
An Implementation Mechanism for Tailorable Exceptional Flow

Steven te Brinke, Mark Laarakkers, Christoph Bockisch and Lodewijk Bergmans
Software Engineering group

University of Twente
Enschede, The Netherlands

{brinkes, m.laarakkers, c.m.bockisch, bergmans}@ewi.utwente.nl

Abstract—Decomposing software according to the structure
of the problem domain makes it easier to manage its complex-
ity. Such a decomposition requires a programming language
that supports compositions matching those in the problem
domain. However, current programming languages only offer a
restricted set of control-flow related composition mechanisms,
such as method invocation and exception handling. This limits
developers in choosing the desired decomposition.

Previously, we showed that continuations are suitable for im-
plementing various control-flow compositions. However, com-
posing and refining these implementations requires new lan-
guage features. In this paper, we outline requirements for
control-flow composition and show how exception handling can
be implemented using continuations, scopes and bindings.

Keywords-language design; continuation-passing style; ex-
ception handling; control-flow composition; free composition

I. INTRODUCTION

Software composition is a key element in software engi-
neering and programming language technology: It is the pri-
mary means for managing the complexity of large software
construction projects [1]. A composition mechanism allows
programmers to define—at least part of—the behavior of an
abstraction in terms of the behavior of one or more other
abstractions. Previously, both we [2], [3] and others [4], [5]
have argued that restricting the expressiveness of composi-
tion offered by a language severely limits developers. Such
restrictions require workarounds leading to code duplication
and obfuscation of the intention of the composition. Our
proposed approach is to allow tailorable composition mech-
anisms to be implemented as first-class functions. Following
such an approach, developers can derive new composition
mechanisms if their domain-specific decomposition requires
a specific variant. Also, composition mechanisms can be
distributed as libraries, allowing developers to choose from
them freely.

Previously, we explored expressing various control-flow
related semantics of compositions, such as exception han-
dling, method invocations, and data access [6]. We con-
cluded that first-class continuations are suitable for im-
plementing variants of control-flow composition, but new
language features are required to compose and refine imple-
mentations of such mechanisms so as to avoid redundancy.
In this paper, we focus on the ingredients needed for defining

and composing such control-flow mechanisms. We outline
the requirements and show an envisioned implementation of
such mechanisms.

II. TAILORABLE CONTROL FLOW

Our main goal is to allow tailorable control-flow mech-
anisms inside a single programming language. An example
is using multiple kinds of exception handling, such as
conventional try-finally and try-with-resources (introduced
in Java 7), within the same language. Application program-
mers should be able to choose which kind of exception
handling they want to use. Of course, this choice should be
expressed in a programmer-friendly way. Thus, application
programmers should be able to think only about the use of
exceptions, without dealing with the implementation details.
Such implementation details can be left to library imple-
menters. To allow this separation between implementing and
using control-flow mechanisms, these mechanisms should
be implemented modularly. We propose to implement all
control-flow mechanisms as first-class abstractions.

III. REQUIREMENTS

We identified at least two requirements for implement-
ing the semantics of control-flow mechanisms as first-class
abstractions:

• being able to influence the execution order of state-
ments;

• having a way to bind different scopes to blocks so as to
identify which variables can be used in which context.

We explain both requirements in more detail in the following
two subsections.

A. Influencing Execution Order

Most important for tailorable control flow is the ability to
influence the execution order of statements. Listing 1 shows
a try-finally statement in pseudo code, which we will use as
an example. (Leaving out the catch block is a simplification
for the purpose of our discussion.) The statement on line 3
raises an exception, which means that the next statement to
be executed is not the sequentially following one (line 4),
but the first one of the finally block (line 6).

To make the behavior of the try-finally statement tai-
lorable, it should be implemented as a first-class abstraction.

978-1-4673-1766-5/12/$31.00 c© 2012 IEEE WEH 2012, Zurich, Switzerland22

1 var out
2 try {
3 out = File.open("Some file that does not exist") // Raises an exception
4 out.write("Everything went fine")
5 } finally {
6 if (out != null)
7 out.close()
8 }

Listing 1. Traditional try-finally

1 var out
2 tryFinally({
3 out = File.open("Some file that does not exist") // Raises an exception
4 out.write("Everything went fine")
5 }, {
6 if (out != null)
7 out.close()
8 })

Listing 2. First-class tryFinally

We achieve this by implementing it as a function to which
both the try and finally block are passed as closures. This
first-class implementation of try-finally can be used as
shown in listing 2, which is analogous to listing 1. The
try-finally statement and its semantics are no longer part of
the language definition. Thus, the alternate execution order
followed when an exception is raised can be expressed in
the language itself; special language constructs are no longer
needed. In this example, the semantics of the try-finally
statement should be expressed by the implementation of the
function tryFinally.

B. Binding Scopes

In the previous subsection, we saw that a try-finally
statement contains two blocks: the try and finally blocks.
Inside both blocks, it is possible to use variables defined
before the try-finally statement, but variables defined inside
the try block are not visible by the finally block and vice
versa.

However, when we take a look at the try-with-resources
statement of Java 7 [7, chapter 14.20.3], scoping is de-
fined differently. A try-with-resources statement allows a
set of AutoCloseable resources to be given, which are
closed automatically when exiting the try block. Listing 3
shows an example of try-with-resources, which has the
same behavior as the example described in the previous
subsection: a file is opened (line 2), something is written to
that file if opening succeeds (line 4), and finally the file is
closed (implicitly when execution of the try-with-resources
statement finishes).

For this try-with-resources statement, we can define a
first-class implementation, which can be used as shown
in listing 4. Here, line 2 represents the resources block
and line 4 the try block. We see that the try block can
not only use the variables defined before the try-with-
resources statement, but also the variables defined within
the resources block.

The try-with-resources scoping differs from that of try-
finally, but scoping is not limited to these two variants. For
example, if a finally or catch block is added to the try-with-
resources statement, variables defined in the resources
block could be either accessible or inaccessible from the
newly added block. Thus, we see that multiple scoping
choices exist, which should not be limited to a fixed set

provided by the language. Therefore, we conclude that
scoping should be tailorable.

When scoping is tailorable, library implementers should
also have the means to express which block uses what
scope. Therefore, library implementers should be able to
bind scopes explicitly.

IV. SOLUTION APPROACH

A. Influencing Execution Order

In earlier work [6], we showed that the continuation-
passing style is a powerful mechanism for influencing ex-
ecution order. However, programming in this style is—in
general—less readable than programming in a direct style.
Therefore, application programmers should not have to pro-
gram in the full continuation-passing style. However, library
implementers should be able to influence the execution order.
For example, for the try-finally statement, library imple-
menters can define the concept throw as a continuation.
Once defined, such a continuation is available implicitly
to application programmers. Thus, when using the try-
finally control-flow mechanism, application programmers
can invoke throw() to raise an exception, without writing
all code in the continuation passing style.

B. Scopes

Most programming languages structure scopes as a tree or
forest, in which every scope has at most a single enclosing
scope. In general, these scopes are lexically nested. Listing
5 shows an example of nesting; the boxes depict the scopes
and the arrows the nesting (they point towards the enclosing
scope). Such a tree structure is sufficiently powerful for
modeling the scopes of a wide range of control-flow mech-
anisms. However, as shown in section III-B and in listing
6, depending on the control-flow mechanism, the choice of
enclosing scope might vary. Therefore, we propose using
first-class scopes. These scopes become accessible properties
of continuations, of which library implementers can alter the
enclosing scope. In this way, scopes can be organized in any
desired tree structure.

Theoretically, it is possible to create a cyclic graph if
enclosing scopes can be freely reassigned. However, cycles
can lead to infinite recursion during variable lookup, when
referring to an undefined variable. Such infinite recursion
can be avoided, but since we have not seen any use cases of

23

1 try (
2 var out = File.open(...)
3) {
4 out.write("Everything went fine")
5 }

Listing 3. Java-like try-with-resources

1 tryWithResources({
2 var out = File.open(...)
3 }, {
4 out.write("Everything went fine")
5 })

Listing 4. First-class try-with-resources

1 tryWithResources(
2 { var out = File.open(...) }
3 ,
4 { out.write("Everything went fine") }
5)

Listing 5. Default scoping

1 tryWithResources(
2 { var out = File.open(...) }
3 ,
4 { out.write("Everything went fine") }
5)

Listing 6. Desired scoping.......

cyclic scopes, implementations might disallow cycles in the
scope graph. In that case, the scope graph will be a directed
acyclic graph, which—together with the requirement that
every scope has at most one enclosing scope—implies that
the scope graph is a forest.

C. Bindings

The previous two subsections explained the purpose of
both continuations and scopes when using a control-flow
mechanism. Now, we will show an example of their purpose
while defining a control-flow mechanism. This example is
the try-finally statement, which was explained in section
III-A.

Listing 7 shows an envisioned implementation of tryFi-
nally. Lines 2–11 specify how scopes and continuations are
bound, termed bindings, and lines 13–14 specify the actual
function body.

Bindings can refer to continuations that are either passed
as arguments (try and finally, in this example) or available
implicitly (return and throw, in this example). Bindings
can both call these continuations and access their prop-
erties, which are either scopes or continuations. Common
scopes are: the scope created by a continuation (scope),
the enclosing scope used during execution of a continuation
(enclosingScope), and the scope in which the continuation
is defined (definingScope). Common continuations are
return and throw, which represent the behavior of returning
from a method and raising an exception, respectively.

Looking at the listing, we see that both the try and finally
blocks close over the scope in which they are defined (lines 2
and 3). Further, inside the try block, return and throw cause
finally to be executed before actually returning or throwing,
respectively. For example, lines 4–7 specify the continuation
return, which receives the value to be returned (line 4) and
executes finally (line 5) before actually returning this value
(line 6).

Our proposed implementation of tryWithResources uses
different scoping. When we look at line 3 of listing 8,
we see that the try block closes over the scope used by
the resources block. Further, instead of calling finally, it

closes all defined resources (lines 17–18). The precise way
of accessing all defined variables is future work.

V. RELATED WORK

We outlined an implementation of tailorable control-
flow mechanisms. These mechanisms are implemented as
functions that receive closures as arguments, which represent
the blocks to execute. The control-flow mechanisms can
control the scope in which these closures are executed.

In this section, we discuss programming language features
on which we might be able to base our approach. For this
purpose, we show various ways of representing control state
as first-class values and the differences in binding scopes.

JavaScript [8] provides the function eval, that receives a
string as argument and executes its contents as if it is source
code. When defining blocks as strings, the execution order of
statements can be changed by passing these blocks around.
1 function main() {
2 var s = "This value is never used";
3 var block = ’alert(s); s = "This value also will never be used";’;
4 s = "This will be printed second";
5 printData(block);
6 alert(s);
7 }
8 function printData(block) {
9 var s = "This will be printed first";

10 eval(block);
11 }

Line 3 of the example above defines the variable block and
assigns a string to it, which contains JavaScript source code.
Line 5 passes this variable to the function printData. Line 10
evaluates the variable block, executing its contents as if it is
source code. The first statement in block—alert(s)—prints
the contents of variable s. Since the statements in block use
the scope where block is evaluated, this prints: “This will be
printed first”. When the alert statement on line 6 executes,
s has the value “This will be printed second”, since variable
s in the method main will not be affected by the assignment
in the printData function.

C# [9] provides delegates, which are type safe pointers to
a block of code and can be passed around. Delegates close
over the scope in which they are defined. Therefore, it is

24

1 method tryFinally(var try, var finally) [
2 try.enclosingScope = try.definingScope
3 finally.enclosingScope = finally.definingScope
4 try.return = { value →
5 finally()
6 return(value)
7 }
8 try.throw = { exception →
9 finally()

10 throw(exception)
11 }
12] {
13 try()
14 finally()
15 }

Listing 7. Definition of tryFinally

1 method tryWithResources(var resources, var try) [
2 resources.enclosingScope = resources.definingScope
3 try.enclosingScope = resources.scope
4 try.return = { value →
5 for (resource defined in resources)
6 resource.close()
7 return(value)
8 }
9 try.throw = { exception →

10 for (resource defined in resources)
11 resource.close()
12 throw(exception)
13 }
14] {
15 resources()
16 try()
17 for (resource defined in resources)
18 resource.close()
19 }

Listing 8. Definition of tryWithResources

possible to invoke delegates that use variables that are not
directly accessible from the scope that invokes the delegate.
1 public delegate void delegateBlock(); // Declare the signature of the

delegate
2 static void Main(string[] args) {
3 String s = "This value is never used";
4 printDelegate block = delegate { Console.Out.WriteLine(s); s = "This is

now the new value of s"; };
5 s = "This string is printed";
6 printData(block);
7 Console.Out.WriteLine(s);
8 }
9 public static void printData(printDelegate block) {

10 String s = "This string isn’t printed";
11 block();
12 }

Line 4 of the above example creates the delegate block
inside the scope of Main. Line 6 passes block to the
printData function, which invokes block on line 11. Variable
s used in the delegate block refers to the value of s in the
scope of Main, where the delegate was created. Therefore,
the execution of block will print “This string is printed”.
Then, block changes the value of s to “This is now the
new value of s”, which is printed on line 7. The variable s
instantiated on line 10 is never used in this program.

Scala [10] offers delimited continuations, which allows
limiting the boundary of the continuation-passing style. This
means that when a continuation is created, only part of the
program is passed as argument to this continuation. Scala
provides two functions to achieve this: reset and shift.
reset limits the boundary of the continuation-passing style.
shift passes the continuation to its body. This continuation
represents the rest of the code until the end of the reset
block.
1 var s = "This value is never used"
2 reset {
3 s = "This will be printed first"
4 shift { (block: Unit => Unit) =>
5 println(s)
6 block()
7 println(s)
8 }
9 s = "This will be printed second"

10 }

When the code in this example is executed and gets to line 4,
shift captures the closure representing the rest of the code in
the reset block (only line 9) and passes it as the argument,
named block. Then, line 5 prints the variable s that has
the value assigned at line 3. Line 6 calls the continuation,
resulting in the execution of line 9. Finally, line 7 prints the
value of s as assigned on line 9.

VI. SUMMARY AND FUTURE WORK

In this paper, we presented requirements for a program-
ming language that allows to tailor control-flow mechanisms.
We outlined a solution in which control-flow mechanisms
are implemented as functions that receive continuations as
representations of blocks to execute. We also showed how
the envisioned language can control which continuations are
passed and in which scope these continuations are executed.
Defining the precise semantics of this envisioned language
is future work.

REFERENCES

[1] Evans, E.: Domain-Driven Design: Tackling Complexity in
the Heart of Software. Addison-Wesley Professional (2004)

[2] Bergmans, L.M.J., Bockisch, C.M., Akşit, M.: Liberating
composition from language dictatorship. In: Proceedings
of the Workshop on Reflection, AOP and Meta-Data for
Software Evolution. (2011)

[3] Havinga, W.K., Bergmans, L.M.J., Akşit, M.: A model for
composable composition operators: Expressing object and
aspect compositions with first-class operators. In: Proceedings
of AOSD, ACM (March 2010) 145–156

[4] Steele Jr., G.L.: Growing a language. Higher Order Symbol.
Comput. 12(3) (1999) 221–236

[5] Brooks, F.: No silver bullet: Essence and accidents of software
engineering. IEEE computer (1987)

25

[6] te Brinke, S., Bockisch, C.M., Bergmans, L.M.J.: Reuse of
continuation-based control-flow abstractions. In: Proceedings
of the 2nd Workshop on Free Composition @ Onward! 2011.
FREECO-Onward! ’11, New York, NY, USA, ACM (October
2011) 13–18

[7] Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The
JavaTM Language Specification: Java SE 7 Edition. Oracle
(February 2012)

[8] ECMA: Standard ECMA-262 – ECMAScript Language
Specification. 5.1 edn. (June 2011)

[9] ECMA: Standard ECMA-334 – C# Language Specification.
4 edn. (June 2006)

[10] Odersky, M.: The Scala Language Specification, Version 2.9.
Programming Methods Laboratory (May 2011)

26

