
LicenseScript: A Novel Digital Rights Language and its Semantics∗

Cheun Ngen Chong1, Ricardo Corin1, Sandro Etalle1,

Pieter Hartel1, Willem Jonker2, and Yee Wei Law1

1University of Twente, The Netherlands 2Philips Research, The Netherlands
{chong,corin,etalle,pieter,ywlaw}@cs.utwente.nl, willem.jonker@philips.com

Abstract

We propose LicenseScript as a new multiset rewrit-
ing/logic based language for expressing dynamic con-
ditions of use of digital assets such as music, video or
private data. LicenseScript differs from other rights
expression languages in that it caters for the inten-
tional but legal manipulation of data. We believe
this feature is the answer to providing the flexibility
needed to support emerging usage paradigms of dig-
ital data. We provide the language with a simple se-
mantics based on traces.

1 Introduction

Most information, such as books, music, video,
personal data and sensor readings (we generalize this
information as data), is intended for a specific use.
This specific use should conform to particular terms
and conditions, which are often governed by licenses.
To describe a license, a specific language is needed.
In fact, the last few years have witnessed a prolifera-
tion of rights expression language1 (REL). These are
usually based on XML, e.g. XrML [5] (www.xrml.
org) and ODRL [6] (www.odrl.net).

It is now widely acknowledged that the above-
mentioned XML-based RELs have some important
shortcomings: (1) the syntax is complicated and ob-
scure when the conditions of use become complex,
(2) these languages lack a formal semantics [3, 9];

∗This work is supported by the Telematica Instituut via the Li-
censeScript project and we like to thank Ernst-Jan Goedvolk from
Telematical Instituut for his valuable help in this paper.

1Also known as digital rights language (DRL)

the meaning of licenses relies heavily on the human
interpretation, and (3) the language cannot express
many useful copyright acts [8]. Gunter et al [3] over-
come some of the drawbacks by introducing an ab-
stract model and language with a corresponding for-
mal semantics. Pucella and Weissman [9] follow up
Gunter et al’s effort with more rigor.

Licenses play an important role in the electronic
distribution of music. With the advent of the Inter-
net, music labels are searching for ways of distribut-
ing music over the Internet in a way that respects the
rights of the owners and the labels. At the same time,
partly due to Napster, users have become used to easy
access to music on their devices. As a result, Elec-
tronic Music Distribution (EMD) will only be suc-
cessful if these systems provide flexible support for
licensing of music and the user gains a broad free-
dom in accessing the music, which in turn requires
flexible and easy to understand licenses will a well
defined semantics. In an attempt to cope with the re-
quirement of seamless music access on users devices,
the notion of authorized domain [12] has been devel-
oped (http://www.dvb.org).

An authorized domain can be seen as the collec-
tion of devices that belongs to a user or a household.
The idea is that music is delivered to the authorized
domain, and that it can be accessed seamlessly on
any device in that domain. The music access is gov-
erned by licenses that are bound to the domain, rather
than to individual devices. In addition to licenses
that govern the access within the domain, there are
licenses that govern the exchange of music between
domains. The latter guarantees that unauthorized mu-
sic exchange can be prohibited. Regrettably, state-of-
the-art languages cannot cope with this scenario.

1

Proceedings of the Third International Conference WEB Delivering of Music (WEDELMUSIC’03) 
0-7695-1935-0/03 $17.00 © 2003 IEEE 



In this paper, we propose LicenseScript, a lan-
guage that is able to express conditions of use of dy-
namic and evolving data in authorized domains. Li-
censeScript is based on (1) multiset rewriting, which
is able to capture the dynamic evolution of licenses,
(2) logic programming, which captures the static
terms and conditions on a license, and (3) a judi-
cious choice of the interfacing mechanism between
the static and dynamic domains. LicenseScript makes
it possible to express a multitude of sophisticated us-
age patterns precisely and clearly. The formal basis of
LicenseScript (multiset rewriting and logic program-
ming) provides for a concise and explicit formal se-
mantics.

We use Prolog program for the license clauses be-
cause of the double declarative and procedural read-
ing of Prolog. Thanks to its declarative reading, Pro-
log is suitable for rendering licenses, which can easily
be read and understood by humans. In fact, Prolog is
often used as a language to describe policies and busi-
ness rules. On the other hand, the procedural reading
of Prolog allows for an direct execution of the code.

The organization of the remainder of the paper is
as follows: Section 2 explains the LicenseScript lan-
guage. Section 3 demonstrates examples for Elec-
tronic Music Distribution. Section 4 gives some re-
lated work. Finally, Section 5 gives the conclusions.

2 Language

In this section we describe the LicenseScript lan-
guage. We start by introducing some basic concepts
that are needed in the sequel.

2.1 Preliminaries

As mentioned earlier, LicenseScript is based on
multiset rewriting. By a multiset (also known as a
bag) we mean a set with possibly repeated elements;
denoted with brackets. For example, [a, b, b, c] is a
multiset.

In our approach, licenses are bound to terms
that reside in multisets. For the specification of
these licenses, we use logic programming; the
reader is thus assumed to be familiar with the
terminology and the basic results of the seman-
tics of logic programs [7]. We also use Pro-
log notation: we use words that start with up-
percase (X,Y, ...) to denote variables, and lower-
case (music piece, video track, expires, ...) to de-
note constants. We work with queries, that is se-
quences of atoms. Further, given a syntactic con-
struct E (so for example, a term, an atom or a set

of equations) we denote by Var(E) the set of the
variables appearing in E. Given a substitution σ =
{x1/t1, ..., xn/tn} we denote by Dom(σ) the set of
variables {x1, . . . , xn}. A substitution σ is called a
matching substitution of terms t and s if tσ = s, and
Dom(σ) = Var(t). In that case, we say that t matches
s. If a term matches with another one, then it follows
that there exists a unique matching substitution.

We also borrow the concept of SLD-resolution [7]
from logic programming:

Definition 1. Given a program P , and a query (i.e.,
a conjunction of atoms) Q, we write P �SLD Q
(or simply P � Q) when there is a successful SLD-
derivation for queryQ in programP . A successful ex-
ecution of a query may result in a (computed answer)
substitution. P � Q basically means that execution of
the queryQ in the program P yields success.

2.2 Licenses

A license defines the terms and conditions of use
for music, videos etc. Therefore, a license contains
at least two relevant items of information: (i) a ref-
erence to the data that is being licensed, and (ii) the
conditions of use on that data.

Multiset

Rules

Content

Bindings

Old License

Clauses

Content

Bindings

New License

Clauses

Figure 1. The transformation of licenses
with content and bindings in a multiset
caused by rules.

In our formalism, a license is represented by a term
of the form lic(content,∆, B) (as can be seen in Fig-
ure 1 where:

• content is a unique identifier representing the
data the license refers to.

• ∆ is a set of clauses, i.e., a Prolog program. This
program defines when certain operations (like
play) are allowed.

• B is a set of bindings, i.e., a set containing ele-
ments of the form name ≡ value. For instance

2

Proceedings of the Third International Conference WEB Delivering of Music (WEDELMUSIC’03) 
0-7695-1935-0/03 $17.00 © 2003 IEEE 



{expires ≡ 10/10/2003} is a set of bindings
with just one element.

Bindings are needed to have a flexible way of stor-
ing modifiable data. A license could be regarded as a
database in which ∆ is the intensional part, while B
is the extensional part.

To interface licenses with the external world, we
have to define an interface, i.e., a set of reserved calls
that form the “API” of the license. The precise defi-
nition of this interface is beyond the scope of this pa-
per. For example, we use canplay(·) to indicate when
a license allows a given piece of music to be played:
if the query canplay(B,B′) succeeds in the program
∆, this means that the license lic(a,∆, B) allows the
piece a to be played. Notice that we passed the set of
bindingsB as an argument to the query.

Example 2.

1. The following license allows to playmus:

lic(mus, {canplay(X,X) : −true.}, {})

2. The license lic(mus, {}, {}) does not allow any
operation onmus.

3. The license

lic(a,∆, {expires ≡ 10/10/2003})
where ∆ is

{canplay(B,B) : −today(D),
get value(B, expires, Exp), Exp > D.}

allows to play a until the given expiration day.

today(D) and get value(B, n, V ) are two prim-
itives that work as follows: today(D) binds the
variable D to the current system date, while
get value(B, n, V ) reports in V the value of the
name n according to the set of bindings B. In the
remainder, we gather all such primitives in a special
program that we call the domain, denoted D. Notice
that there can be many domains in which licenses re-
side, and probably a domain will have different mean-
ings for the primitives than another domain.

There are situations in which the “execution” of
a license should be followed by the creation of a
new set of bindings for the next step in the evo-
lution of the license. Consider for instance a li-
cense that allows to play a piece of music only
a given number of times: every time a play ac-
tion is carried out, a counter should be incre-
mented. This is done by means of the primitive

set value(OldB, name, value,NewB). This prim-
itive allows a name from a binding to be associated
with a new value, which we use to support the evo-
lution of licences. Consider, for instance, the follow-
ing license: lic(a,∆, {played times ≡ 3}), where
∆ consists of the following clause:

canplay(B,B′) : −
get value(B, played times,R), R < 10,
set value(B, played times,R+ 1, B′).

Here, we first extract the value of variable
played times into local variable R. Then, if we have
not exhausted the possible playing times allowed by
the license (in this case, 10), we proceed to increase
the value of played times from bindingsB to R+1,
into new output bindings set B′.

2.3 The Rules

Licenses typically reside inside a device. The mod-
elling of communication between devices and the li-
censes is done by means of rewrite rules. These rules
can be thought as the firmware of the device; licenses
may come and go from a device, but the rules are fixed
into the device (however, rules can be ‘updated’ once
in a while). The syntax of rules we adopt is that of
multiset rewriting (we use, in particular, Gamma no-
tation [1]).

Definition 3. A rewrite rule is a 4-tuple

rule(arg) : lms→ rms⇐ cond

where rule(arg) is an atom called rule label, lms and
rms are two multisets, and cond is a sequence of ele-
ments of the form Pi � Qi.

Notice that a substitution σ can be applied in a nat-
ural way to a rule: σ(rule(arg) : lms → rms ⇐
cond) = rule(σ(arg)) : σ(lms) → σ(rms) ⇐
σ(cond).

Intuitively, rules can be applied to a “target” mul-
tiset MS, if the following two conditions hold:

• First, the left multiset lms has to match some sub
multiset of MS; this sub multiset is to be replaced
with (right) multiset rms;

• Second, the conditions cond of the rule must
hold; This is done by executing all the queries
in cond, and checking that the result is success.

We formalise the meaning of rule execution in the
next section. An example for a rule is the following:

play(X) : lic(X,∆, B) → lic(X,∆, B′)
⇐ ∆ � canplay(B,B′)

3

Proceedings of the Third International Conference WEB Delivering of Music (WEDELMUSIC’03) 
0-7695-1935-0/03 $17.00 © 2003 IEEE 



This rule can be applied to a license lic(X,∆, B), re-
placing it with another license lic(X,∆, B′) if condi-
tion ∆ � canplay(B,B′) holds.

2.4 LicenseScript Execution Model

As we already mentioned, licenses are represented
by terms of the form lic(content,∆, B). For the sake
of exposure, we assume that all available licenses are
stored in a given multiset MS.

Definition 4. Rule execution. Given two multisets
MS and MS’, a rule label : l → r ⇐ cond, and an
atom a (called the request action), we write MS

aσ−−→
MS’ if:

1. a matches with label, with matching σ1.

2. lσ1 matches with T ′, with matching σ2, for some
sub multiset T ′ of MS.

3. For each ∆i � φi, i ∈ [1, n] in cond, (∆i �
φi)σ1σ2δ1 · · · δi−1 succeeds, with computed an-
swer substitution δi;

4. MS’ is the result of removing each term in T ′

from MS, and appending rσ1σ2δ1 · · · δn to it,
then, σ is the composition of σ1, σ2, · · · , i.e.
σ1 ◦ σ2 ◦ · · · .

Step 1 of this definition represents the choice of
a rule for executing a given request action a (e.g.,
play(mus)) from the environment. Notice that there
may be more than one rule that matches with the re-
quest action, so a first source of non-determinism ap-
pears here. The request action can also fail if no
rule matches with the request. After a rule is cho-
sen, Step 2 finds a set of licenses T ′ in the multiset
MSto which the rule can be applied. Again, differ-
ent choices of T ′ may produce non-determinism here.
This corresponds to the possible situation in which
the user possesses more than one license (or set of
licenses) that allows her to effectuate the desired ac-
tion. In this case, we can assume that the system
asks the user which license should be used. Step 3
checks that the conditions of the rule hold, by execut-
ing the queries with the carried out substitutions. Fi-
nally, Step 4 transforms the multiset by applying the
replacement specified by the rule.

Example 5. Consider the multiset con-
taining the following licenses: MS =
[lic(music,Γ, C), lic(video,Σ, D)], where C =
{played times ≡ 2}, D = {played times ≡ 10},

and Γ = Σ =

{canplay(B,B′) : −
get(B, played times,N), N < 10,
set(B, played times,N + 1, B′)}

Let R be the singleton rule set containing the fol-
lowing rule:

play(X) : lic(X,∆, B) → lic(X,∆, B′)
⇐ ∆ � canplay(B,B′)

1. Suppose the environment requests the action
play(music). This will match rule play(X),
giving matching σ1 = {X/music}.

2. The next step involves looking for occurrences
of lic(music,∆, B) in MS. The only possible
match is lic(music,Γ, C). This gives us match-
ing σ2 = {∆/Γ, B/C}.

3. Condition Γ � canplay(C,B′) has to be evalu-
ated. Since variable played times is less than
10 in C, the canplay(C,B′) succeeds in the
Prolog program Γ, hence the condition is satis-
fied. We get the computed answer substitution
δ1 = {B′/played times ≡ 3}.

4. Finally, MS is updated. License
lic(music,Γ, C) is removed from MS,
and replaced by lic(music,Γ, C′), where
C′ = {played times ≡ 3}.

Example 6. Consider the same multiset and rules of
the previous example. Suppose now request action
play(video) is issued. This action, even though has a
matching rule and a matching license in the multiset,
cannot be carried out completely. This is so since, in
the unique matched license (that is, lic(video,Σ, D))
condition ∆ � canplay(B,B′) does not hold, the
video has been played too often.

Definition 4 describes how a multiset can evolve to
another by means of executing a rule. The precise no-
tion of multiset execution, which can be understood as
the semantics of LicenseScript, can be then described
as sequences of rule executions.

Definition 7. Given a multiset MS and a set of
rules R, an execution is the (possibly infinite) se-
quence of rule applications MS

a1σ1−−−→ MS1
a2σ2−−−→

MS2 · · · . The trace execution of MS is defined as
a1σ1 · a2σ2 · · · .

The semantics of executing a multiset and a rule
set is then defined as all possible trace executions, ac-
cording to the above definitions.

4

Proceedings of the Third International Conference WEB Delivering of Music (WEDELMUSIC’03) 
0-7695-1935-0/03 $17.00 © 2003 IEEE 



3 Electronic Music Distribution

In this section we provide examples in Electronic
Music Distribution, to show the flexibility of Licens-
eScript.

3.1 Authorized Domains

As explained in the introduction, an authorized do-
main can be seen as the collection of devices belong-
ing to a household. In this paper we only focus on
the relationship between licenses and ADs, and we
assume the existence of an AD implementation that
deals with domain and content management issues
(see [12]), i.e. we assume the presence of compliant
devices that are governed by AD management rules.
We first show how a license can be bound to a specific
domain. Consider the following license:

lic(mus,∆, {in domain ≡ cert})
where ∆ =

{validD(B) : − get value(B, in domain, Id2),
identify(Id1), Id1 = Id2.}

Here, identify(Id1) is a primitive which is used
to retrieve the identity of the current domain. Clause
validD(·) checks that the current domain is in fact
the domain to which the license is bound. A rule like
play(·), for instance, can now be defined as only valid
if the license is in the allowed domain:

play(Mus) : lic(Mus,∆, B) → lic(Mus,∆, B)
⇐ ∆ � validD(B)

Now we are ready to illustrate a slightly more com-
plex example: Consider a license that allows a certain
piece of music to be played only for a limited time
within the domain. This license can be written as fol-
lows:

lic(mus,∆,
{in domain ≡ cert, expires ≡ expiration date})

where ∆ consists of the following two clauses:

validD(B) : − get value(B, in domain, Id1),
identify(Id1), Id1 = Id2.

nexpired(B) : − get value(B, expires, Exp),
today(D), D ≤ Exp.

Finally, the corresponding play(·) rule can be de-
fined:

play(Mus) : lic(Mus,∆, B) → play(Mus,∆, B)
⇐ ∆ � validD(B),∆ � nexpired(B)

3.2 Payment

To address the different forms of payment, we first
model a wallet. Then, we show how various payment
methods are implemented in LicenseScript.

3.2.1 Modelling a Wallet

We model the existence of a wallet, in our approach,
as a another element of the multiset. The wallet is rep-
resented as a term of the form wallet(∆, B), where ∆
is a Prolog program, andB are a set of bindings. Sim-
ilarly to licenses, in the wallet we have clauses that
allow rules to perform operations over the wallet. We
assume that one binding named m, which represents
the amount of money in the wallet, is always in B.

A clause that may reside in ∆ is canload(·), which
is used to load or increase the balance of the wallet,
as can be shown as follows:

canload(A,B,B′) : −
get value(B,m,M), set value(B,m,M +A,B′).

whereA is the amount of money the user likes to load
onto the wallet.

Using clause canload(·), a rule that loads money
into the wallet can now be written:

load(Amount) : wallet(∆, B) → wallet(∆, B′)
⇐ ∆ � canload(Amount, B,B′)

Another useful clause in the wallet is
cantransfer(·), used to transfer a certain amount of
money to another entity (e.g., a content provider):

cantransfer(P,A,B,B′) : −
get value(B,m,M), A ≤M,
set value(B,m,M −A,B′), transfer(P,A).

where primitive transfer(P,A) models the money
transfer to entity P of the amount of moneyA.

3.2.2 Payment Methods

There are at least three common alternatives payment
models, as described in [3]: (1) pay per-use, a pay-
ment is issued each time the content is used; (2) pay
upfront, the content can be used after the payment has
taken place, for a period of time p; and (3) pay fla-
trate: The content is used, and then the payment must
be made at the end of the content usage We now illus-
trate the implementation of the pay per-use and pay
upfront methods in LicenseScript. We leave aside pay
flatrate, as it is similar to pay per-use.

5

Proceedings of the Third International Conference WEB Delivering of Music (WEDELMUSIC’03) 
0-7695-1935-0/03 $17.00 © 2003 IEEE 



Pay Per Use We can model pay per-use in Licens-
eScript by means of including in a license the follow-
ing clause canplay(·):

canplay(P,A,B) : −
get value(B, provider, P ),
get value(B, amount,A).

where provider is the binding representing the con-
tent provider, while binding amount represents the
cost to play music track. Intuitively, clause canplay
returns the price of the content in A and the provider
who should receive the payment, in variable P . This
allows a rule calling this clause to perform the re-
quired payment:

play(Mus) : lic(Mus,∆, B), wallet(Γ, C) →
lic(Mus,∆, B), wallet(Γ, C′)

⇐ ∆ � canplay(P,A,B),
Γ � cantransfer(P,A,C,C′)

Here, clause canplay(P,A,B) retrieves P and A,
which clause cantransfer(P,A,C,C′) uses to per-
form the actual money transfer.

Pay Upfront For modelling this payment method,
we need to use two different clauses and rules, since
the actual payment and content usage may differ in
time: the payment is first done, and only later the con-
tent is used.

We first define a clause canpay(·) for paying as
follows:

canpay(P,A,B,B′) : −
get value(B, paid, Paid), Paid = false,
get value(B, provider, P ),
get value(B, amount,A), today(D),
set value(B, period,D + fp,B′),
set value(B, paid, true,B′).

Here, binding paid is a flag that represents whether
the content has already been paid or not. Binding
period is used to store the allowed period of time for
playing the content, and constant fp represents the
period of time in which the content can be accessed
after the payment.

Clause canpay(Provider, Amount,B,B′) first
checks that the payment has not been done yet. It
then returns the value of the provider and the amount
in variables Provider and Amount. After this, the
period of allowed use is set appropriately, and finally
flag paid is set to true, indicating the payment.

Using the above clause we can define the rule for
pay upfront:

pay(Mus) : lic(Mus,∆, B), wallet(Γ, C)
→ lic(Mus,∆, B′), wallet(Γ, C′)
⇐ ∆ � canpay(Provider, Amount,B,B′),
Γ � cantransfer(Provider, Amount, C,C′)

Now, we can define the canplay(·) clause for ac-
tion play, which will allow the content to be played
only if the payment has been done, and the allowed
period of time has not expired:

canplay(B) : −
get value(B, paid, Paid), Paid = true,
today(D), get value(B, period, P ), D ≤ P.

Finally, we define the rule for play(·):
play(Mus) : lic(Mus,∆, B) → lic(Mus,∆, B)

⇐ ∆ � canplay(B)

3.3 Clipping Licenses

Suppose a user who has purchased a music track
from a content provider requires some comments
from other users. In LicenseScript, she can clip the
license, and then she can send the clipped licenses to
other people as a preview or recommendation. Notice
that this operation splits the license but not the con-
tent.

The license in question looks like this:

lic(mus,∆, {start ≡ 0, end ≡ mus length})
where ∆ contains the following canclip(·) clause:

canclip(S,E,B,B′) : −
get value(B, start, OS),
get value(B, end,OE), S ≥ OS,
E ≤ OE, set value(B, start, S,B′),
set value(B, end,E,B′).

Bindings start and end are markers that indicate the
head and tail of the music track.

The corresponding rule for clip operation can now
be defined:

clip(S,E,Mus) : lic(Mus,∆, B) →
lic(Mus,∆, B), lic(Mus,∆, B′)
⇐ ∆ � canclip(S,E,B,B′)

Note that the content is still the same, full-length
here; only the start and end markers are modified. A

6

Proceedings of the Third International Conference WEB Delivering of Music (WEDELMUSIC’03) 
0-7695-1935-0/03 $17.00 © 2003 IEEE 



different clip operation that includes the actual pro-
duction of a new, clipped content, would need the use
of a primitive that performs the operation.

A special case of the clipping operation occurs
when we want to duplicate a license. This operation
is often needed. In fact, one of the primary require-
ments of LicenseScript architecture is that devices do
not have to be always on: in particular, we do not want
the system to be dependent from the reacheability and
the availability of domain server. To implement cor-
rectly the concept of authorized domain, we then have
to be able to duplicate licenses. Consider for instance
the situation of a person that has the license for lis-
tening to a piece of music within his home and who
rightfully wants to listen to it also while driving her
car. If devices are not always on, then the car device
might be incapable of checking on the home server for
the presence of the right license. Therefore, there has
to be a license for the music in the car device as well,
and this is possible only if we can duplicate licenses.
Thus, by allowing users to duplicate the licenses con-
fined in their authorized domain without any restric-
tions provide a broad freedom for the users to listen to
the music whenever, wherever and however they like.

4 Related Work

In this section, we briefly discuss the related work.
As mentioned in section 1, there are several XML-
based RELs proposed, the most prominent being
XrML and ODRL. The crucial difference between Li-
censeScript and XML-based RELs, is that the former
is a (Turing-complete) language, while the latter are
only suitable to describe a set of constraints, the se-
mantics of which is given by the implementation al-
gorithm. This make it very difficult to compare the
two approaches. A sure problem with XML-based
RELs is that their syntax becomes intricated when
the scenarios of licensing and content usage patterns
becomes complex. As a result, the license may ex-
pand drastically in size. We aim to render the Licens-
eScript lightweight to be fit into small devices, i.e.
with limited resources (CPU, memory, etc.). Eventu-
ally, we could compile XrML and ODRL into Licens-
eScript (which can be thought of as an “intermediate
code”) to be accommodated in small devices. Licens-
eScript, being executable, allows to formulate com-
plex policies in a succinct manner like: Pay 1USD to
videos.com when you view this video for the first time;
each subsequent time that you view this video the cost
drops by 105. After ten times, the video becomes free.
To the best of our knowledge, to implement such a
policy in XrML one needs to define an extension of

the language, and needs to provide an implementation
to it.

On the other hand, we found other concepts that
are easily expressed in XrML or ODRL but would re-
quire much more work in LicenseScript. Consider,
for instance, the use of role based access control in
ODRL. This allows one to specify, for example, “any
student of this university may listen to the local uni-
versity radio.” Here, the right to listen to the radio is
assigned to the role “student”, and not to each physi-
cal student. Then, there is no need to deal with iden-
tification or authorization mechanisms at the speci-
fication level. In LicenseScript, on the other hand,
this would not be possible because there is no way to
“abstract” such high-level descriptions. In this spe-
cific case, to support role based access control we
would need to implement identification and authoriza-
tion procedures (possibly using a PKI infrastructure)
in the same license.

Gunter et al. [3] from InterTrust Technologies Cor-
poration and Pucella and Weissman [9] from Cornell
University present two logics for licenses. By bor-
rowing techniques from programming semantics [4],
Gunter et al. develop a model and a language for de-
scribing licenses. Their logic consists of a domain of
sequences of events called realities. An event is mod-
elled as a pair of a time value and an action. Note
that only one event is allowed at a time. A finite set of
events is embodied in a reality. A license, then, is a set
of realities. Most licenses consist of infinitely many
realities in order to allow the use of a work at one
or more of infinitely many times during some period.
Using the proposed model, Gunter et al. formularize
several standard license types, which they call sim-
ple licenses. They are the same that we have treated
in this paper: simple licenses are “Up Front”, “Flat
Rate” and “Per Use”. Simple licenses can be used as
the building blocks of more complex licenses.

Pucella and Weissman [9] follow up Gunter et al.’s
effort. They propose 3 syntactic categories: (1) ac-
tion expression, (2) license, and (3) formula. The ac-
tion expressions are either permitted or obligatory. In
other words, they reason about the licenses and the
user’s actions with respect to the licenses; this is done
by means of a temporal deontic logic. This distinc-
tion is what makes their logic more accessible and
complete than Gunter et al.’s. A license is an action
sequence (not to be confused with an action expres-
sion). A formula designates an action sequence that
is valid for a license. At most, one action per time per
license can occur.

LicenseScript uses multiset rewriting which is
more expressive than the denotational semantics of

7

Proceedings of the Third International Conference WEB Delivering of Music (WEDELMUSIC’03) 
0-7695-1935-0/03 $17.00 © 2003 IEEE 



Gunter et al. LicenseScript is also readily subject
to logical parallelism. Pucella et al.’s logic is only
a starting point, with the assumption of one client and
one provider and therefore definitely does not cater
for concurrency, like LicenseScript does. To state the
obvious, Pucella et al. also have not yet taken into ac-
count the malleability of licenses and contents (e.g. as
a result of “clipping” and “mixing”), and the concepts
of authorized domains.

5 Conclusions and Future Work

We propose LicenseScript, a novel digital rights
language based on multiset rewriting and logic pro-
gramming. We present the design of the language us-
ing a scenario that represents an elaborate pattern of
content use.

LicenseScript differs from other RELs in that it
has an explicit static and dynamic part. The terms
and conditions on content form the static part. These
terms and conditions usually derive from legal, regu-
latory and business rules, and are therefore appropri-
ately expressed using Prolog clauses [11]. A license
is used in a changing context and must therefore have
the ability to evolve. The dynamics are represented
by interpreting a license as an element of a multiset to
which multiset rewrite rules are applied. These rules
represent the way in which the context (devices and
systems) act upon licences. The dual nature of a li-
cense (static versus dynamic) is thus represented by a
two-tier structure of LicenseScript. The two levels are
linked by a set of bindings that represents the current
state of the evolution.

As future work, we are currently implementing the
language, using an existing DRM platform [2]. Fur-
thermore, we plan to study in detail relevant legal, reg-
ulatory and business cases to ensure that the language
is convenient to use. Licenses evolution is an interest-
ing issue, and we plan to investigate this point further.
Formal verification of license properties (e.g., safety)
in a given multiset and rule set, could allow us to rea-
son more precisely about what a license is supposed
to achieve and what actually allow.

References

[1] J-P. Banâtre, P. Fradet, and D. L. Métayer. Gamma
and the chemical reaction model: Fifteen years after.
In C. Calude, G. Paun, G. Rozenberg, and A. Salomaa,
editors, Workshop on Multiset Processing (WMP),
volume 2235 of Lecture Notes in Computer Science,
pages 17–44. Springer-Verlag, Berlin, August 2001.

[2] C. N. Chong, R. van Buuren, P. H. Hartel, and
G. Kleinhuis. Security attributes based digital rights
management. In F. Boavida, E. Monteiro, and
J. Orvalho, editors, Joint Int. Workshop on Interac-
tive Distributed Multimedia Systems / Protocols for
Multimedia Systems (IDMS/PROMS), volume LNCS
2515, pages 339–352, Coimbra, Portugal, Nov 2002.
Springer-Verlag, Berlin.

[3] C. Gunter, S. Weeks, and A. Wright. Models and
languages for digital rights. In Proceedings of the
34th Annual Hawaii International Conference on Sys-
tem Sciences (HICSS-34), pages 4034–4038, Maui,
Hawaii, United States, January 2001. IEEE Computer
Society Press.

[4] C. A. Gunter. Semantics of Programming Languages:
Structures and Techniques. MIT Press, 1992. ISBN:
0262071436.

[5] H. Guo. Digital rights management (DRM)
using XrML. In T-110.501 Seminar on
Network Security 2001, page Poster paper
4, 2001. http://www.tml.hut.fi/Studies/T-
110.501/2001/papers/.

[6] R. Iannella. Open digital rights management. In
World Wide Web Consortium (W3C) DRM Work-
shop, page Position paper 23, January 2001.
http://www.w3.org/2000/12/drm-ws/pp/.

[7] J. W. Lloyd. Foundations of Logic Program-
ming. Symbolic Computation – Artificial Intelligence.
Springer-Verlag, Berlin, 1987. Second edition.

[8] D. Mulligan and A. Burstein. Implementing copyright
limitations in rights expression languages. In Proceed-
ings of 2002 ACM Workshop on Digital Rights Man-
agement, volume 2696 of Lecture Notes in Computer
Science, page To appear. Springer-Verlag, November
2002.

[9] R. Pucella and V. Weissman. A logic for reason-
ing about digital rights. In IEEE Proceedings of
the Computer Security Foundations Workshop, pages
282–294, Cape Breton, Nova Scotia, Canada, June
2002. IEEE Computer Society Press.

[10] P. Samuelson. Digital rights management {and,or,vs.}
the law. Communications of ACM, 46(4):41–45, April
2003.

[11] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek,
P. Hammond, and H. T. Cory. The british national-
ity act as a logic program. Communications ACM,
29(5):370–386, May 1986.

[12] S.A.F.A. van den Heuvel, W. Jonker, F.L.A.J. Kam-
perman, and P.J. Lenoir. Secure content management
in authorised domains. In The World’s Electronic Me-
dia Event IBC 2002, Sept. 13-17, Amsterdam RAI, The
Netherlands, pages 467–474, September 2002.

8

Proceedings of the Third International Conference WEB Delivering of Music (WEDELMUSIC’03) 
0-7695-1935-0/03 $17.00 © 2003 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


