet. However, DAPRAC becomes slower when we increase
the errors (e = 10). This lag is attributed to the additional
permutations performed by DAPRAC in this case.

S-PRAC overhead: Fig. 7 depicts the overhead results of
S-PRAC, as defined in Subsection IV-A, for different numbers
of segments and symbol sizes. We can see that the overhead,
as to be expected, increases with the number of segments, and
decreases with the symbol size. For instance, the overhead
can be considered low (up to 20%) as long as the packet is
broken down into a maximum of six segments and, at the same
time, the symbol size is not below 30. The overhead becomes
above 50% when the number of segments increases to 8 or
more, while the symbol size is 15 or less.

V. CONCLUSION AND FUTURE WORK

Our main contribution in this paper is S-PRAC, a fast
solution for error detection and correction in very noisy
wireless channels. The key idea of S-PRAC is to divide each
packet into segments consisting of a certain number of RLNC-
encoded symbols. S-PRAC also adds an inner CRC-8 code to
each segment and an outer CRC-32 code to each coded packet.

We evaluated S-PRAC through extensive experiments in
a realistic setup. Overall, the results confirm the usefulness
of S-PRAC. In particular, S-PRAC can remarkably lower the

(a) Error estimation delay (b) Error correction delay

Fig. 4: Error estimation delay and error correction delay (S-PRAC vs. DAPRAC)

(a) Impact of the number of corrupted bits (S-PRAC vs. DAPRAC) (b) Impact of the number of segments in S-PRAC

Fig. 5: Total of error estimation delay and error correction delay

partial packet recovery time achieved with DAPRAC when the
number of errors is high. This is achieved with a relatively low
transmission overhead, unless the packet is broken down into
a large number of segments (above 6).

For the future work, a further investigation and analysis of
the overhead are needed for bandwidth optimization. Also,
there are various existing error patterns based on channel
conditions and characteristics in wireless networks. These have
to be taken into consideration in future research. Moreover, the
current design of S-PRAC can be improved in several ways.
For instance, S-PRAC now cannot correct the errors when the
inner CRC codes are corrupted, because the right permutation
will never be achieved in this case. One solution to solve this
problem is to calculate the outer CRC code only over the inner
CRC codes, rather than on the whole packet. In addition, we

are researching to improve S-PRAC performance in low noisy
channels, and we also plan to implement and evaluate S-PRAC
in real devices.

ACKNOWLEDGMENT

This work is supported in part by the German Research
Foundation (DFG), within the Collaborative Research Center
SFB 912 – HAEC.

REFERENCES

[1] D. J. Costello and S. Lin, “Error control coding: Fundamentals and
applications,” 1982.

[2] S. Lin, D. J. Costello, and M. J. Miller, “Automatic-repeat-request error-
control schemes,” IEEE Communications Magazine, vol. 22, pp. 5–17,
December 1984.

(a) Encoding delay (b) Decoding delay

Fig. 6: Encoding delay and decoding delay (S-PRAC vs. DAPRAC)

Fig. 7: Overhead results of S-PRAC

[3] G. Angelopoulos, A. P. Chandrakasan, and M. Medard, “PRAC: Ex-
ploiting partial packets without cross-layer or feedback information,” in
2014 IEEE International Conference on Communications, ICC 2014,
2014.

[4] J. A. Cabrera, G. Nguyen, D. E. Lucani, M. V. Pedersen, and F. H. P.
Fitzek, “Taking the Trash Back In : Practical Joint Channel and Network
Coding for Improving IEEE 802 . 11 Networks,” pp. 309–313, 2017.

[5] P. S. Sindhu, “Retransmission Error Control with Memory,” IEEE
Transactions on Communications, vol. 25, no. 5, pp. 473–479, 1977.

[6] M. A., H. Balakrishnan, and C. E. Koskal, “Improving Loss Resilience
with Multi-Radio Diversity in Wireless Networks,” Proceedings of
MobiCom, 2005.

[7] K. C.-J. Lin, N. Kushman, and D. Katabi, “ZipTx: Harnessing Partial
Packets in 802.11 Networks,” Proceedings of MobiCom, p. 351, 2008.

[8] K. Jamieson and H. Balakrishnan, “PPR: Partial Packet Recovery for
Wireless Networks,” Acm Sigcomm, vol. 37, no. 4, pp. 409–420, 2007.

[9] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard, “Symbol-level

network coding for wireless mesh networks,” Proceedings SIGCOMM,
p. 401, 2008.

[10] G. R. Woo, P. Kheradpour, D. Shen, and D. Katabi, “Beyond the
bits: Cooperative Packet Recovery Using Physical Layer Information,”
Proceedings of MobiCom, p. 147, 2007.

[11] J. Huang, G. Xing, J. Niu, and S. Lin, “CodeRepair: PHY-layer partial
packet recovery without the pain,” Proceedings of INFOCOM, vol. 26,
pp. 1463–1471, 2015.

[12] J. C. Bicket, “Bit-rate Selection in Wireless Networks,” Wireless Net-
works, p. 50, 2005.

[13] M. Vutukuru, H. Balakrishnan, and K. Jamieson, “Cross-layer wireless
bit rate adaptation,” Proceedings of SIGCOMM, p. 3, 2009.

[14] J. Camp and E. Knightly, “Modulation rate adaptation in urban and
vehicular environments: Cross-layer implementation and experimental
evaluation,” IEEE/ACM Transactions on Networking, vol. 18, no. 6,
pp. 1949–1962, 2010.

[15] R. K. Ganti, P. Jayachandran, T. F. Abdelzaher, and H. Luo, “Datalink
Streaming in Wireless Sensor Networks,” Proceedings of ACM SenSys,
pp. 209–222, 2006.

[16] A. P. Iyer, G. Deshpande, E. Rozner, A. Bhartia, and L. Qiu, “Fast
resilient jumbo frames in wireless lans,” IEEE International Workshop
on Quality of Service, IWQoS, 2009.

[17] B. Han, A. Schulman, F. Gringoli, N. Spring, B. Bhattacharjee, L. Nava,
L. Ji, S. Lee, and R. Miller, “Maranello : Practical Partial Packet
Recovery for 802 . 11 Related Work,” Proceedings of NSDI, 2010.

[18] M. S. Mohammadi, Q. Zhang, and E. Dutkiewicz, “Exploiting partial
packets in random linear codes using sparse error recovery,” IEEE In-
ternational Conference on Communications, vol. 2015-Septe, pp. 2577–
2582, 2015.

[19] M. S. Mohammadi, Q. Zhang, and E. Dutkiewicz, “Reading Damaged
Scripts: Partial Packet Recovery Based on Compressive Sensing for
Efficient Random Linear Coded Transmission,” IEEE Transactions on
Communications, vol. 64, no. 8, pp. 3296–3310, 2016.

[20] G. Angelopoulos, M. Medard, and A. P. Chandrakasan, “Harnessing
Partial Packets in Wireless Networks: Throughput and Energy Benefits,”
IEEE Transactions on Wireless Communications, vol. 16, no. 2, pp. 694–
704, 2017.

[21] Q. T. Sun, X. Yin, Z. Li, and K. Long, “Multicast Network Coding and
Field Sizes,” IEEE Transactions on Information Theory, vol. 61, no. 11,
pp. 6182–6191, 2015.

[22] “The fifi library.” http://steinwurf.com/products/fifi.html. Accessed: 30-
11-2018.

http://steinwurf.com/products/fifi.html

	I Introduction
	II Background and Related Work
	II-A Overview of ACR check
	II-B Related Work

	III Partial Packet Recovery with S-PRAC
	III-A Design Concepts
	III-B Encoding Process
	III-C Decoding Process

	IV Evaluation
	IV-A Experimental Setup and Evaluation Metrics
	IV-B Evaluation Results

	V Conclusion and Future Work
	References

