Separating Exceptional Concerns

Anya Helene Bagge
Bergen Language Design Laboratory,
Dept. of Informatics, University of Bergen,
PB 7803, N-5020 Bergen, Norway
http://www.ii.uib.no/~anya/

Abstract—Traditional error handling mechanisms, including
exceptions, have several weaknesses that interfere with main-
tainability, flexibility and genericity in software: Error code is
tangled with normal code; reporting is tangled with handling;
and generic code is locked into specific ways of reporting and
handling errors. We need to deal with errors in a declarative
way, where the concerns of errors, error reporting and error
handling are separated and dealt with individually by the
programmer.

Keywords-Alerts; Exceptions; Guarding; Partiality; Separa-
tion of Concerns

I. AN EXCEPTIONAL TANGLE

A variety of techniques exist for reporting and dealing
with errors,! such as special return values and exceptions.
Even when exceptions are available, they are not always
used: Alternative mechanisms are sometimes preferred for
reasons of convenience, tradition, legacy or (real or imag-
ined) resource constraints.

There are two main activities involved in handling errors:
reporting that an error has occurred (from the callee side)
and handling the error (on the caller’s side). Common error
reporting mechanisms include return values, error flags, and
exceptions. Common error handling mechanisms include
doing nothing, handling errors with conditional statements
or jumps to error handling code, exception handlers, using
a replacement value, or just aborting the program.

The variety in approaches to error handling causes several
problems. First, the error handling mechanism must match
the error reporting mechanism (you can’t catch an exception
by checking a return value). The reporting mechanism that
works best for a library implementer may not be the best
choice for the client; and for the client, different usage
scenarios may work best with different error handling ap-
proaches.

Second, it may be difficult to apply modern techniques to
legacy libraries; leaving library users with less convenient,
inconsistent or unsafe error handling mechanisms.

Third, for some reporting mechanisms (such as return
values), the default way of handling an error is to do nothing.
This can make code prone to break in error situations; or
cause the code to be littered with error-checking code.

'We’1l use the word ‘error’ for any exceptional concern, since ‘exception’
has a very specific meaning in this context.

Finally, different implementations of an interface are
locked into using the mechanism specified in the interface,
even though they may have different error handling needs.?

In short, the error reporting mechanism is fangled with
the error handling mechanism.

Another problem is tangling of error code with normal
code. In Java, for example, try/catch-blocks are of-
ten scattered throughout the program, with similar catch
clauses repeated in many methods. In C code, the situation
can be worse, with much of the code dedicated to testing for
errors. Aspects [1], [2] can solve this latter problem to some
degree, untangling error code and normal code, but may not
be able to fully untangle reporting and handling.

II. A POSSIBLE SOLUTION

Alerts [3] provide separation of several error concerns:
The callee can specify the partiality of functions using
guards or preconditions, and the reporting of errors using
alert declarations; and the caller can specify handlers,
regardless of how errors are detected and reported. Handlers
may be specified at various granularities, from expression to
module level, thus making it easier to separate error code
from normal code.

The key feature of alerts lies in the declaration of the
reporting and handling mechanisms. Once these are explic-
itly visible in the code, rather than in the documentation,
it becomes possible to automatically handle other reporting
mechanisms than just normal exceptions, and to match
different styles of reporting and handling.

In this section, alerts is shown more or less as described
in the original paper [3], which was developed as a proof-
of-concept of what can be done when errors are dealt with
declaratively.

A. Declaring Alerts

In implementation code, we declare the error reporting
mechanism in the signature of the operations, for instance,
as conditions on the parameters or return values:

// null return means not found
Element get (Map map, Key key)
alert NotFound if wvalue == null;

ZParticularly in concept programming, as we shall see later.

// divisor cannot be zero

int div(int a, int b) guard b != 0;

This states that a NotFound error has occurred if the
result of get was null. We’ve used the return value
mechanism to report errors; different implementations could
declare throws NotFound instead, or use a guard to
push detection to the caller.

In the case of div, we say that the divisor cannot
be zero; or, rather, that the div function is only defined
for non-zero divisors. Alternatively, we might throw a
DivisionByZero exception in this case, or return NaN.

For legacy code, we need to be able to declare the error
reporting separately. For example, in C, we might have a
separate header file declaring the error behaviour of all the
standard C library functions.

B. Handling Alerts

The user of the get function is concerned with how
to handle NotFound errors, regardless of how they are
reported. We might report an error and exit:

on NotFound in get {
print ("not found");
exit (1) ;
}i
This would install a handler in the current scoping level
(local, function, class, module). Alternatively, we could
substitute a suitable value at the expression level:

// use Jane Doe as default if get fails

name = get (persons, id) <:: "Jane Doe";

The alert system itself takes care of the glue between the
reporting code and the handling code, and can automatically
insert precondition and return code checks where necessary.

For division, we might set a sensible default which would
abort the program. In other cases (for continuous functions)
we might find a sensible approximation of division by zero
using differentiation.

III. THE MAGNOLIA LANGUAGE

We implemented a prototype of the system sketched above
for C [3], but the infrastructure turned out to be difficult to
use for larger scale experiments, so we have little practical
experience with it. We are now revisiting the idea in the
context of the experimental Magnolia language.

Magnolia allows for a close link between specification and
code, using concepts.> A concept is an interface specifica-
tion, describing types and operations and specifying their
behaviour. Magnolia is built around the idea of concept-
oriented programming, where everything is specified as

3 A similar idea [4], aimed primarily at constraining template parameters,
was proposed for C++ 2011, but rejected. Development of C++ concepts
continue however, and the problems discussed here also apply to concepts
in C++.

concepts first, for which various interchangeable implemen-
tations may be provided. Concepts describing small pieces
of functionality may be composed into larger concepts.
This calls for flexibility in dealing with errors at both the
specification level and in the program code.

IV. A GUARDED APPROACH

In formal specification (or, when writing a Magnolia
concept), specifying the particulars of error behaviour can
drastically complicate reasoning, and may prematurely lock
the design into a particular flavour of error handling. The
use of guards is useful at this stage, either as preconditions
in a design-by-contract style interface [5], or in the form of
guarded algebras [6] in an algebraic specification.

A guarded operation is guaranteed to succeed as long as
the guard holds. For example, we may state that the get
operation will succeed as long as the requested key exists:

Element get (Map map,
guard contains (map,

Key key)
key) ;

As long as we never use get with a non-existent key, we can
ignore the entire possibility of errors, simplifying reasoning.

In practical programming, we can keep the guarded ap-
proach, forcing the programmer to always check contains
first (leaving the result undefined otherwise), but this is
not very useful in general. Typically, checking whether a
map contains a key will involve actually looking up the
key, making it rather wasteful to do it twice. Furthermore,
we may not be able to determine in advance whether the
operation will succeed without actually performing it; for
instance, if get were to access a network database over an
unreliable connection.*

Rather than programming directly with guards, we would
like to use a traditional error reporting mechanism in the
implementation of get, such as a null return. Hence, we
are left with two different views of get:

o In the library interface or specification, getting non-
existent keys is forbidden.

« In the library implementation, get returns null for non-
existent keys.

The client uses only the interface to program against, and
may not know which particular implementation is used. Any
attempt to handle errors will have to rely on help from the
language in connecting the error reporting code in the library
with the error handling code.

Alert declarations, together with a suitable set of han-
dler abstractions provide this connection: Each guard is
connected to one or more alert declarations on the library
implementation side. The client code deals with errors in
terms of guards and alert handlers; the compiler must rewrite

“In this case, we might specify an opaque guard function, stating that
get is undefined for a non-existent key, and in some other unspecified
cases. On the implementation side, this would be dealt with using an
exception, for example.

this code to use the error reporting mechanism supported
by the library. In the final object code, no trace of the
concept remains; even the guards (and in some cases the
error handling code) might be compiled away.

While the above discussion is somewhat particular to
concept-oriented programming, the issue also occurs to some
degree with object-orientation [7]. For example, when speci-
fying the exceptions of an interface or superclass in Java, one
has to either declare a wide range of exceptions, providing
less detail to the users, and possibly forcing them to deal
with lots of exceptions that may never occur; or declare few
or no exceptions, restricting the use of exceptions in the
implementation or subclass.

V. DISCUSSION

A declarative approach can provide increased flexibility in
dealing with errors, decoupling the reporting of errors from
the handling of errors.

In the original paper on alerts [3], we saw this largely
as a convenience for the programmer; and as a feature that
could fairly easily be patched on to a language like C, which
provides no built-in exception support.

With concept programming, a system like alerts is more
of a necessity: Two implementations of the same concept
may be vastly different, making it infeasible to specify the
concrete error mechanism in the concept. Furthermore, the
concept user may have no idea which implementation will be
used in the end, so client code cannot be tied to a particular
implementation. The only entity that sees both the reporting
and handling side is the compiler.

However, this problem is not restricted to concept pro-
gramming, it can also be seen in generic code in mainstream
languages; for example, with C++ template code calling
code belonging to template parameters.

Guarding seems particularly useful from a specification
and interface point of view. In program code, we might
apply some reasoning to guarded calls, and figure out that
errors can’t happen (or always will happen, catching the
error at compile time), and compile away the error code.
Guards or pre/post conditions from an interface can also
be applied directly in the implementation code (e.g., using
aspects [1]). Normally, however, traditional error reporting
and handling mechanisms are likely more suitable than
guards, and linking guarding in specifications to traditional
mechanisms in program code becomes important. We may
also need to differentiate between multiple guards on the
same operation, corresponding to different error conditions
in the code.

Though it may be that traditional exceptions [8] would be
good enough as a single reporting and handling mechanism,
as far we can tell with Magnolia, this is not the case,
as we will need to interface with existing C libraries and

other legacy code, and to generate code for platforms (such
as CUDA) where exceptions are unavailable or hard to

implement.

The original alerts proposal includes constructs for ab-
stracting over alerts and handlers; as well as a powerful
handler model, somewhat similar to PL/I’s ON [9] and
Lisp’s condition system [10]. This may turn out to be
overly complex in practice, and is something we need more
experience with.

ACKNOWLEDGEMENTS

This research has been partially funded by the Research
Council of Norway.

REFERENCES

[1] M. Lippert and C. V. Lopes, “A study on exception detection
and handling using aspect-oriented programming,” in Pro-
ceedings of the 22nd International Conference on Software
Engineering (ICSE °00). Los Alamitos, CA, USA: IEEE
Computer Society, 2000, pp. 418-427.

[2] F. C. Filho, A. Garcia, and C. M. F. Rubira, “Error handling
as an aspect,” in Proceedings of the 2nd workshop on Best
practices in applying aspect-oriented software development,
ser. BPAOSD °07. New York, NY, USA: ACM, 2007.

[3] A. H. Bagge, V. David, M. Haveraaen, and K. T. Kalle-
berg, “Stayin’ alert: Moulding failure and exceptions to your
needs,” in Proceedings of the 5th International Conference
on Generative Programming and Component Engineering
(GPCE ’06). Portland, Oregon: ACM Press, October 2006.

[4] D. Gregor, J. Jarvi, J. Siek, B. Stroustrup, G. Dos Reis,
and A. Lumsdaine, “Concepts: linguistic support for generic
programming in C++,” in OOPSLA ’06: Proceedings of the
21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications. New

York, NY, USA: ACM, 2006, pp. 291-310.

[5] B. Meyer, “Applying “Design by contract”,” Computer,
vol. 25, no. 10, pp. 40-51, 1992.

[6] M. Haveraaen and E. G. Wagner, “Guarded algebras: Disguis-
ing partiality so you won’t know whether it’s there,” in Recent
Trends In Algebraic Development Techniques, ser. Lecture
Notes in Computer Science. Springer-Verlag, 2000, vol.
1827, pp. 3-11.

[7] R. Miller and A. Tripathi, “Issues with exception handling in
object-oriented systems,” in ECOOP’97 — Object-Oriented
Programming, ser. Lecture Notes in Computer Science,
M. Aksit and S. Matsuoka, Eds. Springer Berlin / Heidelberg,
1997, vol. 1241, pp. 85-103.

[8] J. B. Goodenough, “Exception handling: Issues and a pro-
posed notation,” Commun. ACM, vol. 18, no. 12, pp. 683-696,
1975.

[9] M. D. MacLaren, “Exception handling in PL/I,” in Proceed-
ings of an ACM conference on Language design for reliable
software. ACM Press, 1977, pp. 101-104.

[10] K. M. Pitman, “Condition handling in the Lisp language
family.” in Advances in Exception Handling Techniques.
Springer-Verlag, 2000, pp. 39-59.

