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Abstract—Spectrum allocation in the form of primary channel
and bandwidth selection is a key factor for dynamic channel
bonding (DCB) wireless local area networks (WLANs). To
cope with varying environments, where networks change their
configurations on their own, the wireless community is looking
towards solutions aided by machine learning (ML), and especially
reinforcement learning (RL) given its trial-and-error approach.
However, strong assumptions are normally made to let complex
RL models converge to near-optimal solutions. Our goal with
this paper is two-fold: justify in a comprehensible way why
RL should be the approach for wireless networks problems like
decentralized spectrum allocation, and call into question whether
the use of complex RL algorithms helps the quest of rapid
learning in realistic scenarios. We derive that stateless RL in the
form of lightweight multi-armed-bandits (MABs) is an efficient
solution for rapid adaptation avoiding the definition of extensive
or meaningless RL states.

I. INTRODUCTION

State-of-the-art applications like virtual reality or 8K video
streaming are urging next-generation wireless local area net-
works (WLANs) to support ever-increasing performance de-
mands. To enhance spectrum usage in WLANs, channel
bonding at the 5 GHz band was introduced in 802.11n-
2009 for bonding up to 40 MHz, and further extended in
802.11ac/ax and in 802.11be to bond up to 160 and 320 MHz,
respectively. In this regard, dynamic channel bonding (DCB)
is the most flexible standard-compliant policy since it bonds
all the allowed idle secondary channels to the primary channel
at the backoff termination [1].

By operating in unlicensed bands, anybody can create a
new WLAN occupying one (or multiple) channels. Further,
transmissions are initiated at random as mandated by the
distributed coordination function. These factors generate un-
certain contention and interference that are exacerbated when
implementing channel bonding [2]. So, despite the 5 GHz Wi-
Fi band remains generally under-utilized [3], there are peaks
in the day where parts of the spectrum get crowded. This
leads, especially in uncoordinated high-density deployments,
to different well-known problems like hidden and exposed
nodes, ultimately limiting Wi-Fi’s performance.

To keep a high quality of service in such scenarios, WLANs
must find satisfactory configurations as soon as possible. In

this regard, many heuristics-based works on custom spectrum
allocation solutions have been proposed (e.g., [4], [5]). Heuris-
tics are low-complex problem-solving methods that work well
in steady scenarios. However, their performance is severely
undermined in dynamic scenarios since they rely on statistics
only from recent observations that tend to be outdated when
new configurations are applied.

To overcome heuristics’ limitations, we first motivate that
machine learning (ML) can tackle the joint problem of primary
and secondary channels allocation in DCB WLANs. Then,
we address why supervised and unsupervised learning are not
suitable for the problem given the need for fast adaptation
in uncertain environments where it is not feasible to train
enough to generalize. As such, we envision reinforcement
learning (RL) as the only ML candidate to quickly adapt to
particular (most of the times unique) scenarios. We then justify
why stateless RL formulations and, in particular, multi-armed
bandits (MABs) are better suited to the problem over temporal
difference variations like Q-learning. As well, we call into
question the usefulness of deep reinforcement learning (DRL)
due to the unfeasible amount of data needed to learn [6].

Finally, we present a self-contained example to compare the
performance of a MAB based on ε-greedy against the well-
known Q-learning (relying on states), and a contextual vari-
ation of the ε-greedy MAB. Extensive simulations show that
the regular MAB outperforms the rest both in learning speed
and mid/long-term performance. These results suggest that
deploying lightweight MABs in uncoordinated deployments
like domestic access points (APs) would boost performance.

II. A CHANGE OF PARADIGM TOWARDS REINFORCEMENT
LEARNING IN WLANS

A heuristic is any problem-solving method that employs
a practical, flexible, shortcut that is not guaranteed to be
optimal but is good enough for reaching a short-term goal.
Heuristics are then used to find quickly satisfactory solutions
in complex systems where finding an optimal solution is
infeasible or impractical [7]. Heuristics are tied to the validity
of recent observations, and such depend on the speed at
which environment changes. Moreover, they do not consider
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the performance of previous actions, so they do not learn.
Then, in uncoordinated, high-density deployments, where mul-
tiple DCB WLANs serving numerous stations (STAs) adapt
their spectrum configurations on their own, designing accu-
rate hand-crafted spectrum allocation heuristics is unfeasible.
Learning from past experience represents then a very strong
alternative. The capability of ML to go beyond rule of thumb
strategies by automatically learning (and adapting) to (un)seen
situations can cope with heterogeneous scenarios [8].

From the three main types of ML, we envision RL as the
most suitable one for adapting to scenarios where no training
data is available. Practically, in RL an agent tries to learn
how to behave in an environment by performing actions and
observing the collected rewards. At a given iteration t, action a
(e.g., switch primary channel) results in a reward observation
(e.g., throughput) drawn from a reward distribution rt(a) ∼
θa. Even though observations can be misleading in RL as
well, agents rely on the learning performed through historical
state/action-reward pairs, generating action selections policies
beyond current observations.

As for the alternative main ML types, supervised learning
(SL) learns a function that maps an input x to an output y
based on example input-output labeled pairs (xi,yi). One way
to apply SL in our problem would be to try to learn the true
WLAN behavior f (x) = y, mapping the WLAN scenario (e.g.,
nodes’ locations, traffic loads, spectrum configurations, etc.)
x to the real performance (e.g., throughput of each WLAN)
y through an estimate hθ (x) = ŷ, where hθ (x) is the learned
function. Unfortunately, generating an acceptable dataset is an
arduous task that may take months. Besides, the input domain
of x is multi-dimensional (with even categorical dimensions
like the primary channel), so function f representing WLANs’
behavior is so complex that learning an accurate estimate hθ

for realistic deployments is unfeasible.
Finally, in unsupervised learning (UL), there are only inputs

x and no corresponding output variables. UL’s goal is to model
the underlying structure or distribution of the observed data.
Similarly to SL, the underlying structure of the observed data
in the problem at issue is so complex that any attempt to
model it through UL will be most likely fruitless. Hence, we
believe that following an RL approach is preferable: adapt
from scratch no matter the environment’s intrinsic nature.

III. MAPPING THE PROBLEM TO RL
A. Attributes, actions, and states

While it is clear that the primary channel is critical to
the WLAN performance since it is where the backoff pro-
cedure runs, the maximum bandwidth is significant as well.
Indeed, once the backoff expires, the channel bonding policy
and maximum allowed bandwidth will determine the bonded
channels. Hence, limiting the maximum bandwidth may be
appropriate to WLANs in order to reduce adverse effects like
unfavorable contention or hidden nodes. Thus, we consider
two configurable attributes each agent-empowered AP can
modify during the learning process: the primary channel
where the backoff procedure is executed, p ∈ {1,2,3,4},

and the maximum bandwidth (in number of basic channels),
b∈{1,2,4}. With DCB, the transmitter can adapt to the sensed
spectrum on a per-frame basis. So, the bandwidth limitation
just sets an upper bound on the number of basic channels to
bond. Accordingly, each WLAN has an action space A of size
4×3= 12, where actions (or spectrum configurations) have the
form a=(p,b)∈A . Should we consider a central single agent
managing multiple WLANs, the central action space would
increase exponentially with the number of WLANs.

Finally, a state s is a representation of the world that guides
the agent to select the adequate action a by fitting s to the
RL policy. Since most of the time the agent cannot know
the whole system in real-time, it may rely on partial and
delayed representations of the environments through some dis-
cretization function mapping observations to states. Besides,
since observations are application and architecture-dependent
– given they may be limited to local sensing capabilities or,
on the contrary, be shared via a central controller – the states’
definition is also strictly dependent on the RL framework.

B. Problem definition

Our goal for this use-case is to improve the network
throughput. The key then is to let the WLANs find (learn)
the best actions (p,b), where best depends on the problem
formulation itself. We define the throughput satisfaction σ of
a WLAN w at iteration t simply as the ratio of throughput Γw,t
to generated traffic `w,t in that iteration, i.e., σw,t = Γw,t/`w,t .
So, σw,t ∈ [0,1],∀w, t. A satisfaction value σ = 1 indicates that
all the traffic has been successfully received at the destination.

Once the main performance metric has been defined, we
can formulate the reward function R, the steering operator of
any RL algorithm. For simplicity, we define R , σ given that
the throughput satisfaction is bounded per definition between
0 and 1, which is convenient for guaranteeing convergence in
many RL algorithms. Regardless of the reward function R, we
aim at maximizing the cumulative reward as soon as possible,
G = ∑

T
t=1 rt , where T is the number of iterations available to

execute the learning, and rt is the reward at iteration t. Let
us emphasize the complexity of the problem by noting that rt
depends on the reward definition R, on the action at selected
at t, and also on the whole environment (a.k.a, world) at t.

IV. REINFORCEMENT LEARNING MODELS

Different ML solutions for the spectrum allocation problem,
especially in RL, have been proposed in recent years. However,
certain assumptions hinder accurate evaluation. For instance,
most papers consider synchronous time slots (e.g., [9]). Also,
some papers define a binary reward, where actions are simply
good or bad (e.g., [10]). This, while easing complexity, is
not convenient for continuous-valued performance metrics
like throughput. Further, most of the papers consider fully
backlogged regimes (e.g., [11]), thus overlooking the effects
of factual traffic loads. Lastly, many papers in the literature
provide RL solutions without a clear justification of how the
states, actions, and rewards are designed, and turn out to be
only applicable to the problem at hand.
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The most common formulations of RL rely on states,
which are mapped through a policy π to an action a, i.e.,
π(s) = a. However, a key benefit of stateless RL is precisely
the absence of states, which eases its design by relying only
on action-reward pairs. The most representative stateless RL
model for non-episodic problems is the Multi Armed Bandit
(MAB). In MABs an action must be selected between fixed
competing choices to maximize expected gain. Each choice’s
properties are only partially known at the time of selection and
may become better understood as time passes [12]. MABs
are a classic RL solution that exemplifies the exploration-
exploitation trade-off dilemma.

The classical RL formulation is through temporal dif-
ference (TD) learning, a combination of Monte Carlo
and dynamic programming. Like Monte Carlo, TD sam-
ples directly from the environment; like dynamic program-
ming, TD perform updates based on current estimates (i.e.,
they bootstrap) [12]. There are two main TD methods:
state–action–reward–state–action (SARSA) and Q-learning.
SARSA and Q-learning work similarly, assigning values to
state-action pairs in a tabular way. The key difference is that
SARSA is on-policy, whereas Q-learning is off-policy and uses
the maximum value over all possible actions,

Q(st ,at) := Q(st ,at)

+αt(rt + γt max
a′

Q(st+1,a′)−Q(st ,at)),
(1)

where Q is the Q-value, α is the learning rate , and γ is the
discount factor.

Finally RL’s combination with deep learning results in deep
reinforcement learning (DRL), where the policy or algorithm
uses a deep neural network rather than tables. The most
common form of DRL is a deep learning extension of Q-
learning, called deep Q-network (DQN). So, as in Q-learning,
the algorithms still work with state-action pairs, conversely
to the MAB formulation. While DQN is much more complex
than Q-learning, it compensates for the very slow convergence
of tabular Q-learning when the number of states and actions
increases. That is, it is so costly to keep gigantic tables that
it is preferable to use DNNs to approximate such a table.

For the problem of spectrum allocation in uncoordinated
DCB WLANs, we anticipate MABs as the best RL formu-
lation. The reason lies in the fact that meaningful states are
intricate to define and their effectiveness heavily depends on
the application and the type of scenario under consideration.
In the end, a state is a piece of information that should help the
agent to find the optimal policy. If the state is meaningless, or
worst, misleading, it is preferable not to rely on states and go
for a stateless approach. In summary, when there is not plenty
of time to train TD methods like Q-learning, it seems much
better to go for a pragmatic approach: do gamble and find
a satisfactory configuration as soon as possible, even though
you will be most likely renouncing to an optimal solution.
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Fig. 1: Toy deployment of the self-contained dataset.

V. A USE CASE ON SPECTRUM MANAGEMENT

A. System model and deployment

We study the deployment illustrated in Figure 1a, consisting
of 4 potentially overlapping agent-empowered BSSs (with one
AP and one STA each) in a system of 4 basic channels.
The TMB path-loss model is assumed [13], and spatially dis-
tributed scenarios are considered. Namely, we cover scenarios
where the BSSs may not all be inside the carrier sense range
of each other. Therefore, the typical phenomena of home Wi-
Fi networks like flow in the middle and hidden/exposed nodes
are captured [1]. The primary channel can take any of the
4 channels in the system, p ∈ {1,2,3,4}, and the maximum
bandwidth fulfills the 802.11ac/ax channelization restrictions,
b∈ {1,2,4}, for 20, 40, and 80 MHz bandwidths. So, the total
number of global configurations when considering all BSSs to
have constant traffic load raises to (4×3)4 = 20,736. Notice
that even a petite deployment like this leads to a vast number
of possible global configurations.

The interference matrix Figure 1b indicates the maximum
bandwidth in MHz that causes two APs to overlap given the
power reduction per Hertz when bonding. So, we note that
this deployment is complex in the sense that multiple different
one-to-one overlaps appear depending on the distance and the
transmission bandwidth in use, leading to exposed and hidden
node situations hard to prevent beforehand. For instance, APA
and APC only overlap when using 20 MHz, whereas APA and
APD always overlap because of their proximity.

We assume all BSSs perform DCB, being the maximum
number of channels to be bonded limited by the maximum
bandwidth attribute b. Simulations of each global configuration
are done through the Komondor wireless networks simula-
tor [14]. The adaptive RTS/CTS mechanism introduced in the
IEEE 802.11ac standard for dynamic bandwidth is considered
and data packets generated by the BSSs follow a Poisson
process with a mean duration between packets given by 1/`,
where ` is the mean load in packets per second. In particular,
we consider data packets of 12000 bits and all BSSs having a
high traffic load `= 50 Mbps. Once the dataset is generated,
we simulate the action selection of the agents to benchmark
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the performance of different RL models.1

B. Benchmarking RL approaches

The main drive behind the adoption of MABs is to avoid
states entirely. This way, there is no need to seek meaningful
state definitions, and the learning can be executed more
quickly since only actions and rewards are used to execute
the policy. Nonetheless, in this experiment, we provide a
quantitative measure on Q-learning performance (relying on
states) and contextual MABs (relying on contexts).
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Fig. 2: Binary and combined state/context spaces.

1) State spaces: Apart from the default stateless approach
of regular MABs, we propose two state (or context) space
definitions as shown in Figure 2. The smaller state space
is binary and represents the throughput satisfaction, i.e., it
is composed of the satisfied and unsatisfied states. That is,
if all the packets are successfully transmitted, the BSS is
satisfied (σ = 1), and unsatisfied otherwise (σ < 1). The
larger state space is 3-dimensional, and combines the binary
throughput satisfaction and the action attributes (primary p
and max bandwidth b). So, the size raises from 2 to 24 states,
corresponding to the combination of 2 binary throughput
satisfactions, 4 primary channels, and 3 maximum bandwidths.

These state definitions contain key parameters as for the Wi-
Fi domain knowledge: i) being satisfied or not is critical to user
experience, and ii) the spectrum configuration (or action) is
most likely affecting the BSS performance. As for the former,
being satisfied is actually the goal of the RL problem, so
it will highly condition the action selection. Similarly, the
current action seems a good indicator for suggesting which the
next one should be. Notice that higher multi-dimensional state
definitions considering parameters like spectrum occupancy
statistics would exponentially increase the state space, thus
being cumbersome to explore and consequently reducing the
learning speed dramatically.

To assess the convenience of states or contexts we use
Q-learning and a contextual formulation of ε-greedy. In Q-
learning (1), the learning rate α determines to what extent
newly acquired information overrides old information: α = 0

1The dataset and Jupyter Notebooks for simulating the multi-agent be-
havior in uncoordinated BSSs is available at https://github.com/sergiobarra/
MARLforChannelBondingWLANs.

makes the agent learn nothing (exclusively exploiting prior
knowledge) and α = 1 makes the agent consider only the
most recent information (ignoring prior knowledge to explore
possibilities). We use a high value of α = 0.8 because of the
non-stationarity of the multi-agent setting. The discount factor
γ determines the importance of future rewards: γ = 0 will
make the agent myopic (or short-sighted) by only considering
current rewards, while γ → 1 will make it strive for a long-
term high reward. We use a relatively small γ = 0.2 to foster
exploitation (for rapid convergence) in front of exploration.

Another way in which agents use partial information gath-
ered from the environment is in the form of contexts. In plain,
contexts can be formulated as states for stateless approaches.
That is, a contextual MAB can be instantiated like a particular
MAB running separately per context. The learning is separated
from one context to the other so that no information is shared
between contexts like it is the case for Q-learning and other
state-full approaches. In this case, we define the contexts as
the states and propose having a separate MAB instance for
each of the contexts.

2) Evaluation: We assume each BSS having the same
traffic load, ` = 50 Mbps. So, this experiment’s long-term
dynamism is due exclusively to the multi-agent setting. That is,
the inner traffic load conditions do not vary, but the spectrum
management configurations (or actions) do. For the sake of
assessing the learning speed, we consider a relatively short
time-horizon of 200 iterations, each of 5 seconds. We run 100
random simulations for each RL algorithm.

Before comparing the performance of the different RL
approaches, let us exhibit the need for configuration tuning
of the primary and maximum bandwidth attributes in channel
bonding WLANs. To that aim, we plot in Fig. 3 the reward
r1 at the first iteration (t = 1) and the optimal reward rτ = 1,
where τ is the iteration when all the BSS reach optimal reward.
All BSSs use an ε-greedy MAB formulation. We plot such
rewards for two example random seeds, i.e., for two random
instantiations with random initial configurations. Since our
reward definition is directly proportional to the throughput Γ,
we also plot in the right y-axis the throughput in Mbps. Notice
that in both cases, all the BSSs can reach the optimal reward
at some point. However, the first instantiation (left subfigure)
takes τ = 31 iterations, whereas the second instantiation takes
τ = 28 iterations to reach the optimal, respectively.

We now compare the different RL approaches presented.
Figure 4 shows the normalized cumulative reward G/t aver-
aged through the 100 simulations for the worst-performing
BSS and the WLAN’s mean. We also show the optimal value,
which turns out to be 1 for the worst and mean value since
there exist a few global configurations where all the BSSs are
satisfied. We plot results for the different RL approaches: raw
ε-greedy, contextual ε-greedy for the binary and combined
contextual spaces, and Q-learning also for the binary and
combined state spaces. Notice that even though all the BSSs
may reach the optimal at some point in a given simulation (as
in Figure 3), they normally lose such optimal few iterations
after since the considered algorithms do not take into account
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Fig. 3: Initial reward r1 (at t = 1) and optimal reward rτ = 1,
achieved in t = τ for two example random seeds. All BSSs
use an ε-greedy MAB formulation.
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Fig. 4: Run chart of the normalized cumulative gain for the
worst BSS and WLAN’s mean, averaged over 100 simulations.
The number within the brackets in the contextual and Q-
learning terms refers to the context/state space size.

whether the individual (nor the global) optimal is reached.
Therefore, any action change after reaching global optimality
may affect the reward of all the BSSs.

We observe that while ε-greedy converges (learns) to higher
reward values close to the optimal, the other context/state-
aided algorithms learn much more slowly, considerably below
ε-greedy’s performance. In particular, the ε-greedy MAB
is able to get a near-optimal mean performance (just 7%
away from complete satisfaction). This relates to the fact
that learning based on states/contexts is fruitless in dynamic
and chaotic multi-agent deployments like this. So, it seems
preferable to act quickly with a lower level of world awareness.
Besides, we note that the MAB is able to establish win-win
relations between the BSSs, as shown by the worst performing
BSS subplot. That is, on average, BSSs tend to benefit from
others’ benefits, resulting in fairer configuration. In particular,
it outperforms the worst-case performance more than 30% over
the other algorithms.

Furthermore, we observe that both Q-learning and the con-
textual MAB formulation perform better when relying on the
binary state/context space definition. That is, by shrinking the
state space from 24 to 2 the learning speed increases. So, rather
than aiding the learning, extensive state spaces slow it down,
needing much more exploration. Besides, by eliminating the
states and relying on the MAB, performance is significantly

improved. This use-case showcases the MAB’s ability to learn
in multi-agent Wi-Fi deployments by establishing win-win
relationships between BSSs.

VI. CONCLUDING REMARKS

We postulate MABs as an efficient ready-to-use formulation
for decentralized spectrum allocation in multi-agent DCB
WLANs. We argue why complex RL approaches relying on
states do not suit the problem in terms of fast adaptability.
In this regard, we envision the use of states for larger time
horizons, when the focus is not put on rapid-adaptation but on
reaching higher potential performance in the long-run.
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