
Secure Peer Sampling Service: the Mosquito Attack∗

Gian Paolo Jesi

Dept. of Computer Science

University of Bologna (Italy)

E-mail: jesi@cs.unibo.it

Alberto Montresor

Dip. di Ingegneria e Scienza dell’Informazione

University of Trento (Italy)

E-mail: montresor@disi.unitn.it

Abstract

Peer sampling – the capability of obtaining a random

sample from a large population of peers – is a basic build-

ing block for the gossip paradigm. Current peer sampling

services have been designed for ”first-class” citizens of the

Internet: peers that are able to accept incoming, sporadic

connections. Unfortunately, the vast majority of peers do

not belong to this class, as they are behind firewalls or have

private addresses. Peer sampling is thus limited to peers

that are freely accessible, while the others only play a lim-

ited role. The existence of two groups, with different roles

and sizes, enables one group to exploit the other. This pa-

per introduce one of such malicious scenarios, the mosquito

attack, a solution to which is proposed and evaluated.

Keywords: P2P, peer sampling, overlay, security, gossip

1 Introduction

Gossip protocols have proven to be effective in dealing

with the large scale and dynamism of modern distributed

systems, such as P2P networks [3–5, 9]. A key requirement

for gossip protocols is the ability to randomly select gossip

partners from the overall system. The peer sampling service

(PS) satisfies this requirement, by providing peers with con-

tinuously up-to-date samples selected uniformly at random

from the global peer population [6].

An important issue of modern PS services is their po-

tential exploitation by malicious peers. For example, an at-

tacker can acquire a leading position into the overlay, by

forcing the PS service to provide fake samples that include

only malicious nodes; such attack can evolve in the com-

plete defeat of the system, if malicious nodes simply disap-

pear after having gained such leading position. The diffu-

sion of bogus, ad-hoc messages is so fast that a small group

∗This work is supported by the European Commission through the

NAPA-WINE Project (Network-Aware P2P-TV Application over Wise

Network – www.napa-wine.eu), ICT Call 1 FP7-ICT-2007-1, 1.5 Net-

worked Media, grant No. 214412

of just 20 attackers can defeat a 10.000 nodes network [7,8]

in a few gossip exchanges.

The security problem can be solved through a prestige-

based secure peer sampling (SPS) service [8,10], in which a

simple heuristic based on social network analysis (SNA) [2]

can detect and react to the structural changes in the network

in a timely manner. Nodes which have gained a central role

in the network are identified and banned.

An important issue, which is neglected by both state-of-

the-art PS and SPS services [6, 8] is that not all peers in the

Internet are “first-class” citizens, due to constraints imposed

by ISPs to home users. In fact, private addresses and fire-

walls often prevent peers from accepting incoming requests,

making impossible for them to play the role of full peers. In

this scenario, peers may be divided in two groups: those be-

hind a firewall (FW) and those which are not (FW). Peers

in the FW group can run the PS service as full members:

they obtain random samples of the FW set, and they can

belong to random samples provided to other nodes. Peers

in FW can only obtain random samples of FW, without the

possibility of being randomly selected. The reason is sim-

ple: since they cannot be contacted, there is no reason to

spread around knowledge about them. The presence of two

groups, with distinct roles, could give rise to a new breed of

attacks. Since FW nodes do not appear in the samples, they

have nothing to lose when they poison the network. For ex-

ample, they could gossip the IDs of a subset of benign FW

nodes, in order to discredit them.

The SPS service has been designed to address an infec-

tion coming from full members of the sampling service. Is

the SPS service enough to prevent an infection coming from

outside the FW group of peers? The aim of this paper is to

answer this question and hence to verify the effectiveness

of the SPS service in a new scenario, closer to real world

conditions. We introduce a novel attack model, called the

mosquito attack, which is a particular instance of the hub

attack [8]. We improve the SPS algorithm to deal with this

novel scenario, and we evaluate our solution by comparing

it with the standard SPS algorithm.

The paper is organized as follows. Sec. 2 describes our

scenario and the mosquito attack. In Sec. 3 we introduce the

SPS algorithm and our modification. Experimental results

are presented in Sec. 4. Finally, Sec. 5 and 6 survey related

work and conclude the paper.

2 Background and Problem Definition

2.1 System Model

We consider a network consisting of a large collection of

peers. The network is highly dynamic; new nodes may join

at any time, and existing nodes may leave, either voluntarily

or due to crashes. Byzantine failures, with nodes behaving

arbitrarily, are excluded from the present discussion.

Peers are heterogeneous in their communication capa-

bilities. Peers in the FW set can participate in gossip ex-

changes initiated by other peers, while FW peers cannot. In

other words, communication from p ∈ FW∪ FW to q ∈ FW

is always possible; communication from p ∈ FW to q ∈ FW

is possible only in response to a previous communication

from q to p; communication between p ∈ FW to q ∈ FW is

never possible. The FW class includes machines belonging

to universities, public administrations or large companies

which are characterized by public IP addresses and no fire-

wall constraints. The FW class includes machines shielded

by firewalls that prevent them from being contacted from

outside. This makes impossible (or very challenging) for

them to play the role of a fully enabled peer.

2.2 Peer Sampling

As the network size can grow to millions, no PS service

can maintain a complete and up-to-date view of the entire

system. Instead, current PS services store, at each peer, a

partial view of the network, i.e. a short list of logical links to

other peers (neighbors). To serve later as samples, a random

selection of peers is stored in partial views. As peers volun-

tarily join and leave, or abruptly disappear due to crashes,

the PS service updates the partial views, removing old mem-

bers and spreading the news about new ones.

Peers and their logical links form a dynamic overlay

topology. An important requirement is that such topology

should remain connected in spite of failures (even catas-

trophic ones), otherwise separate system partitions would

not be able to sample each other. If local views contain ran-

dom neighbors, the resulting topology is a random graph,

which has proven to be extremely robust and capable to

maintain connectivity even after the crash of 70% of the

peers [6].

Although the approach described here is generic enough

to be applied to other protocols, the SPS service consid-

ered in this paper is based on NEWSCAST [6]. In NEWSCAST,

each partial views contains c descriptors, i.e. pairs (node

address, timestamp). Periodically, each peer p randomly

selects a gossip partner q from its local sample, and sends

its partial view to q, plus a fresh descriptor of itself. Peer

q replies in the same way. After the gossip exchange, p

stores in its partial view the c freshest descriptors out of

the 2c + 1 available (c descriptors in its old partial view, c

descriptors received from q, and the fresh descriptor of q).

q behaves symmetrically. The continuous injection of new

descriptors gradually removes old descriptors from the net-

work, allowing the protocol to “repair” the overlay topology

by forgetting information about crashed neighbors.

Nodes belonging to FW actively participate in the pro-

tocol by initiating gossip exchanges, but they do not inject

their own identifier – since they cannot be contacted, there

is no reason to do it.

2.3 Attack Model

The goal of the hub attack is: to subvert the network

in order to achieve a leading structural position, i.e. be-

coming a hub [8]. This attack method consists of spreading

fabricated partial views through normal gossip exchanges,

affecting the logical links of peers and thus the correspond-

ing overlay topology. Malicious peers collude by send-

ing around partial views that only contain fellow malicious

peers; in addition, the timestamps are manipulated to post-

pone the dropping of the corresponding descriptors. Even-

tually, all nodes will link to those malicious peers, creating

a hub graph.

From a PS point of view, messages sent by malicious

peers cannot be distinguished from non-malicious mes-

sages. Surprisingly, this weak integrity constraint can

be found, for example, in real-world file-sharing applica-

tion [11, 13], where peers do not verify the validity of item

advertisement they receive.

If the population of the hub attack is not too large, the

prestige-based SPS service introduced in [10] can prevent

the hub attack. However, it has been designed to monitor

the prestige or popularity in a scenario where every peer

participating in the peer sampling service is addressable.

The goal of the mosquito attack is: to put discredit on a

subset of nodes in order to disconnect or isolate them. The

idea is to consider scenarios for which the prestige-based

SPS service has not been designed, i.e. the presence of

two groups of peers with different capabilities. We assume

that the FW group is entirely composed of well-behaving

nodes, while the FW group is entirely made of colluding

malicious peers. The size of FW is at least the same of

the FW group. The prestige-based SPS service is helpless

against peers in FW: they can initiate a large amount of gos-

sip exchanges, avoiding double checks over their malicious

messages. Thus, peers in FW look like a cloud of mosquitos

tormenting the group of FW nodes with their bogus mes-

forever do

done← false

R← getSample(size)
for each neighbor in R do

sendstate(neighbor)
stateq← receivestate()
if toss(1/size)∧not done do

done← true

apply PSS update

else

getstatistics(stateq)
recoverstate()
wait(∆t)

forever do

stateq← receivestate()
sendstate(q)
if not done do

apply PSS update

else

getstatistics(stateq)
recoverstate()

(a) Active Thread (b) Passive Thread

Figure 1. Prestige-based SPS algorithm.

sages.

The implementation of the mosquito attack is as follows.

Malicious messages contain only a subset of the FW nodes.

As in the hub attack, the descriptor timestamps are manipu-

lated to ensure that they will be dropped as late as possible.

The SPS service should react by suspecting and banning

nodes in FW, which are non-malicious.

Because we want to push the SPS service to the limits,

we avoid cryptographic techniques and the presence of a

central certification authority. Furthermore, to facilitate the

task of malicious nodes, we assume that part of the FW set

is composed of reliable, well-known machines, included in

a list available to everybody. This static list could be nor-

mally used to bootstrap new peers – which try to perform

gossip exchanges with peers in the list, until one of them

replies with an up-to-date partial view. In the hand of a ma-

licious peer, however, this list represents a security risk; it

can be used to discredit peers included in them, by flooding

the network with their IDs. The SPS should be considered

as a provocative scenario, in which the SPS is forced to face

the worst possible working condition. These extreme con-

ditions may look like bad design choices. In fact, for ex-

ample, it would be quite easy for a FW to detect whether a

contacting peer is a FW node or not and a better – safer – de-

sign would suggest to ignore the neighbor list they provide;

however, we agreed to not change the SPS basic behavior

according to our aim.

3 Prestige-based SPS

The basic idea of the prestige-based SPS service is to: (a)

play the actual PS implementation as usual and (b) monitor

the overlay and react to structure changes when required.

The key point is that the presence of the SPS service is trans-

parent to the applications as the API of the PS service is not

modified. As the infection of a poisoning attack can spread

so fast, the main concern for a SPS service is to be able to

build a suitable knowledge base to possibly recover its par-

tial view in case of corruption.

In order to build the knowledge base, the SPS service

makes a stochastic proportion of its gossip exchanges as

“explorative”, while the others are standard PS exchanges

(i.e., they affect the partial view). The task of the explo-

ration is twofold: on one hand it builds a particular sam-

ple of the current neighbor surroundings, while on the other

hand it collects peers IDs that may become useful if and

when the PS partial view becomes polluted by the spread-

ing infection. As there is no way to detect if a neighbor

has actually played the PSS or not, this behavior generates a

dilemma that could tremendously limit the attacker’s power.

The prestige-based SPS version adopts an inspiration

from social network analysis (SNA) and in particular we

consider the notion of prestige of peers in a directed net-

work, where the peers that receive more positive choices

are considered prestigious [2]. We adopt a (simple) tech-

nique to compute the structural prestige of a peer in terms

of popularity (or in-degree). Intuitively, since the network

should be random, detecting a peer showing a popularity

value too distant from the average means that it could rep-

resent a network hub. Each peer builds its own knowledge

about its surroundings and it does not share this information

with its neighbors [13] to avoid further issues, such as the

corruption of the exchanged knowledge.

Dilemma mechanism: Figure 1 shows the prestige-based

SPS algorithm written in pseudo-code. Each peer can gos-

sip with multiple neighbors in the same time unit (cycle);

a subset of size random neighbors is selected from the par-

tial view by the getSample(size) function. Regardless of the

number of neighbors selected by getSample(), the PS state

update policy can be executed only once and with a proba-

bility of 1/size.

On the other hand, interactions with other neighbors are

used to collect prestige related information about the peer

neighborhood. This mechanism produces the dilemma in

which a potentially malicious peer p never knows how an-

other neighbor q is going to use the information provided by

p. In fact, the more they pollute, serving malicious IDs dur-

ing the exchanges, the larger is the probability of appearing

as “suspect” in terms of popularity. This feature is designed

to contrast the hub attack, but it is in turn exploited by the

mosquito attack.

Prestige mechanism: The information collected during

the gossip exchanges is used to build the knowledge base

required to detect, with good accuracy, malicious peers and

to eventually repair the partial view when it becomes pol-

luted by the presence of malicious IDs. A table structure

– the prestige table (PTABLE) – holds the following tuple:

〈ID,#hits,TTL〉, where each detected peer ID is associated

to a frequency value #hits and a time-to-live value (TTL)

expressing the time validity of the table entry.

Essentially, each peer explores its neighborhood and col-

lects data about the frequency, expressed in #hits, with

which the same peer ID has been reported by the received

partial views. In just a single gossip exchange, each peer

can collect a number of items equal to the size of the partial

view (c items). Although we do not pose any size restric-

tion to PTABLE, which can hence eventually grow up to the

size of the network, this is very unlikely, as the entries are

purged according to an aging policy, which decrements by

1 each TTL at each cycle. We found experimentally that

with TTL = 2, the average size of the PTABLE grows un-

til about 50 items. The TTL of an entry is incremented by

1 each time the same entry is detected. If the malicious

peers tend to acquire a network-centric position, their pres-

tige is likely to dominate over the other entries and its value

will be far more than the average peers prestige. According

to this simple idea, the PTABLE object maintains the aver-

age hits value: #hitsavg for the collected items; the value

#hitsavg +σ, where σ is the #hits standard deviation, is used

as a threshold to distinguish between potential attackers

(i.e., #hitsp ≥ #hitsavg + σ for a peer p) and well-behaving

peers. σ is required to produce good suspicions and to limit

the production of false positives and the PTABLE size. When

an entry expires (i.e., TTL = 0), its ID is collected in a

WHITELIST, as it can be (with high probability) considered

a well-behaving peer. If the same ID is detected in a neigh-

bor partial view in a subsequent gossip exchange, it is not

removed from the WHITELIST until its #hits value has even-

tually reached the current PTABLE #hitsavg +σ value. These

calculations and the management of the knowledge base are

handled by the getstatistics() function.

The risk of having polluted partial views is always

present and therefore a method to recover them is required.

In Figure 1, the function recoverstate() satisfies this re-

quirement. In the average case, it is sufficient to have a set

of peer IDs in the WHITELIST that are present in the PTABLE,

but have a lower #hits value than the #hitsavg + σ value, or

that are not present at all in the PTABLE. When the knowl-

edge base is empty instead, the peer cache could be com-

pletely polluted by an attacker. This would happen in the

early stages of the protocol when a peer has just joined the

overlay. The only chance to recover, from such scenario, is

to be contacted by another well-behaving and non polluted

peer. As the overlay is pseudo-random, on average, this can

happen quite often.

False positives check: Unfortunately, the SPS service

only relies on the mechanism of the TTL expiration to han-

dle false positive suspicions. However, this mechanism

could not be sufficient during a mosquito attack, when well-

behaving peer IDs are heavily diffused by the attackers in

order to put discredit on them. We introduce a new mech-

anism which helps to recover from wrong suspicions. Es-

sentially, each well-behaving peer choose a potentially ma-

licious peer from its PTABLE (i.e., choose from the set:

{n|#hitsn ≥ #hitsavg +σ}) and makes an explorative PS ex-

change with this potentially malicious peer. If the received

message contains more than 25% of already known (poten-

tially) malicious peers (which are listed in the PTABLE), the

suspicion is considered correct and the corresponding TTL

of the malicious peer is raised. Otherwise, the suspicion

is considered incorrect and the peer is removed from the

PTABLE. In addition, the peer is injected in the current par-

tial view of the querying peer. This strategy allows the vic-

tims of false positive suspicions not to be relegated at the

margins of the network and to maintain a strong connectiv-

ity in the (pseudo) random graph. This extension to the SPS

protocol is embedded in function getstatistics() and comes

at the cost of an extra PS gossip exchange. To limit the traf-

fic, every peer is allowed to perform this check only once

per cycle.

4 Evaluation

We conducted an extensive set of experiments in a sim-

ulated environment to evaluate our SPS. We compare the

prestige based SPS with the check for false positives respec-

tively disabled and enabled in terms of average pollution

level. Pollution is measured as the percentage of benign

peers suspected to be malicious, that are present in each

partial view.

In the evaluation, we want to measure: (a) how much

time is required to achieve a stable (possibly low) pollution

in the caches, (b) how the PS overlay becomes organized

(e.g., are the false positive peers isolated?), (c) the perfor-

mance when the attackers target a larger set of FW peers

and finally (d) the performance in dynamic scenario.

The basic setup involves 1.000 peers in FW and 10.000

peers in FW, playing the mosquito attack. If not state oth-

erwise, the FW peers targeted by the attackers is a set of

k = c = 20, where c is the cache size of the underlying

PS implementation adopted (NEWSCAST). Algorithms are

identified as follows: PS is the standard peer sampling al-

gorithm; SPS(sg) is the prestige-based algorithm described

in [10], where s gossip exchange are performed at each

cycle; SPS(sg + 1) is the same prestige-based algorithm,

where the additional check for false positive is performed.

Figure 2 shows the average pollution proportion in par-

tial views. In the absence of defense, the peers becomes

quickly polluted with (false positives) malicious peers. Es-

sentially, malicious peers can easily reorganize the network,

promoting the targeted FW peers as network hubs. This puts

a tremendous stress on these peers that and it may lead to a

crash with more probability. The SPS can prevent the dif-

fusion of the targeted FW peers, as the average pollution

level is extremely low. However, this means that the vast

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300

A
v
g
.
p
ro

p
o
rt

io
n
 o

f
c
a
c
h
e
 p

o
llu

ti
o
n

Cycles

PS (no defence)
SPS (2g)

SPS (2g+1)

Figure 2. The average pollution level over

time.

majority of FW peers believe that the set of targeted peers

is malicious, which is obviously not true. The false posi-

tives inducted by the mosquito attack, have an impact of the

overlay structure. While we always found that the network

remains connected (weakly) during our experiments, there

is no guarantee that the pool of targeted peers can never dis-

connect (especially for larger networks). In addition, the

FW peers tends to have no links to the targeted peers, while

targeted peers maintain a few links to the rest of the net-

work, but tends to be located in a clique.

Considering the huge amount of resources put into the

field, the result of the mosquito attack facing the SPS is not

so serious for the overlay in general. In fact, the overlay

is still connected and shows acceptable values in terms of

clustering coefficient (∼0.22) and average path length (∼2).

However, the connectivity and the quality of the sampling of

the service is for sure compromised for the targeted peers.

When the false positives check is enabled, the SPS shows

a pollution level of ∼ 9-10%. This value is higher than

before, but we have to remember that these measurements

refers to the presence of false positives. In other words,

now the SPS recognize false positives1 and allows these FW

peers to moderately increment their presence in the overlay

structure. This mechanism makes the overlay structure al-

most uniform and the targeted peers are not relegated to the

margins.

The average cost per cycle for each peer can be expressed

in terms of total exchanges messages (using NEWSCAST im-

plementation) as: 2 · size+1.

In Figure 3 we show the pollution level at the end of the

simulation. Each bar represents a distinct size of the set

of targeted peers (i.e., 20, 40, 100 and 200 peers), while

distinct number of gossips adopted by the SPS (i.e., 2g+1,

1Because FW peers ranked as malicious do not deliberately foster the

diffusion of their IDs, they can prove their non affiliation with the attackers.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

2g+1 4g+1 8g+1

A
v
g
.
p
ro

p
o
rt

io
n
 o

f
c
a
c
h
e
 p

o
llu

ti
o
n

20 40 100 200

Figure 3. The average pollution level at the

end of the simulation. Each bar represents

a distinct size of the set of targeted peers.

Each group of bars shows a distinct number

of gossip exchanges.

4g+1 and 8g+1) are shown on the x-axis.

The pollution or the presence of false positives in partial

views is limited to a minimum and manageable level in ev-

ery case -i.e., such levels do not pose any problem to the or-

ganization of the pseudo-random graph. As the number of

gossips increase, their presence decreases almost linearly.

Only when the set of target peers is 2% of the (FW) over-

lay size, the proportion is sub-linear in the cases of 4g+1

and 8g+1 gossips. This happens because the target set size

becomes too large compared to the partial views that are ac-

tually exchanged at every gossip (k = c = 20). The spread-

ing of the target peer IDs becomes inefficient and becomes

harder and harder to discredit such a large set.

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100

A
v
g
.
p
ro

p
o
rt

io
n
 o

f
c
a
c
h
e
 p

o
llu

ti
o
n

Cycles

SPS(2g),1% churn
SPS(2g),5% churn

SPS(2g+1),1% churn
SPS(2g+1),5% churn

Figure 4. The average pollution level in a

churn scenario over time. Churn rates are:

1% and 5%, 2 gossips and 2+1 are adopted.

Although we considered that FW peers are high-reliable

hosts, we have also to consider a physiologic churn pro-

cess caused, for example, by crashes, (voluntary) leave and

joins. In Figure 4, the SPS respectively with (2 gossips+1)

and without (2 gossips) the false positives check are com-

pared. The standard SPS adopted involves 10000 peers,

while the check enabled involves 1000 FW and 10000 FW

peers. While the standard version tends to decrease (to al-

most zero) over time the proportion of the target peers in

the partial views, the check enabled version allows a low,

but constant presence of the target peers; this allows target

peers not to be isolated. The difference between 1% or 5%

or churning is basically negligible.

5 Related work

Poisoning attacks are closely related to both the hub and

the mosquito attacks. In particular, the index poisoning at-

tack [11] focuses on lowering the quality of the indexes that

map hash keys to current file locations in file-sharing ap-

plications. A poisoned index, for example, may contain

hash keys that refer to non-existing or inaccessible files. It

works because many P2P systems do not check the integrity

of their indexes. Index poisoning can be applied to struc-

tured as well as unstructured overlays. In [12], the authors

combine the previous index poisoning attack with poisoning

routing tables in DHT file-sharing systems. This combina-

tion leads to an effective DoS attack. In this case, a selected

victim host is referenced by many other (poisoned) overlay

participants, effectively significantly increasing the proba-

bility that a message will be routed to the victim.

In [1], the authors presents a sampling membership algo-

rithm where each local view converges to a uniform sample

and can resists to the failure of a linear portion of the nodes.

This approach defines and uses its own sampling algorithm,

while we focus on securing an already existent service.

In [15], the authors introduces a fully decentralized ap-

proach for securing synthetic coordinate systems. They

adopt a sort of social-like, vote-based approach in which

each coordinate tuple must be checked by a (small) set of

other nodes. For each node producing a coordinate tuple,

the set of nodes that have to check and eventually approve

that tuple is given by a hash function based on each node’s

unique identifier. The system is very resilient to attacks tar-

geting instabilities and inaccuracies to the underlying coor-

dinate system. However, this approach requires the pres-

ence of a DHT facility that adds complexity and may be-

come an extra source of issues (e.g., DHT attacks).

Social network principles (e.g., reciprocity and structural

holes) are also adopted in JetStream [14] to optimize and

build robust gossip systems. The basic idea is to make a pre-

dictable neighbor selection when gossiping to avoid unpre-

dictable, excessive message overhead. In addition, the tra-

ditional scalability and reliability of gossip are maintained.

6 Conclusions

This paper presents a particular instance of the hub at-

tack, called mosquito attack. We evaluated the behavior

of an existing SPS service under such scenario, discover-

ing its inadequacy, and developed a modified version of it

capable to tolerate such attack. The proposed variant can

successfully detect which peers are targeted by malicious

peers, while maintaining a reasonable random structure of

the overlay. This result is obtained through simple SNA

methods to the topology built by the PS service.

References

[1] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and

A. Shraer. Brahms: Byzantine resilient random membership

sampling. In ACM PODC, 2008.
[2] W. de Nooy, A. Mrvar, and V. Batagelj. Exploratory Social

Network Analysis with Pajek. Cambridge University Press,

Cambridge, 2005.
[3] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based

aggregation in large dynamic networks. ACM Trans. Com-

put. Syst., 23(1):219–252, 2005.
[4] M. Jelasity, A. Montresor, and O. Babaoglu. The Bootstrap-

ping Service. In ICDCS, Lisboa, Portugal, 2006. IEEE.
[5] M. Jelasity, A. Montresor, and O. Babaoglu. T-Man: Gossip-

based fast overlay topology construction. 2009. To appear.
[6] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec,

and M. van Steen. Gossip-based Peer Sampling. ACM Trans.

Comput. Syst., 25(3):8, 2007.
[7] G. P. Jesi, D. Gavidia, C. Gamage, and M. van Steen. A

Secure Peer Sampling Service. UBLCS 2006-17, University

of Bologna, Dept. of Computer Science, 2006.
[8] G. P. Jesi, D. Hales, and M. van Steen. Identifying Mali-

cious Peers Before it’s Too Late: A Decentralized Secure

Peer Sampling Service. In SASO, Boston, MA, 2007.
[9] G. P. Jesi, A. Montresor, and O. Babaoglu. Proximity-aware

Superpeer Overlay Topologies. In SelfMan, volume 3996 of

LNCS, Dublin, Ireland, 2006. Springer.
[10] G. P. Jesi, S. K. Nair, M. van Steen, and E. Mollona.

Prestige-based Peer Sampling Service: Interdisciplinary Ap-

proach to Secure Gossip. In SAC, Honolulu, US, Mar 2009.
[11] J. Liang, N. Naoumov, and K. Ross. The Index Poison-

ing Attack in P2P File Sharing Systems. In INFOCOM,

Barcelona, Spain, 2006.
[12] N. Naoumov and K. Ross. Exploiting p2p systems for ddos

attacks. In InfoScale, New York, NY, 2006. ACM.
[13] S. J. Nielson, S. Crosby, and D. S. Wallach. A taxonomy

of rational attacks. In IPTPS, volume 3640 of LNCS, pages

36–46. Springer, 2005.
[14] J. A. Patel, I. Gupta, and N. Contractor. JetStream: Achiev-

ing Predictable Gossip Dissemination by Leveraging Social

Network Principles. In NCA, Cambridge, MA, 2006.
[15] M. Sherr, B. T. Loo, and M. Blaze. Veracity: A fully decen-

tralized service for securing network coordinate systems. In

IPTPS, 2008.

