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Abstract 

 
The problem of removing sensitive information from 
data before it is released publicly, or turned over to 
less trusted analysts, underlies much of the 
unwillingness to share data. The solution is to sanitize, 
or deidentify, parts of the data. When dealing with 
network addresses, the set of available addresses is 
finite. This limits some aspects of the sanitization. We 
analyze this problem in detail, and suggest approaches 
to ameliorate it. 
 
1. Introduction 
 

The sanitization problem involves three entities: a 
collector, an analyst, and an adversary. The collector 
captures data, then gives it to the analyst for analysis. 
The data contains information that must be kept 
private, such as passwords, information that identifies 
individuals, and medical records. To keep this data 
secret, the collector sanitizes the raw data, removing 
enough information that the sensitive data cannot be 
determined, before sharing the data with the analyst. 

The goal of the adversary is to recover as much of 
the original, raw data as possible. The adversary may 
do so under various assumptions. 
1. The adversary may assume an active role in 

generating the data. Similar in concept to a known 
(or chosen) plaintext attack in cryptography, the 
adversary attacks by creating specific markers in 
the unsanitized traffic1. If these markers remain 
recognizable after sanitization, then they help the 
adversary derive the original, raw data from the 
sanitized data. 

2. The adversary may have access to private data, 
such as organizational information, the role of 

                                                        
1 For example, the attacker can seek to resolve three 
consecutive unknown addresses, and look for similar data in 
the sanitized stream. 

specific systems, or other sensitive information, 
that when combined with the sanitized data allows 
her to deduce the raw information. 

3. The adversary may be able to deduce the raw data 
based on non-sanitized components of the data 
that are supplied to the analyst. This is the 
database inference problem in a different context. 

4. The adversary has no access to other sources of 
private information that, when combined with the 
sanitized data, would enable her to deduce the raw 
information. In what follows, we assume this case. 

5. We also assume that the analyzer operates with 
full public transparency. The collector makes its 
sanitized data equally available to the analyzer and 
the adversary.  Many situations relax this 
requirement by providing the data under non-
disclosure or confidentiality agreements. However, 
even with those agreements in place, it is still 
possible that various parts of the sanitized data 
may leak and become known to the adversary. For 
example, the analyst’s network and data may be 
compromised through no fault of the analyst. 
Hence we simply assume the worst case. 

An obvious question is whether this model is 
realistic. Consider the situation in which multiple, 
mutually-distrusting collectors feed data to one 
mutually-trusted analyst. Since all collectors trust the 
analyzer never to reveal their sanitized data, then  why 
not simply give their raw data directly to the analyst? 
Besides guarding against inadvertent leakage by the 
analyst, legal or contractual requirements may forbid 
the collectors from sending unsanitized data to the 
trusted analyzer. Conversely, even if multiple 
collectors trust each other to keep the data secret, but 
don't trust the external analyzer with their raw data, the 
analyst may have resources and expertise that exceed 
those of the collectors, making the external analysis 
attractive (or necessary) to the collectors. 

The collector’s goal is to sanitize the data in a way 
that maximizes the efficiency and accuracy of the 

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00  © 2006



analyzer's task, while minimizing the efficiency and 
accuracy of the adversary’s attempt to derive the raw 
data. This paper examines constraints surrounding this 
goal, in the context of sanitizing network traces. 

 
2. Network Data Sanitization 
 

Researchers need real traffic from networks to 
further their work in intrusion detection and attack 
analysis. The problem with using such data is that it 
typically contains confidential information. Three 
approaches to this problem have been considered. 

First, data can be synthesized. To do this, one 
monitors a network to gather statistical parameters of 
the network traffic. One then generates artificial traffic 
that preserves the statistical parameters of the actual 
traffic. The problem with this approach is the 
determination of which statistical parameters are 
relevant. These may not be known before the analysis. 
An additional issue is the need for specific types of 
traffic, such as attacks, which may exist in the raw data 
but not be captured by the synthetic data. 

Second, one can obtain and use a body of reference 
data. This is network traffic captured from some other 
source that has no privacy constraints. Common 
sources for this type of data are honeypots. The 
problem is that reference data is not widely available, 
and is biased in the sense that the traffic patterns and 
statistical parameters typically do not match normal 
traffic at other sites. 

Third, one can sanitize the data. The nature and 
degree of sanitization varies from locality to locality. 
An organization may require that the sanitization 
prevent any action from being associated with an 
individual.  If many network nodes are single-user 
systems, this means that MAC and IP addresses, host 
names, and internal email addresses must be changed 
or deleted wherever they occur.  Thus, one would need 
to handle packet content as well as packet headers. 

For this paper, we focus on the packet headers, and 
ignore (overwrite) the content. An alternate approach, 
that of structuring the packet data when possible [1], 
would allow us to preserve more of the packet content.  
But sanitizing secondary detail seems premature until 
the underlying problem structure is better understood. 

This naturally leads to sanitizing data link, network 
(IP), and transport (TCP/UDP) layer headers. In what 
follows, we focus on IP addresses because they were 
the key data that needed to be protected in our 
experiments. But the issues arise in the context of any 
finite set of names (a namespace). 

The specific privacy policy requires that no IP 
address be associated with an individual when a 
network trace is analyzed. In effect, this means that all 

IP addresses must be sanitized. Even though the 
communication may have gone outside the local 
network to a particular recipient, the privacy policy 
would be violated if that same message were provided 
to an arbitrary third party.  

Two types of data anonymization prove useful. 
Pseudo-anonymous transformations map all instances 
of a particular raw identifier to the same unique 
identifier in the target namespace. An example is 
replacing all occurrences of “John” by “Paul”.  Fully-
anonymous transformations map each instance of a 
particular raw identifier to a different identifier in the 
target namespace. An example is replacing the first 
occurrence of “John” with “Paul”, the second “John” 
with “George”, and the third “John” with “Ringo”. The 
advantage of pseudo-anonymous transformations is 
that an analyst may correlate data related to an 
identifier without knowing what the raw identifier is. 
For example, given a set of network traces, an analyst 
can determine if two connections are between the same 
hosts. The disadvantage is that the adversary may be 
able to deduce private information from that 
knowledge. 

Either mapping may be done explicitly, using a 
table with each raw identifier and its corresponding 
sanitized identifier, or via hash functions, in which the 
mapping from sanitized identifier to raw identifier is 
not preserved. Explicit maps (i.e., tables) are useful 
when the original data may need to be derived from the 
sanitized data (for example, inverting it in preparation 
to be re-sanitized). Hash functions eliminate the need 
to store a large table of data. 
 
3. Addresses and Namespaces 
 

Sanitizing data raises several potential problems. 
We focus on three problems that arose during our work 
because, not only are they crucial for properly 
sanitizing network traffic, they also present obstacles 
in many other application domains, due to their finite 
namespaces and/or semantic properties. 

 
3.1. Properties and IP Address Ranges 
 

Consider the situation in which a single analyzer 
aggregates data from several different collectors. In 
some contexts, all the collectors must pseudo-
anonymously map certain raw IP addresses to the same 
target namespace addresses to ensure consistency of 
identity.  Conversely, if the mapping is fully-
anonymous, then each collector must scatter its raw IP 
addresses across different IP target ranges, in order to 
prevent conflation of two occurrences of any IP 
addresses to the same target address.  
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To our knowledge, all prior approaches using 
hashing to accomplish these results have required that 
all collectors use the same hash function for the entire 
namespace. Pseudo-anonymity would require that the 
IP address be hashed; full-anonymity could be 
implemented by hashing on a combination of the IP 
address, the particular collector's unique identifier, and 
the number of previous times that IP address occurred 
in that collector’s data stream. This is unacceptable for 
collectors who trust the analyzer but who do not trust 
each other. The obvious insider attack is to guess an IP 
address (and, in the case of fully-anonymous 
sanitization, the ancillary unique data), hash the guess, 
and compare to the sanitized data.  Explicit maps can 
mitigate this problem by allowing mutually distrusting 
collectors to share—and hence risk—only portions of a 
codebook. This feature could also be implemented by 
binding hash functions to specified input IP address 
regions, and sharing only some of those hash functions.  
Both methods allow fine-grained control over privacy 
risks caused by sharing sanitization functions. 

Unlike a generalized hashing algorithm, explicit 
sanitization maps can preserve namespace properties 
such as locality.  For example, some types of analysis 
may require that sanitized IP traffic preserve the 
integrity of certain reserved address ranges. It would 
not be possible to implement this by first testing an 
original address to see if it is reserved, and then 
hashing only the non-reserved addresses. True, the 
reserved addresses would be preserved, but a 
generalized hash function would also map many non-
reserved addresses into reserved address ranges, thus 
confusing the analysis. 

For namespaces in other problem domains, hashing 
per se could never match the functionality of explicit 
sanitization maps. In the medical database example, an 
analyzer might partition all names into three 
equivalence classes:  male names, female names, and a 
third class of ambiguous names. 

Other namespace properties can be preserved by 
constructing appropriate sanitization maps.  For 
example, if an analyzer recognizes a “sweep” of IP 
addresses only when an intruder probes an ascending 
succession of contiguous IP addresses, there are 256 
pseudo-anonymous sanitization functions that will 
preserve such sweep signatures in the low-order byte. 

 
3.2. Implications of Finite Namespaces 
 

Another important aspect of IP addresses as 
identifiers is that they are drawn from a namespace of 
finite size. This has two crucial implications.  First, any 
pseudo-anonymous mapping on a finite namespace 
must be a permutation.  Therefore, if a mapping 

implementation is not parsimonious and “over-
reserves” target space for a block of IP addresses in the 
original namespace, the target namespace will 
overflow when all possible input names are sanitized. 

Second, the pigeonhole principle shows that any 
fully-anonymous mapping of n+1 name occurrences 
on a namespace of n names is impossible.  For 
example, if a long conversation between two network 
nodes is to be sanitized fully-anonymously, the target 
IP address namespace will eventually become 
exhausted and repetitions of sanitized names will 
occur. Hence, in the absence of some special controls 
to distribute the allocation of sanitized names, a simple 
first-come-first-serve implementation of full-
anonymity would protect the privacy of the most 
verbose early nodes, at the expense of nodes appearing 
later in the data stream. 

This forces the collector to make explicit decisions 
on namespace resource allocation during configuration.  
One (or more) small block(s) in the original namespace 
may be “expanded” and scattered across a much larger 
block in the target namespace.  The collector may map 
some source blocks pseudo-anonymously, and other 
source blocks fully-anonymously, into the same target 
namespace block. Conversely, certain source 
namespace blocks may be “compressed” to map into a 
smaller target namespace block.  Clearly, if any target 
namespace region might potentially overflow, then the 
collector should specify overflow-handling policies for 
all blocks that map to that region. 

In general, by instrumenting fully-anonymous 
sanitizing routines with appropriate overflow-handlers, 
a collector can implement anonymization functions on 
a per-block basis that span the spectrum between 
pseudo- and full-anonymization. To use a medical 
database example, successive instances of “Bob” might 
map to “Bill”, “Bo”, or “Bruce”.  Successive 
assignments might be random, or might cycle within 
the target block's choices. In contrast, to give “Alice” 
more privacy protection, the collector might allocate 
more than three target pseudonyms to her. 

The preceding discussion of allocation issues 
assumes sanitization is to be done in a single pass, 
even for non-realtime contexts. But sanitizing data in 
multiple stages allows many other approaches.  For 
example, even the constraint of a finite namespace can 
be mitigated by first sanitizing to a larger target 
namespace, then optimizing a subsequent namespace 
compression stage to minimize analyzer errors caused 
by duplicate (i.e., conflated) names [8]. 

 
3.3. Namespace Nuances 
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A sanitization procedure must be sensitive to the 
semantics of its input data. For example, compare the 
problem of sanitizing data in a medical database to that 
of sanitizing network packets. In both cases, the goal is 
to protect identities. In the case of network packets, we 
would anonymize the IP headers and blank out the 
packet bodies, and declare the data sanitized. In a 
medical record, we would sanitize the patient’s name 
and address. Unfortunately, this is insufficient, because 
other data—for example, the patient’s height, weight, 
and date of birth—when taken together might comprise 
a composite key that identifies the patient uniquely.  

We cannot merely apply either form of 
anonymization to these three additional fields because 
many analyses of medical data are sensitive to the 
values of these fields.  If sanitization randomly 
replaces one value of these fields with another, we risk 
significantly altering their semantics even if we comply 
with integrity constraints (such as the sanitized height 
and weight being reasonable positive numbers, and the 
date of birth being in the not-too-distant past).  For 
example, the ratio of a person's height to weight is 
medically significant.  Moreover, preserving the 
approximate order of ages among all patients is 
important for many medical analyses.  Thus, for some 
data fields, there exist potential conflicts between the 
requirements of sanitization and the requirements of 
analysis that may not be apparent to the developer of 
the privacy policy. 

Thus, certain fields of the data connote additional 
semantics beyond serving a merely denotational 
purpose.  Were this not so, pseudo-anonymous 
sanitization would satisfy the requirements of the 
analyst. But because the data in some fields are 
descriptive attributes, characteristic of measurements, 
rather than arbitrarily-assigned identifiers, pseudo-
anonymous sanitization may conflict with analysis. 
Further, that a datum has semantic significance may 
not be immediately apparent. As another example, for 
some analyses even patient names are not absolutely 
“meaningless” identifiers.  Patients named “Alice” are 
more prone to pregnancy than patients named “Bob;” 
patients with Japanese surnames are more likely to be 
lactose-intolerant than those with English surnames; 
and patients with African surnames are more prone to 
sickle-cell anemia than those with Russian surnames. 
Accurate analysis may require that the sanitization 
function preserve these semantic connotations via 
equivalence classes of names. Thus, we need an 
explicit analysis policy and analysis metric. 

Similar semantic issues complicate the sanitization 
of IP traffic, because IP addresses may be associated 
with attributes via the behavioral semantics of their 
transactions.  As an example, if packets to and from a 
particular host all have TCP address (port number) 53, 

then the fact that that host is a DNS server will be 
obvious even if fully-anonymous sanitization is used. 
Similar semantic signatures in the transaction traffic 
allow an adversary to map the network infrastructure, 
although the exact IP addresses of the infrastructure 
hosts (and indeed the number of such hosts) may not 
be identified. 

Namespace issues require human decisions and 
analysis. No automated tool can determine whether 
additional semantics not known to it would unduly 
assist the adversary, or hinder the analyst. We 
emphasize that an explicit threat model, privacy policy, 
and analysis policy must guide decisions regarding 
what data needs to be sanitized, and how. 

 
4. Tool 

 
In designing our prototype network packet sanitizer, 

tcpsani, our goal was to create a research vehicle that 
would yield immediate practical benefits, while also 
serving as a platform to research basic, unresolved 
issues that can arise at any level, and rapidly prototype 
new methods for exploring the fundamental problems 
of sanitization. Tcpsani inputs a tcpdump “savefile” 
file, sanitizes it as described below, and then creates a 
new “savefile” containing the sanitized data. This file 
can be fed to tcpdump, or any compatible program, for 
display or other operations. 

Tcpsani is a modified version of tcpdump that 
invokes Perl routines to do network layer sanitization. 
Two default modes are supplied; the user may write 
others if different sanitization algorithms are desired. 

In pseudo-anonymous mode, tcpsani maps an IP 
address byte-by-byte.  The map for an IP address byte 
is determined by its IP address prefix (a prefix may 
consist of 0, 1, 2, or 3 bytes).  This approach preserves 
common (byte-aligned) prefixes under sanitization.  
The collector can configure certain maps as shared by 
multiple IP address prefixes. Thus, two input IP 
addresses with different prefixes may have some of 
their subsequent bytes sanitized via the same map.   

Shared maps that permute the low order byte or 
bytes of IP addresses may be used to preserve certain 
regularities common to related subnets, for example 
keeping the IP addresses of local nameservers or 
switches in the same relative order.  A reduction in 
privacy is the tradeoff cost for tractable analysis of the 
sanitized data. 

Fully-anonymous mode maps a region R of the 
original IP address space to a target IP address region 
T. When tcpsani encounters an input IP address from 
region R that requires a new address in region T, it 
randomly picks an empty slot in region T, marks it as 
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allocated, and enters that target address in a hash table 
keyed by that input address. 

Tcpsani can be configured to implement all the 
hybrid (combinations of pseudo- and fully-anonymous) 
allocation schemes described earlier in section 3.2. 

 
5. Related Work 

 
One property whose preservation benefits analyzers 

is that of IP address prefixes.  By default, tcpsani 
implements only byte-aligned prefix preservation. 
Tcpsani’s sanitization modules could be augmented 
with code to implement prefix preservation on the fly. 
This would provide the functionality of tcpdpriv [4].  

If prefix preservation is the sole objective, a better 
alternative is CryptoPan [5,6,7], an elegant and 
efficient specialized hash. CryptoPan also has the 
virtue that multiple collectors can implement the same 
prefix-preserving permutation for aggregation by a 
single analyzer merely by sharing a small secret key, 
rather than sharing large explicit maps. 

We speculate that CryptoPan and similar work (for 
example, Peuhkuri [8]) have not been more widely 
accepted as “the solution” to the tension between IP 
address sanitization and the desire for aggregated 
analysis because they require a high degree of trust 
among different collectors.  For example, given a 
prefix-preserving hash key, any trusted collector (or its 
rogue insiders) can invert any target IP address by a 
sequence of 32 chosen-plaintext attacks. These attacks 
are performed offline—there is no need to inject them 
into a monitored traffic stream.  Hence, if any 
aggregated CryptoPan-sanitized dataset is ever made 
available to an adversary, that data set will remain 
vulnerable to these insider attacks for all eternity.  

The sharing of identical, explicit maps (even if they 
do not preserve prefixes) by multiple collectors 
likewise carries this perpetual vulnerability if the 
aggregate sanitized dataset is published. Thus, 
regardless of how the mutually-identical sanitization is 
implemented, a collector is perpetually vulnerable to 
any other entity with access both to the permutation 
key/map and to the permuted data. In light of recent 
security breaches at many commercial analyzers of 
credit information, it is worth noting that a collector 
who trusts an aggregating analyzer with its data today, 
must also trust that analyzer in the future not to fall 
prey to an adversary masquerading as a new collector 
who wants to sanitize its data using the common, 
historical sanitization function. 

Pang and Paxson [9] studied how to make public 
network packet trace data without compromising the 
privacy requirements of their site. They separated the 
problem of network protocol level sanitization from 

that of application protocol level sanitization, and 
implemented policy scripts to operate on the latter. By 
way of contrast, we focus only on the network level 
data, and use modules to describe the privacy policy of 
that data. We do not yet deal with the application layer 
protocols (but see the next section). 

Sobirey, Fischer-Hübner, and Rannenberg [10] first 
suggested pseudo-anonymous sanitization, in the 
context of intrusion detection. They discuss the need to 
balance pseudonymity with the preservation of enough 
information to perform an adequate analysis, but do not 
describe how to achieve that balance. This paper also 
identifies the problem of conditional reconstruction, in 
which one may map pseudonyms to users given 
additional (external) knowledge. 

Biskup and Flegel [11] considered the pseudo-
anonymous known user and host names that appeared 
in file names, and in the user and host fields of the 
logs. They discussed in detail several possible 
architectures for pseudonymizing log files. 

Lundin and Jonsson [12] describe an experiment in 
which they developed a “pseudonymizer” that 
exchanges pseudonyms for names in firewall logs. The 
mapping between names and pseudonyms was not 
amenable to reconstruction. The authors concluded that 
even pseudonymized users sometimes could be 
reidentified through their behavior, and some 
information (such as working hours) could be deduced 
from the sanitized logs. Further, knowledge of the 
users’ behavior helped distinguish false alarms from 
legitimate reports of intrusions. Sanitizing the logs 
reduced this knowledge, increasing the need to 
investigate alarms that otherwise would have been 
quickly dismissed as patently false. 

 
6. Conclusion 
 

The data sanitization problem is similar to several 
other interesting problems. 

View a privacy policy and an analysis policy as 
constraints on inferences.  An acceptable sanitization 
must produce a dataset from which “good” analysis 
inferences can be drawn, but “bad” privacy-penetrating 
inferences cannot be drawn beyond some threshold 
degree of accuracy or probability. 

Another related problem is the database query-audit 
problem: given a central database and multiple query-
makers, this problem asks how the database 
management system should respond to each query so 
that the aggregated results reveal no more than the sum 
of the individual query results.  The problem of 
sanitizing data aggregated from multiple collectors is, 
in some sense, a dual of the database query-audit 
problem:  how can we confidentially perform a 
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globally uniform sanitization on multiple distributed 
writes to a central database, so that analyzing the 
aggregate results will reveal more than the sum of 
analyzing each separate database write without 
revealing the raw data? 

Many notions inherent in sanitizing network traffic 
arise in the development of anonymous and 
pseudonymous network and cryptographic protocols. 
For example, the notion of crowds [13] raises the issue 
of the degree of anonymity, which also appears from 
the semantic issues discussed above. The notion of an 
anonymity set [14] is inherent in sanitization done in a 
finite name space. 

The issue of semantics is crucial to proper data 
sanitization because shared semantics may cross 
multiple syntactic formats. Many network protocols, 
such as ARP and NTP, have some structure from 
which semantics can be inferred. In this case, 
automating the data sanitization based on that structure 
should work fairly well. But many other network 
protocols, such as TELNET and HTTP, either are 
unstructured or mix structured data (such as 
commands) with unstructured data (such as contents of 
files). In this case, the unstructured data will not be 
well sanitized. The current version of tcpsani sanitizes 
data based on structure, blanks out the unstructured 
data portions, and changes ancillary information such 
as checksums to correspond to the new values. 

The latter may not always be possible. Consider the 
situation in which the data to be sanitized has been 
digitally signed by a third party. Once the data is 
sanitized, the digital signature cannot be preserved 
because the signature corresponds to the raw data, not 
the transformed (santized) data. This is a property of 
the digital signature, since the data to which it is bound 
has changed. But now an analyst could not determine 
whether the third party signed the raw data, given the 
sanitized data and the digital signature. This is an 
example where the privacy and analysis policies are in 
conflict. The only solutions are to have the third party 
re-sign the sanitized data, or to have the sanitizing 
entity sign the data. This breaks the association of the 
third party with the data, unless the third party 
delegates authority to the sanitizing entity to sign. 

Data sanitization is rapidly becoming a necessity. It 
raises many problems and issues, and is very sensitive 
to the environment in which it is done as well as to the 
purpose to which it is put. This paper presented a tool 
to sanitize network traffic, and discussed some of the 
issues in the context of that work. 
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