
© 2002 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

An Integrated Visual Framework for the Human-Web Inter face

Kang Zhang

Department of Computer Science
University of Texas at Dallas

Richardson, TX 75083-0688, USA
kzhang@utdallas.edu

Mao Lin Huang

School of Computer Science
University of Technology, Sydney

NSW 2007, Australia
maolin@socs.uts.edu.au

Kei-Chun Li

Dept. of Info. and Applied Tech.
Hong Kong Institute of Education

Hong Kong, China
danielli@ied.edu.hk

[Abstract] The design of Web sites has been largely ad hoc,
with little concern about the effectiveness of navigation and
maintenance. This paper presents a general framework with
a human-Web interface that supports Web design through
visual programming and reverse Web engineering through
visualization. The paper describes the framework in the
context of a Web tool, known as HWIT, which has been
developed for a pilot study.

[Keywords] Human-Web Interface, Web visualization,
visual programming, graph grammar, information filtering

1. Introduction

The development of Web sites with complex
interconnections of large number of Web pages so far has
been largely an ad hoc process. There has been no
commonly accepted methodology, which supports ease of
design, navigation, and maintenance of sophisticated Web
sites. As the number of Web sites is increasing in an
exponential order, with the huge information space
provided by the Web, users become increasingly confused
when they navigate a growing number of Web sites; finding
the right information also takes longer time. The problems
are partially due to the unstructured nature of the current
organization of Web sites. For example, in most of the
existing Web browsers, the process of jumping from one
location to another could easily confuse the user. The main
reason for this is that the user does not know the current
context of space with respect to the overall information
space.

Attempts have been made to develop tools and facilities to
support Web site construction, although most of these tools
are designed only for one stage of Web design, navigation,
and maintenance.

Designing a good Web page is considerably easier
nowadays. There are many guidelines describing in details
the so-called good design of Web pages [6]. Siegel [22]
classifies three generations of sites ranging from default
backgrounds with wall-to-wall text used in the first
generation through the second generation of visual
treatments such as menus and Web maps. The third
generation of Web sites allows users to pursue paths
designed for their needs and interests. We are now in the

third generation and moving towards a more personalized
multimedia capable WWW. Hinton [13] further discusses
how an organization could maintain and design its Web
resources with such paths. More and more organizations are
embracing the idea of personalized Web site for different
types of users [18]. Personalized paths designed for
different individuals would enable an organization to tailor
its priority and services for the individuals according to
their values to the organization.

A variety of tools, including navigational tools such as
browsers and lenses [14][19], history lists [9], bookmarks
and filters [23], have been developed to assist users to
overcome the problem of finding information in the
unstructured Web space. WebOFDAV [14] also tries to help
the user to visually navigate the Web by displaying a
sequence of small visual frames corresponding to user’s
focuses of attention. Yet, these approaches do not solve the
navigation problems through structured Web design and
integration of Web design and navigation.

In order to improve the design and navigation of WWW, a
well-designed Web structure is expected. The development
of better tools that enforce structure in the design phase,
while supporting fully integrated maintenance and
navigation capabilities, are urgently needed. We believe that
a complicated Web system can be made more structured
and navigated more easily through graphical visualization
and graphical interactions. More importantly, maintaining a
uniform view throughout the design, navigation, and
maintenance cycle can reduce considerable development
effort and enhance the navigation efficiency. The goal of
the work reported in this paper is to propose an integrated
view throughout the Web development cycle. The major
advantages of our approach are the following:

• A visual approach to constructing and navigating Web
sites is easier to comprehend than the textual form. A
novice user without any programming experience
would find the visual approach intuitive if the visual
representation could reflect one’s mental image of a
Web structure.

• Automatically generated by a visual language
generator, the graphical Web construction and
navigation tool can be rapidly prototyped and

enhanced to the end-user’s needs. The generated tool
is a syntax-directed visual editor that is capable of
syntactic checking of any constructed Web graph. The
Web site design and navigation share the same graph
formalism so that the user’s mental map is preserved.

• A Web site can be maintained using a site
visualization tool that shows the site in the same
graphical format as in the design stage. The full
integration of the design tool with a Web site
visualization tool also allows a user to construct new
Web sites through reverse engineering based on some
existing site structures and contents.

2. Related Work

To aid Web navigation and maintenance with a sense of
orientation, researchers have proposed “site mapping”
methods for constructing a structured geometrical map for
one Web site [18]. However, they can only guide the user
through a very limited region of the WWW. Other
approaches define the entire WWW as a graph and then
navigate the graph [1][15]. Yet, these systems do not
support the integration of Web site design, navigation, and
maintenance.

Various tools and methodologies have been developed or
proposed in the past few years, as listed below. Most of the
tools assist, in one way or another, different areas of WWW
development, mainly aiming at improving navigation. For
example, Fisheye-View Graphical Browser [19] adopts
fisheye view filtering strategies [21] to allow logical
management of documents with nested compositions. This
browser degrades dramatically as the number of nodes
increases.

WebMap [7] shows a 2D graphical relationship between
pages. Small circles depict pages whereas links are
coloured to indicate the status of destination documents.
Users can visualize the document space without having to
visit all documents since WebMap implements an
exploratory approach to gather the documents as a batch
job. However, the whole process is time-consuming and
resource intensive.

PadPrints [3] is a zooming Web browser within a multi-
scale graphical environment. It displays multiple pages at a
time and a large zoomable information surface depicts the
links between the pages. The current page is clearly shown
as it is larger than other pages. The system only enhances
information browsing among different documents.

WebML [4] uses a model-based approach to Web site
development. In WebML, a structural model expresses the
site’s data content using commonly accepted modeling
languages such as UML; hypertext model describes the
contents and structure of the site’s pages; presentation
model dictates how the pages are presented with a layout

specification; finally, personalization model allows group-
based or individual-based content categorization.

Other tools use software engineering methodology to
approach Web development. For example, WOOM [5][16]
and XWMF [12] use object-based formal metadata model
for designing Web structures expressed as directed acyclic
graphs (DAGs). The emphasis is on the high level design
for interoperable exchange and reasoning about the Web
data. The OO-H (Object-Oriented Hypermedia) method
uses UML-like conceptual modeling to specify navigation
and presentation features. They do not address the
important issue of integrated view or offer the capability of
reverse engineering.

3. The Human-Web Inter face

Distinguishing from the work described in Section 2, the
work discussed in this paper focuses on a uniform view of
the design, maintenance, and navigation of the Web. We
call such a uniform view the Human-Web Interface (HWI).

To compare HWI with traditional HCI (human-computer
interface), we consider the following three aspects: the
device for which the interface is suitable and designed,
main functionality of the interface, and the target of the
communication that the interface facilitates.

• Device: A HWI could be installed not only on a
computer, but also on a PDA (portable digital
appliance), a mobile phone, or a television set. In the
latter case, the HWI needs no Web design function
and thus would not be equipped with a graph editor
and Web site generation engine (as described later in
this paper). The display could also be much more
simplified. For a PDA for example, the display may
only include clickable texts and running texts for
navigation and browsing, possibly with a voice
interface as in WebViews [10].

• Functionality: The major role of a HWI is to act as a
window to the world while a HCI could just be for a
standalone computer. Therefore, the main objective of
a HWI is to facilitate information gathering and
retrieval while that of a HCI is to facilitate operations
on a computer.

• Communication target: Related to the above
difference, the communication target of a HWI is
human while that of a HCI is machine. The human-to-
human communication through HWIs may be direct,
such as in a Web-based net-meeting, and indirect as in
usual Web browsing. To support indirect human-to-
human communications in various professional
domains, we need commonly understandable and
agreed communication protocols. The XML standard
[25] has been motivated precisely for this reason.

As illustrated in Figure 1(a), in the traditional human-
computer interaction, the human user’s intention is

materialized through the HCI and interpreted/executed by
the computer, which in turn outputs results through the HCI
to be interpreted by the user. Figure 1(b) shows the human-
to-human communication model, realized indirectly through
human-Web interfaces, which communicate to the Web
server via the Internet. A full human-to-human
communication path is described as: a human user’s
intention can be materialized on a HWI, which is then
interpreted by the Web server according to the predefined
HWI syntax and semantics (i.e. Web graph grammar);
another HWI on the other end materializes and presents the
user’s intention according to the Web server, and the other
human user interprets and understands what is presented on
the HWI.

Both HCI and HWI aim at enhancing the usability and thus
the user’s productivity. They may therefore be developed
based on similar conceptual architectures. The Model-
View-Controller paradigm, or MVC for short, has been
successfully used to build user interfaces in Smalltalk [17].
As one of the earliest successful object-oriented
programming languages, Smalltalk supports construction of

new interactive systems based on existing ones.
MVC consists of three main objects as shown in
Figure 2: Model, View and Controller. Model
represents the application semantics, and its screen
presentation is managed by View. Controller defines
the way in which the user-interface reacts to user
inputs.

Based on the MVC paradigm, we propose a HWI
framework as shown in Figure 3, where “Graph
Editor and Navigator” corresponds to Input in MVC,
“Web Browser” corresponds to Display, “Filters”

and “Display Markup” correspond to View, “Customizer”
and “HWI Engine” correspond to Controller, and “Web
Graph Grammar” and “XML Database” correspond to
Model. The framework consists of the support for three
major activities: Web site design, navigation and browsing,
and maintenance and updating. The front-end of the user
interface consists of a Graph Editor and Navigator (GEN)
for Web site construction and navigation that is capable of
automatic graph layout, and a Web browser that could be
Netscape or Internet Explorer. This combined front-end
forms the human-web interface (HWI).

The Web designer uses the Graph Editor of GEN to design
and construct Web sites as graphs to be transformed and
processed by the HWI Engine. The Engine performs
grammatical check of the constructed graphs according to
the predefined Web graph grammar [26], transforms the
validated graphs into either XML documents or inter-related
HTML files, and generates an internal data structure for
debugging and maintenance purposes. If the generic
document structure is desirable, XML document structures
will be generated and stored in the XML database. The
HWI engine is able to transform from one XML to another,
or from an XML description to an HTML display format
according to the predefined transformation grammar [28].

The HWIT framework supports several modes of
displaying, including Level view, Domain view, Category
view, Pattern view, and Constraint view. These views are
implemented by different filters that are also shown in
Figure 3. The Level view allows the user to choose the level
of Web page pointers to display, i.e. a given level of linked

HWI HWI

Web Server

Internet

Human Human
Materialized-by

Interpreted-by

Communication HCI

Computer

Human

(a) Human-Computer interaction model (b) Human-Web interaction model

Figure 1: Human-to-computer communication in HCI and human-to-human communication in HWIs

�

��������

	
��
������
�
���������	����

������
�������
�
���

����������

����
 ��!����
�

	���
�
��
��

"#$�
%��������

�Web Graph
��������

&
�����'���

��������
	 �
����

��� ���

Figure 3: The HWI framework

Controller

View

Model

Display

Input

User

Figure 2: The Model-View-Controller paradigm

pages in the Web graph relative to a given node. The
Domain view shows the pages of a given application
domain. If the Web designer has classified all the pages
according to some application criteria, the user can choose
Category view to see a given class of pages. The Pattern
view allows the viewer to see some common patterns (as
sub-graphs) in a Web graph. Finally, the Constraint view
shows all the pages that satisfy a given set of constraints
(e.g. a maximal file size). Filtering rules can be defined on
various structures, including graph structure, Web context,
and document structure [15]. Other conditions may be
defined to facilitate more specialized filters.

Web designers can design or customize their own filters to
suit their specific application purposes. The Customizer
allows a Web designer or webmaster to define other desired
filtering criteria, integrity conditions suited for
maintenance, and syntax-directed operations associated
with the Web graph grammar. For example, the user may
define an integrity condition through the Customizer that no
page should belong to more than one group. Web designers
may also customize their designs, such as the use of
graphical notations, the way in which the site will be
navigated, etc, to suit the needs of domain-specific
applications.

4. Using the HWI Tool

The proposed HWI framework provides a Webmaster with
a uniform graphical view for the effective design and
maintenance of Web sites, and allows users to navigate the
Web site graphically by direct manipulation and
information filtering as desired. The Webmaster designs
and generates a Web site by drawing the Web graph that
conceptually represents the site structure. Navigation and
maintenance of Web sites are performed on the same Web
graph by the user.

During design or navigation, the user can click on any graph
node to enter directly into the page symbolized by the node
without going through all the intermediate pages. This
direct access method via a Web graph is much more
efficient than linear access method in conventional
browsers. The grammatical and structural organization of a
Web site allows various (system or user-defined) integrity
conditions for the site to be checked and any violation or
inconsistency to be reported in a systematic fashion. For
example, any Web pages that are orphaned by the deletion
of some other pages should be detected.

We have designed an experimental tool, called HWIT
(Human-Web Interface Tool), that realizes the above HWI
functionality through visual Web programming and Web
visualization. A designer or a user would be able to view
any Web site from different angles, using HWIT's filtering
capabilities, in a structured and personalized manner. HWIT
also accepts filters that are defined and specified by users
using the Customizer. The tool not only allows the user to

easily navigate and explore the Web, but also assists the
designer to design and maintain better-structured Web sites.
Figure 4 depicts a snapshot of the HWI when navigating
Kang Zhang’s research home page on the Internet Explorer
by a simple click on the “research” node in the graph on the
navigator. The Web page shown on the IE on the right-hand
side represents the “research” page in the navigation
window on the left-hand side. HWIT’s “Preference” dialog
allows the user to choose a preferred navigational browser
from various options.

Figure 4: Navigation on a Web graph in HWIT

5. Graphical Programming for Web Design

Visual structures and relationships are much easier to
reason about than similar linguistically described structures.
This is why designs in many application domains have been
conducted on graphical representations. Using visual
programming techniques to graphically design Web sites
and Web pages will obviously enable more visual artists
and other non-computing professionals to develop their own
Web sites easily. The main philosophy behind the HWI
framework is its consistent visual approach to Web design,
navigation, and maintenance. This section introduces the
concept of Web graphs and their notations, and describes
the support for multi-versioning and reverse Web
engineering through graph visualization.

5.1. Web Graphs and Design Notations

A graph G (N, E) consists of a finite set N whose members
are called nodes and a finite set E whose members are
called edges. An edge is an ordered pair of nodes in N. A
node of a graph G1 can itself be another graph G2, which is
called a sub-graph of G1. The properties of a graph may be
inherited by its sub-graphs. We regard the organization of a
Web site of any size as a graph, known as Web graph. A

node in a Web graph represents a Web page, and an edge
represents a link from one page to another. The World Wide
Web is certainly the largest Web graph that is expanding all
the time. For scalability and convenience of design and
navigation, we define a special class of nodes, called group.
A group represents a set of pages that are connected to a
common parent page, and share the same set of attributes.

The distance between a pair of nodes, node A and node B,
is defined as the number of intermediate nodes along the
shortest path between A and B (including B). A sub-graph
of graph G consisting of a node A and all such nodes in G
that have a distance of N or shorter from A is called A’s
level-N sub-graph of G, or simply A’s level-N sub-graph.

A graph class provides the general common properties that
dictate whether certain operations are applicable to the
corresponding graph objects. A Web graph can be
constructed using a combination of tools: a graphical editor
for constructing a Web graph at the high level and a Web
page tool for constructing Web pages at the lower level.
This is demonstrated in Figure 5, that captures a snapshot
during the design of the “CS5330” home page using the
Netscape Composer (launched from the “CS5330” node
within the HWIT Graph Editor). The graphical editor
supports two-dimensional construction of Web graphs with
direct manipulation.

Figure 5: HWIT Graph Editor and its connection to a Web

page editor

HWIT uses a small number of simple notations, as shown
on the left hand side of the screen in Figures 4 and 5, to
design and visualize the components of a Web graph.

• The rectangle denotes a Node that represents a Web
page. The label is used to identify the node and the
page.

• The round-cornered rectangle denotes a Group,
representing a group of Web pages that are combined
together either due to their commonality or for the
brevity of viewing. It is like a Web template or class,

which can be used to generate similarly structured-
pages. A Group also has a label that identifies a
specific class of pages. This notation also enforces the
consistency in the pages belonging to one Group.

• The thin arrow denotes an Edge that represents a Web
hyperlink. This is the most common link seen in Web
pages.

• The thick arrow is called a Gedge, short for Group
Edge, which represents an edge coming out of or
entering a Group. The difference between an Edge
and a Gedge is that a Gedge connects to a Group
and thus refers to all the Nodes belonging to the
Group (some kind of inheritance). For example, if
there is a Gedge connecting a Group A to a Node D
and Node B is a member of A, then B is also
connected to D. More importantly, the Nodes
connected by Gedges to a Group share a common
set of characteristics and attributes. This is useful in
generating consistent look-and-feel pages.

• The broken-line arrow (not shown in the figures) is
called a Hedge, short for Hidden Edge. It may be
defined as either a connection between pages of
different domains, or as a connection between a
collapsed node and its neighboring node after a
filtering effect. When generated automatically by
HWIT a Hedge indicates the existence of a
connection (in form of hyperlink) between collapsed
nodes. The designer may use Hedge at the design
stage. In this case, a Hedge denotes either an Edge or
a Gedge between two nodes and the designer has not
yet made a decision in an early stage of design.

Each constructed Web graph is syntactically verified
against the Web graph grammar that is defined according to
a general graph grammar formalism for diagrammatical
visual languages, called reserved graph grammars (RGG)
[26]. The main advantages of using the RGG formalism
include its expressiveness and efficiency in parsing. The
RGG formalism has also been used in the implementation
of a toolset called VisPro, which facilitates the generation
of visual languages using the Lex/Yacc approach [27].

Graphs may change over a period of time and may reach a
particular state at a predetermined time. For example, a
Web designer may set a time when a page or a sub-graph
should be activated or disabled. A graph from an early state
may be partially reused and incrementally updated for a
later graph.

5.2. Suppor t for M ulti-version Web Sites

Web designers are under increasing pressure to produce
updated Web sites. The conventional approach to creating
and modifying a Web site is to create every single page and
make changes on the copy of the source code of the page.
Problems arise when the main frames of the pages are

almost the same while changes are needed only for part of
the original documents. To allow efficient creation and
modification of changing Web sites, the idea of multi-
version Web sites has been proposed [24]. In a multi-
version Web site, a generic source page acts as a template
for other documents in the same site. The generic source
page represents the common part of other documents and is
used as the index page of the site. Each of the other
documents can be considered a version of the site. Every
request from a client is associated with a version label that
is interpreted by a CGI or Java Servlet program on the Web
server to point to an appropriate version of the document.
This version of document is then retrieved and loaded into
the template of the generic source page to be displayed.
Multi-versioning is also useful when different languages or
different representations are needed on a single Web site.

Figure 6 depicts a possible organization of a multi-version
stock market site, in which each stock market source page
(a version such as that of “New York”) share a generic
information page. In this case, different graph objects carry
different meanings under different contexts, the semantics
of a graph operation will depend on the context defined by
the Web designer. Graph operations can be implemented
according to their contexts but all provide the same
interface to the designer.

HWIT supports the concept of associative queries for multi-
version Web sites. The basic idea is that all the objects in a
generic source page are categorized into three hierarchical
classes: root, node and leaf, and they form a hierarchical
graph. We use a data structure called virtual version tables
(VVTs) to organize different versions of a document and
facilitate the retrieval of appropriate documents.

The title page is considered the root class. Node classes
include HREF links, includes, headings, and other node
classes. Leaf classes are disjoint objects such as graphic
files and audio files. A version label is assigned as an
attribute to the root class and objects in each leaf class when

submitting a request for a specific version. A hierarchically
structured graph is created when the version document is
generated. Information retrieval is achieved by querying the
graph of the version through VVTs. More details of the
associative query approach are discussed elsewhere [29].

5.3. Web Reuse Through Reverse Engineer ing

One of the major advantages of integrating Web design and
navigation features in the HWI framework is the ability of
reusing existing Web sites. A Web designer using HWIT
could adapt existing Web sites by visualizing and
modifying the sites, and then re-generating a new site. A
Web graph under visualization is treated as a rooted tree,
which consists of a set of focus nodes, each surrounded by
the nodes linked to it. A focus node is usually the center of
the user’s attention when navigating and viewing the Web
graph.

HWIT uses a force-directed algorithm [8][14] to draw
existing Web sites for visualization. A force-directed
algorithm views a graph as a system of bodies with forces
acting between the bodies. The bodies are represented nodes
in the graph, and the forces are relationships between the
nodes in a graph and determine the geometrical positions of
the nodes. A force-directed algorithm aims to compute a
position for each body such that the sum of the forces
applied on each body is locally minimized.

Force-directed algorithms are very popular [2]; they are
easy to understand, and the results of layouts can be good.
One of the most popular force-directed algorithms is called
the spring algorithm [8]. The original spring model uses a
combination of spring and gravitational forces. Edges are
modeled as springs, and nodes are particles that repel each
other.

To clearly distinguish the focus nodes and their
neighborhoods, we have extended the spring model by
adding some extra forces among the neighboring nodes
surrounding the focus nodes. Suppose that Fi=(Gi, Qi) is the
display frame being visualized, where Gi=(Vi, Ei) is the
Web graph consisting of a vertex set Vi and edge set Ei, and
Qi is the set of focus nodes. More precisely, the force on
node v is:

f(v) = �
∈)(vNu

uvf + �
∈ i

uv

Vu

g + �
∈ i

uv

Qu

h

where fuv is the force exerted on v by the spring between u
and v, and guv and huv are the gravitational repulsions
exerted on v by one of the other nodes u in the graph. This
extended spring model aims at satisfying the following
three important aesthetics:

• The spring force between adjacent nodes ensures that
the distance between adjacent nodes u and v is
approximately equal to zero length.

News Analysis Company

New York

London

Tokyo

Hong Kong

Historic
Price

On-line order

Real-time
Price

Version.L.1

Version.L.2

Version.L.3

Version.L.4

......

Version.L.n

NY.html

LD.html

TK.html

HK.html

OT.html

CGI/Java Servlet

Requests with version labels

World Wide Web

Figure 6: A multi-version Web site

• The gravitational force ensures that nodes are not too
close to each other.

• The extra gravitational force aims to minimize the
overlaps among the neighborhoods in the display frame
and to keep the focus nodes along a straight line. More
detailed description of the extended spring model can
be found in an earlier paper [15].

Figures 7 and 8 demonstrate two different phases of the
reverse engineering process. Figure 7 shows that a Web site
is being selected for visualization, which is achieved by
selecting the root page from the pop-up file management
window. The layout of the Web graph is animated when the
extended spring model is applied. The user may manually
drag any nodes during animation to adjust and achieve user-
desired layout.

After a desired layout is displayed, the user can convert the
graph back to the editing mode in HWIT as shown in Figure
8. Figure 8 is a snapshot after the user has added a sub-
graph at the bottom and is being editing the properties of the
CS6366 node.

Figure 7: The layout process during reverse engineering of an

existing Web site

Figure 8: Enhancing the existing Web site by adding a sub-site

6. Conclusion and Future Work

This paper has presented a visual framework to Web site
design, navigation, and maintenance. It advocates the
integration of the tools for all activities, ranging from Web
page and Web site design, navigation and browsing, to Web
system maintenance, while preserving the same mental map
for both the Web designer and the Web user throughout
these activities. Our approach is a step closer towards
narrowing the gap between Web designers and users [20].

We have implemented a prototype of HWIT in Java, which
is capable of generating Web sites from Web graphs drawn
on the HWIT Graph Editor. The Web re-engineering
capability in HWIT allows previously developed Web sites
to be visualized and re-developed graphically. Most of the
presented features have been implemented. We plan to
adapt an existing layout algorithm to support more
personalized and pleasant viewing during navigation and
maintenance.

This work has opened up many more opportunities for
further investigation. Our future work will include the
following.

• Security features will be built into the framework so
that different groups of people may access different
parts of a Web site.

• We will also conduct empirical studies in order to
evaluate the usability of HWIT in real world
applications.

References

[1] V. Anupam, J. Freire, B. Kumar, and D. Lieuwen,
Automating Web Navigation with the WebVCR,
Proc. 9th Int’ l World Wide Web Conf., Amsterdam,
Netherlands, 15-19 May, 2000.

[2] G. Di Battista, P. Eades, R. Tammassia abd I.G.
Tollis, Graph Drawing – Algorithms for the
Visualization of Graphs, Prentice-Hall, 1999.

[3] B. Bederson, J. Hollan, J. Steward, D. Vick, L. Ring,
E. Grose, and C. Forsythe, A Zooming Web
Browser, Human Factors in Web Development, Eds.
Ratner, Grose, and Forsythe, Lawrence Erlbaum
Assoc. 1998, 255-266.

[4] S. Ceri, P. Fraternali, and A. Bongio, Web Modeling
Language (WebML): A Modeling Language for
Designing Web Sites, Proc. 9th Int’ l World Wide Web
Conf., Amsterdam, Netherlands, 15-19 May, 2000.

[5] F. Coda et al., Towards a Software Engineering
Approach to Web Site Development, Proc. 9th Int’ l
Workshop on Software Specification and Design,
IEEE Press, 1998.

[6] S. A. Conger and R. O. Mason, Planning and
Designing Effective Web Sites, Course Technology,
Cambridge, MA, 1998.

[7] P. Doemel, WebMap – A Graphical Hypertext
Navigation Tool, Proc. 2nd Int’ l Conf. on the WWW,
USA, 1994, 785-789.

[8] P. Eades, A Heuristic for Graph Drawing,
Congressus Numerantium,, Vol.42, 1984, 149-160.

[9] E. Frecon and G. Smith, WebPATH – A Three
Dimensional Web History, IEEE Symp. Information
Visualization, N. Carolina, October, 1998,
http://davinci.infomatik.uni-
kl.de/vis98/archive/fp/papers/webpath.html.

[10] J. Freire, B. Kumar, and D. Lieuwen, WebViews:
Accessing Personalized Web Content and Services,
Proc. 10th Int’ l World Wide Web Conf., Hong Kong,
China, 1-5 May, 2001.

[11] G. Furnas, Generalized Fisheye Views, Proceedings
of CHI’86, Boston, April 1986.

[12] J. Gómez, C. Cachero, and O. Pastor, Conceptual
Modeling of Device-Independent Web Applications,
IEEE Multimedia, April-June 2001, 26-39.

[13] S. Hinton, From Home Page to Home Site: Effective
Web Resource Discovery at the ANU, Proc. 7th Int’ l
World Wide Web Conf., 14-18 April 1998, Brisbane,
Australia.

[14] M. L. Huang, P. Eades, and R.F. Cohen,
WebOFDAV - Navigating and Visualizing the Web
On-line with Animated Context Swapping, Proc. 7th
Int’ l World Wide Web Conf., Brisbane, 14-18 April
1998.

[15] M. L. Huang, P. Eades, and J. Wang, On-line
Animated Visualization of Huge Graphs Using a
Modified Spring Algorithm, J. Visual Languages and
Computing, 9, 1998, 623-645.

[16] R. Klapsing, G. Neumann, and W. Conen, Semantics
in Web Engineering: Applying the Resource
Description Framework, IEEE Multimedia, April-
June 2001, 62-68.

[17] G.E. Krasner and S.T. Pope, A Cookbook for Using
the Model-View-Controller User Interface Paradigm
in Smalltalk-80, JOOP, 1(3), August 1988.

[18] Y.S. Maarek and I.Z.B. Shaul, WebCutter: A System
for Dynamic and Tailorable Site Mapping, Proc. 6th
Int’ l World Wide Web Conf., 1997, 713-722.

[19] D. C. Muchaluat, R. F. Rodrigues, and L. F. G.
Soares, WWW Fisheye-View Graphical Browser,
Proc. IEEE of the 1998 Multimedia Modeling, 1998.

[20] T. Nakayama, H. Kato, and Y. Yamano, Discovering
the Gap Between Web Site Designers’ Expectations
and Users’ Behavior, Proc. 9th Int’ l World Wide Web
Conf., Amsterdam, Netherlands, 15-19 May, 2000.

[21] M. Sarkar and M. H. Brown, Graphical Fisheye
Views, Communications of the ACM, Vol. 37 No. 12,
December 1994..

[22] D. Siegel, Creating Killer Web Sites: The Art of
Third Generation Site Design, 2nd ed., October
1997, Hayden Books.

[23] M. B. Spring, E. Morse, and M. Heo, Multi Level
Navigation of a Document Space,
http://www.iis.pitt.edu/~spring/mlnds/mlnds/mlnds.ht
ml.

[24] W.W. Wadge and T. Yildirim, Intensional HTML,
Proc. 10th Int’ l Symp. on Languages for Intensional
Programming, Victoria, Canada, 1997, 34-40.

[25] W3C, Extensible Markup Language (XML) 1.0,
http://www.w3.org/TR/REC-xml.html, Oct. 2000.

[26] D-Q. Zhang and K. Zhang, and J. Cao, A Context-
Sensitive Graph Grammar Formalism for the
Specification of Visual Languages, The Computer
Journal, Vol.44, No.3, 2001, 186-200.

[27] K. Zhang, D-Q. Zhang, and J. Cao, Design,
Construction, and Application of a Generic Visual
Language Generation Environment, IEEE
Transactions on Software Engineering, Vol.27, No.4,
April 2001, 289-307.

[28] K. Zhang, D-Q. Zhang, and Y. Deng, A Visual
Approach to XML Document Design and
Transformation, Proc. 2001 IEEE Symp. on Human-
Centric Computing Languages and Environments,
Stresa, Italy, 5-7 September 2001, IEEE CS Press,
312-319.

[29] Y. Zhang and K. Zhang, Associative Query for
Multi-version Web Documents, In: M. Gergatsoulis
and P. Rondogiannis (Eds.) Intensional
Programming II, World Scientific, 2000, 55-64.

