
Some Problems in Sanitizing Network Data

Matt Bishop, Rick Crawford, Bhume Bhumiratana, Lisa Clark, Karl Levitt
Dept. of Computer Science

University of California at Davis
Davis, CA 95616-8562

{bishop, crawford, bhumirbh, clarkl, levitt}@cs.ucdavis.edu

Abstract

The problem of removing sensitive information from
data before it is released publicly, or turned over to
less trusted analysts, underlies much of the
unwillingness to share data. The solution is to sanitize,
or deidentify, parts of the data. When dealing with
network addresses, the set of available addresses is
finite. This limits some aspects of the sanitization. We
analyze this problem in detail, and suggest approaches
to ameliorate it.

1. Introduction

The sanitization problem involves three entities: a
collector, an analyst, and an adversary. The collector
captures data, then gives it to the analyst for analysis.
The data contains information that must be kept
private, such as passwords, information that identifies
individuals, and medical records. To keep this data
secret, the collector sanitizes the raw data, removing
enough information that the sensitive data cannot be
determined, before sharing the data with the analyst.

The goal of the adversary is to recover as much of
the original, raw data as possible. The adversary may
do so under various assumptions.
1. The adversary may assume an active role in

generating the data. Similar in concept to a known
(or chosen) plaintext attack in cryptography, the
adversary attacks by creating specific markers in
the unsanitized traffic1. If these markers remain
recognizable after sanitization, then they help the
adversary derive the original, raw data from the
sanitized data.

2. The adversary may have access to private data,
such as organizational information, the role of

1 For example, the attacker can seek to resolve three
consecutive unknown addresses, and look for similar data in
the sanitized stream.

specific systems, or other sensitive information,
that when combined with the sanitized data allows
her to deduce the raw information.

3. The adversary may be able to deduce the raw data
based on non-sanitized components of the data
that are supplied to the analyst. This is the
database inference problem in a different context.

4. The adversary has no access to other sources of
private information that, when combined with the
sanitized data, would enable her to deduce the raw
information. In what follows, we assume this case.

5. We also assume that the analyzer operates with
full public transparency. The collector makes its
sanitized data equally available to the analyzer and
the adversary. Many situations relax this
requirement by providing the data under non-
disclosure or confidentiality agreements. However,
even with those agreements in place, it is still
possible that various parts of the sanitized data
may leak and become known to the adversary. For
example, the analyst’s network and data may be
compromised through no fault of the analyst.
Hence we simply assume the worst case.

An obvious question is whether this model is
realistic. Consider the situation in which multiple,
mutually-distrusting collectors feed data to one
mutually-trusted analyst. Since all collectors trust the
analyzer never to reveal their sanitized data, then why
not simply give their raw data directly to the analyst?
Besides guarding against inadvertent leakage by the
analyst, legal or contractual requirements may forbid
the collectors from sending unsanitized data to the
trusted analyzer. Conversely, even if multiple
collectors trust each other to keep the data secret, but
don't trust the external analyzer with their raw data, the
analyst may have resources and expertise that exceed
those of the collectors, making the external analysis
attractive (or necessary) to the collectors.

The collector’s goal is to sanitize the data in a way
that maximizes the efficiency and accuracy of the

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

analyzer's task, while minimizing the efficiency and
accuracy of the adversary’s attempt to derive the raw
data. This paper examines constraints surrounding this
goal, in the context of sanitizing network traces.

2. Network Data Sanitization

Researchers need real traffic from networks to
further their work in intrusion detection and attack
analysis. The problem with using such data is that it
typically contains confidential information. Three
approaches to this problem have been considered.

First, data can be synthesized. To do this, one
monitors a network to gather statistical parameters of
the network traffic. One then generates artificial traffic
that preserves the statistical parameters of the actual
traffic. The problem with this approach is the
determination of which statistical parameters are
relevant. These may not be known before the analysis.
An additional issue is the need for specific types of
traffic, such as attacks, which may exist in the raw data
but not be captured by the synthetic data.

Second, one can obtain and use a body of reference
data. This is network traffic captured from some other
source that has no privacy constraints. Common
sources for this type of data are honeypots. The
problem is that reference data is not widely available,
and is biased in the sense that the traffic patterns and
statistical parameters typically do not match normal
traffic at other sites.

Third, one can sanitize the data. The nature and
degree of sanitization varies from locality to locality.
An organization may require that the sanitization
prevent any action from being associated with an
individual. If many network nodes are single-user
systems, this means that MAC and IP addresses, host
names, and internal email addresses must be changed
or deleted wherever they occur. Thus, one would need
to handle packet content as well as packet headers.

For this paper, we focus on the packet headers, and
ignore (overwrite) the content. An alternate approach,
that of structuring the packet data when possible [1],
would allow us to preserve more of the packet content.
But sanitizing secondary detail seems premature until
the underlying problem structure is better understood.

This naturally leads to sanitizing data link, network
(IP), and transport (TCP/UDP) layer headers. In what
follows, we focus on IP addresses because they were
the key data that needed to be protected in our
experiments. But the issues arise in the context of any
finite set of names (a namespace).

The specific privacy policy requires that no IP
address be associated with an individual when a
network trace is analyzed. In effect, this means that all

IP addresses must be sanitized. Even though the
communication may have gone outside the local
network to a particular recipient, the privacy policy
would be violated if that same message were provided
to an arbitrary third party.

Two types of data anonymization prove useful.
Pseudo-anonymous transformations map all instances
of a particular raw identifier to the same unique
identifier in the target namespace. An example is
replacing all occurrences of “John” by “Paul”. Fully-
anonymous transformations map each instance of a
particular raw identifier to a different identifier in the
target namespace. An example is replacing the first
occurrence of “John” with “Paul”, the second “John”
with “George”, and the third “John” with “Ringo”. The
advantage of pseudo-anonymous transformations is
that an analyst may correlate data related to an
identifier without knowing what the raw identifier is.
For example, given a set of network traces, an analyst
can determine if two connections are between the same
hosts. The disadvantage is that the adversary may be
able to deduce private information from that
knowledge.

Either mapping may be done explicitly, using a
table with each raw identifier and its corresponding
sanitized identifier, or via hash functions, in which the
mapping from sanitized identifier to raw identifier is
not preserved. Explicit maps (i.e., tables) are useful
when the original data may need to be derived from the
sanitized data (for example, inverting it in preparation
to be re-sanitized). Hash functions eliminate the need
to store a large table of data.

3. Addresses and Namespaces

Sanitizing data raises several potential problems.
We focus on three problems that arose during our work
because, not only are they crucial for properly
sanitizing network traffic, they also present obstacles
in many other application domains, due to their finite
namespaces and/or semantic properties.

3.1. Properties and IP Address Ranges

Consider the situation in which a single analyzer
aggregates data from several different collectors. In
some contexts, all the collectors must pseudo-
anonymously map certain raw IP addresses to the same
target namespace addresses to ensure consistency of
identity. Conversely, if the mapping is fully-
anonymous, then each collector must scatter its raw IP
addresses across different IP target ranges, in order to
prevent conflation of two occurrences of any IP
addresses to the same target address.

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

To our knowledge, all prior approaches using
hashing to accomplish these results have required that
all collectors use the same hash function for the entire
namespace. Pseudo-anonymity would require that the
IP address be hashed; full-anonymity could be
implemented by hashing on a combination of the IP
address, the particular collector's unique identifier, and
the number of previous times that IP address occurred
in that collector’s data stream. This is unacceptable for
collectors who trust the analyzer but who do not trust
each other. The obvious insider attack is to guess an IP
address (and, in the case of fully-anonymous
sanitization, the ancillary unique data), hash the guess,
and compare to the sanitized data. Explicit maps can
mitigate this problem by allowing mutually distrusting
collectors to share—and hence risk—only portions of a
codebook. This feature could also be implemented by
binding hash functions to specified input IP address
regions, and sharing only some of those hash functions.
Both methods allow fine-grained control over privacy
risks caused by sharing sanitization functions.

Unlike a generalized hashing algorithm, explicit
sanitization maps can preserve namespace properties
such as locality. For example, some types of analysis
may require that sanitized IP traffic preserve the
integrity of certain reserved address ranges. It would
not be possible to implement this by first testing an
original address to see if it is reserved, and then
hashing only the non-reserved addresses. True, the
reserved addresses would be preserved, but a
generalized hash function would also map many non-
reserved addresses into reserved address ranges, thus
confusing the analysis.

For namespaces in other problem domains, hashing
per se could never match the functionality of explicit
sanitization maps. In the medical database example, an
analyzer might partition all names into three
equivalence classes: male names, female names, and a
third class of ambiguous names.

Other namespace properties can be preserved by
constructing appropriate sanitization maps. For
example, if an analyzer recognizes a “sweep” of IP
addresses only when an intruder probes an ascending
succession of contiguous IP addresses, there are 256
pseudo-anonymous sanitization functions that will
preserve such sweep signatures in the low-order byte.

3.2. Implications of Finite Namespaces

Another important aspect of IP addresses as
identifiers is that they are drawn from a namespace of
finite size. This has two crucial implications. First, any
pseudo-anonymous mapping on a finite namespace
must be a permutation. Therefore, if a mapping

implementation is not parsimonious and “over-
reserves” target space for a block of IP addresses in the
original namespace, the target namespace will
overflow when all possible input names are sanitized.

Second, the pigeonhole principle shows that any
fully-anonymous mapping of n+1 name occurrences
on a namespace of n names is impossible. For
example, if a long conversation between two network
nodes is to be sanitized fully-anonymously, the target
IP address namespace will eventually become
exhausted and repetitions of sanitized names will
occur. Hence, in the absence of some special controls
to distribute the allocation of sanitized names, a simple
first-come-first-serve implementation of full-
anonymity would protect the privacy of the most
verbose early nodes, at the expense of nodes appearing
later in the data stream.

This forces the collector to make explicit decisions
on namespace resource allocation during configuration.
One (or more) small block(s) in the original namespace
may be “expanded” and scattered across a much larger
block in the target namespace. The collector may map
some source blocks pseudo-anonymously, and other
source blocks fully-anonymously, into the same target
namespace block. Conversely, certain source
namespace blocks may be “compressed” to map into a
smaller target namespace block. Clearly, if any target
namespace region might potentially overflow, then the
collector should specify overflow-handling policies for
all blocks that map to that region.

In general, by instrumenting fully-anonymous
sanitizing routines with appropriate overflow-handlers,
a collector can implement anonymization functions on
a per-block basis that span the spectrum between
pseudo- and full-anonymization. To use a medical
database example, successive instances of “Bob” might
map to “Bill”, “Bo”, or “Bruce”. Successive
assignments might be random, or might cycle within
the target block's choices. In contrast, to give “Alice”
more privacy protection, the collector might allocate
more than three target pseudonyms to her.

The preceding discussion of allocation issues
assumes sanitization is to be done in a single pass,
even for non-realtime contexts. But sanitizing data in
multiple stages allows many other approaches. For
example, even the constraint of a finite namespace can
be mitigated by first sanitizing to a larger target
namespace, then optimizing a subsequent namespace
compression stage to minimize analyzer errors caused
by duplicate (i.e., conflated) names [8].

3.3. Namespace Nuances

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

A sanitization procedure must be sensitive to the
semantics of its input data. For example, compare the
problem of sanitizing data in a medical database to that
of sanitizing network packets. In both cases, the goal is
to protect identities. In the case of network packets, we
would anonymize the IP headers and blank out the
packet bodies, and declare the data sanitized. In a
medical record, we would sanitize the patient’s name
and address. Unfortunately, this is insufficient, because
other data—for example, the patient’s height, weight,
and date of birth—when taken together might comprise
a composite key that identifies the patient uniquely.

We cannot merely apply either form of
anonymization to these three additional fields because
many analyses of medical data are sensitive to the
values of these fields. If sanitization randomly
replaces one value of these fields with another, we risk
significantly altering their semantics even if we comply
with integrity constraints (such as the sanitized height
and weight being reasonable positive numbers, and the
date of birth being in the not-too-distant past). For
example, the ratio of a person's height to weight is
medically significant. Moreover, preserving the
approximate order of ages among all patients is
important for many medical analyses. Thus, for some
data fields, there exist potential conflicts between the
requirements of sanitization and the requirements of
analysis that may not be apparent to the developer of
the privacy policy.

Thus, certain fields of the data connote additional
semantics beyond serving a merely denotational
purpose. Were this not so, pseudo-anonymous
sanitization would satisfy the requirements of the
analyst. But because the data in some fields are
descriptive attributes, characteristic of measurements,
rather than arbitrarily-assigned identifiers, pseudo-
anonymous sanitization may conflict with analysis.
Further, that a datum has semantic significance may
not be immediately apparent. As another example, for
some analyses even patient names are not absolutely
“meaningless” identifiers. Patients named “Alice” are
more prone to pregnancy than patients named “Bob;”
patients with Japanese surnames are more likely to be
lactose-intolerant than those with English surnames;
and patients with African surnames are more prone to
sickle-cell anemia than those with Russian surnames.
Accurate analysis may require that the sanitization
function preserve these semantic connotations via
equivalence classes of names. Thus, we need an
explicit analysis policy and analysis metric.

Similar semantic issues complicate the sanitization
of IP traffic, because IP addresses may be associated
with attributes via the behavioral semantics of their
transactions. As an example, if packets to and from a
particular host all have TCP address (port number) 53,

then the fact that that host is a DNS server will be
obvious even if fully-anonymous sanitization is used.
Similar semantic signatures in the transaction traffic
allow an adversary to map the network infrastructure,
although the exact IP addresses of the infrastructure
hosts (and indeed the number of such hosts) may not
be identified.

Namespace issues require human decisions and
analysis. No automated tool can determine whether
additional semantics not known to it would unduly
assist the adversary, or hinder the analyst. We
emphasize that an explicit threat model, privacy policy,
and analysis policy must guide decisions regarding
what data needs to be sanitized, and how.

4. Tool

In designing our prototype network packet sanitizer,

tcpsani, our goal was to create a research vehicle that
would yield immediate practical benefits, while also
serving as a platform to research basic, unresolved
issues that can arise at any level, and rapidly prototype
new methods for exploring the fundamental problems
of sanitization. Tcpsani inputs a tcpdump “savefile”
file, sanitizes it as described below, and then creates a
new “savefile” containing the sanitized data. This file
can be fed to tcpdump, or any compatible program, for
display or other operations.

Tcpsani is a modified version of tcpdump that
invokes Perl routines to do network layer sanitization.
Two default modes are supplied; the user may write
others if different sanitization algorithms are desired.

In pseudo-anonymous mode, tcpsani maps an IP
address byte-by-byte. The map for an IP address byte
is determined by its IP address prefix (a prefix may
consist of 0, 1, 2, or 3 bytes). This approach preserves
common (byte-aligned) prefixes under sanitization.
The collector can configure certain maps as shared by
multiple IP address prefixes. Thus, two input IP
addresses with different prefixes may have some of
their subsequent bytes sanitized via the same map.

Shared maps that permute the low order byte or
bytes of IP addresses may be used to preserve certain
regularities common to related subnets, for example
keeping the IP addresses of local nameservers or
switches in the same relative order. A reduction in
privacy is the tradeoff cost for tractable analysis of the
sanitized data.

Fully-anonymous mode maps a region R of the
original IP address space to a target IP address region
T. When tcpsani encounters an input IP address from
region R that requires a new address in region T, it
randomly picks an empty slot in region T, marks it as

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

allocated, and enters that target address in a hash table
keyed by that input address.

Tcpsani can be configured to implement all the
hybrid (combinations of pseudo- and fully-anonymous)
allocation schemes described earlier in section 3.2.

5. Related Work

One property whose preservation benefits analyzers

is that of IP address prefixes. By default, tcpsani
implements only byte-aligned prefix preservation.
Tcpsani’s sanitization modules could be augmented
with code to implement prefix preservation on the fly.
This would provide the functionality of tcpdpriv [4].

If prefix preservation is the sole objective, a better
alternative is CryptoPan [5,6,7], an elegant and
efficient specialized hash. CryptoPan also has the
virtue that multiple collectors can implement the same
prefix-preserving permutation for aggregation by a
single analyzer merely by sharing a small secret key,
rather than sharing large explicit maps.

We speculate that CryptoPan and similar work (for
example, Peuhkuri [8]) have not been more widely
accepted as “the solution” to the tension between IP
address sanitization and the desire for aggregated
analysis because they require a high degree of trust
among different collectors. For example, given a
prefix-preserving hash key, any trusted collector (or its
rogue insiders) can invert any target IP address by a
sequence of 32 chosen-plaintext attacks. These attacks
are performed offline—there is no need to inject them
into a monitored traffic stream. Hence, if any
aggregated CryptoPan-sanitized dataset is ever made
available to an adversary, that data set will remain
vulnerable to these insider attacks for all eternity.

The sharing of identical, explicit maps (even if they
do not preserve prefixes) by multiple collectors
likewise carries this perpetual vulnerability if the
aggregate sanitized dataset is published. Thus,
regardless of how the mutually-identical sanitization is
implemented, a collector is perpetually vulnerable to
any other entity with access both to the permutation
key/map and to the permuted data. In light of recent
security breaches at many commercial analyzers of
credit information, it is worth noting that a collector
who trusts an aggregating analyzer with its data today,
must also trust that analyzer in the future not to fall
prey to an adversary masquerading as a new collector
who wants to sanitize its data using the common,
historical sanitization function.

Pang and Paxson [9] studied how to make public
network packet trace data without compromising the
privacy requirements of their site. They separated the
problem of network protocol level sanitization from

that of application protocol level sanitization, and
implemented policy scripts to operate on the latter. By
way of contrast, we focus only on the network level
data, and use modules to describe the privacy policy of
that data. We do not yet deal with the application layer
protocols (but see the next section).

Sobirey, Fischer-Hübner, and Rannenberg [10] first
suggested pseudo-anonymous sanitization, in the
context of intrusion detection. They discuss the need to
balance pseudonymity with the preservation of enough
information to perform an adequate analysis, but do not
describe how to achieve that balance. This paper also
identifies the problem of conditional reconstruction, in
which one may map pseudonyms to users given
additional (external) knowledge.

Biskup and Flegel [11] considered the pseudo-
anonymous known user and host names that appeared
in file names, and in the user and host fields of the
logs. They discussed in detail several possible
architectures for pseudonymizing log files.

Lundin and Jonsson [12] describe an experiment in
which they developed a “pseudonymizer” that
exchanges pseudonyms for names in firewall logs. The
mapping between names and pseudonyms was not
amenable to reconstruction. The authors concluded that
even pseudonymized users sometimes could be
reidentified through their behavior, and some
information (such as working hours) could be deduced
from the sanitized logs. Further, knowledge of the
users’ behavior helped distinguish false alarms from
legitimate reports of intrusions. Sanitizing the logs
reduced this knowledge, increasing the need to
investigate alarms that otherwise would have been
quickly dismissed as patently false.

6. Conclusion

The data sanitization problem is similar to several
other interesting problems.

View a privacy policy and an analysis policy as
constraints on inferences. An acceptable sanitization
must produce a dataset from which “good” analysis
inferences can be drawn, but “bad” privacy-penetrating
inferences cannot be drawn beyond some threshold
degree of accuracy or probability.

Another related problem is the database query-audit
problem: given a central database and multiple query-
makers, this problem asks how the database
management system should respond to each query so
that the aggregated results reveal no more than the sum
of the individual query results. The problem of
sanitizing data aggregated from multiple collectors is,
in some sense, a dual of the database query-audit
problem: how can we confidentially perform a

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

globally uniform sanitization on multiple distributed
writes to a central database, so that analyzing the
aggregate results will reveal more than the sum of
analyzing each separate database write without
revealing the raw data?

Many notions inherent in sanitizing network traffic
arise in the development of anonymous and
pseudonymous network and cryptographic protocols.
For example, the notion of crowds [13] raises the issue
of the degree of anonymity, which also appears from
the semantic issues discussed above. The notion of an
anonymity set [14] is inherent in sanitization done in a
finite name space.

The issue of semantics is crucial to proper data
sanitization because shared semantics may cross
multiple syntactic formats. Many network protocols,
such as ARP and NTP, have some structure from
which semantics can be inferred. In this case,
automating the data sanitization based on that structure
should work fairly well. But many other network
protocols, such as TELNET and HTTP, either are
unstructured or mix structured data (such as
commands) with unstructured data (such as contents of
files). In this case, the unstructured data will not be
well sanitized. The current version of tcpsani sanitizes
data based on structure, blanks out the unstructured
data portions, and changes ancillary information such
as checksums to correspond to the new values.

The latter may not always be possible. Consider the
situation in which the data to be sanitized has been
digitally signed by a third party. Once the data is
sanitized, the digital signature cannot be preserved
because the signature corresponds to the raw data, not
the transformed (santized) data. This is a property of
the digital signature, since the data to which it is bound
has changed. But now an analyst could not determine
whether the third party signed the raw data, given the
sanitized data and the digital signature. This is an
example where the privacy and analysis policies are in
conflict. The only solutions are to have the third party
re-sign the sanitized data, or to have the sanitizing
entity sign the data. This breaks the association of the
third party with the data, unless the third party
delegates authority to the sanitizing entity to sign.

Data sanitization is rapidly becoming a necessity. It
raises many problems and issues, and is very sensitive
to the environment in which it is done as well as to the
purpose to which it is put. This paper presented a tool
to sanitize network traffic, and discussed some of the
issues in the context of that work.
Acknowledgements. Thanks to the Department of

Computer Science System Support Group, and Robert
Ono of Information and Educational Technology for
helping us with our experiments. This work was

supported by the Trusted Computing Program award
number CCR-0311671 from the National Science
Foundation to the University of California.

7. References

[1] M. Bishop, B. Bhumiratana, R. Crawford, and K. Levitt,
“How to Sanitize Data,” Proceedings of the 13th IEEE
International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE 2004)
pp. 217–222 (June 2004).
[2] V. Jacobson, C. Leres, and S. McCanne, “Tcpdump”,
3.9.3 (July 2005); http://www.tcpdump.org.
[3] T. Daniels and E. Spafford, “Identification of Host
Audit Data to Detect Attacks on Low-Level IP
Vulnerabilities,” Journal of Computer Security 7 (1) pp. 3–
35 (1999).
[4] G. Minshall, “Tcpdpriv”, release 1.1.10 (Aug. 1997);
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html.
[5] J. Fan, J. Xu, M. Ammar, and S. Moon, “Prefix-
Preserving IP Address Anonymization”, Computer Networks
46 (2), pp. 253-272 (Oct. 2004).
[6] J. Xu, J. Fan, M. Ammar, and S. Moon, “On the Design
and Performance of Prefix-Preserving IP Traffic Trace
Anonymization”, Proceedings of the First ACM SIGCOMM
Workshop on Internet Measurement pp. 263–266 (2001).
[7] J. Xu, J. Fan, M. Ammar, and S. Moon, “Prefix-
Preserving IP Address Anonymization: Measurement-Based
Security Evaluation and a New Cryptography-Based
Scheme”, Proceedings of the 10th IEEE International
Conference on Network Protocols pp. 280–289 (Nov. 2002).
[8] M. Peuhkuri, “A Method to Compress and Anonymize
Packet Traces”, Proceedings of the First ACM SIGCOMM
Workshop on Internet Measurement pp. 257–260 (2001).
[9] R. Pang and V. Paxson, “A High-level Programming
Environment for Packet Trace Anonymization and
Transformation”, Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM 2003) pp. 339–351
(Aug. 2003).
[10] M. Sobirey, S. Fischer-Hübner, and K. Rannenberg,
“Pseudonymous Audit for Privacy Enhanced Intrusion
Detection,” Information Security in Research and Business—
Proceedings of the IFIP TC11 13th International Conference
on Information Security pp. 151–163 (May 1997).
[11] J. Biskup and U. Flegel, “Transaction-based
Pseudonyms in Audit Data for Privacy Respecting Intrusion
Detection,” Proceedings of the Third International
Symposium on Recent Advances in Intrusion Detection pp.
28–48 (Oct. 2000).
[12] E. Lundin and E. Jonsson, “Anomaly-Based Intrusion
Detection: Privacy Concerns and Other Problems,” Computer
Networks 34 (4) pp. 623–640 (Oct. 2000).
[13] M. Reiter and A. Rubin, “Crowds: Anonymity for Web
Transactions,” ACM Transactions on Information and System
Security 1 (1) pp. 66–92 (June 1998).
[14] D. Chaum, “The Dining Cryptographers’ Problem:
Unconditional Sender and Recipient Untraceability,” Journal
of Cryptography 1 (1) pp. 65–75 (1988).

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

