
Privacy-aware and highly-available OSN profiles
Rammohan Narendula, Thanasis G. Papaioannou, and Karl Aberer

School of Computer and Communication Sciences, EPFL, Switzerland
Email: firstname.lastname@epfl.ch

Abstract—The explosive growth of online social networks
(OSNs) and their wide popularity suggest the impact of OSNs on
today’s Internet. At the same time, concentration of vast amount
of personal information within a single administrative domain
causes critical privacy concerns. As a result, privacy-conscious
users feel dis-empowered with today’s OSNs. In this paper, we
report on an on-going research work and introduce a privacy-
aware decentralized OSN called porkut. Our system exploits trust
relationships in the social network for decentralized storage of
OSN profiles and their content. By taking users’ geographical
locations and online time statistics into account, it also addresses
availability and storage performance issues. We finally advocate
indexing of social network content and present an approach for
indexing in a privacy-preserving manner.

Keywords-online social network; privacy-preserving index; con-
nected dominating set; trust

I. INTRODUCTION

Online social networks (e.g. Facebook.com, Orkut.com)
have recently seen an explosive growth. Facebook received 130
million visitors in a single month in 2008 [1] and currently
has more than 200 million users. As a result, these OSNs
have become store houses of unprecedented amount of data in
the form of messages, photos, links, and personal information.
Facebook has grown to be the the world’s largest photo sharing
service surpassing even dedicated photo-sharing online appli-
cations (e.g. Flickr). It is also the largest instant messaging
service on the web. Researchers argue that future Internet will
be very much influenced by social networks regarding the
location of content and knowledge, and the user interactions
[2]. However, most of the current social networks operate on
infrastructure administered by a single authority (big-brother),
such as Google, Facebook, etc. These organizations perform
mining of personal data hosted inside users profiles and exploit
it for targeted advertisements, in order to be compensated for
their huge investments in infrastructure. During sign-up time,
users consciously or unconsciously permit the organizations to
share their personal information with third-parties in whatever
form the organizations choose to [3]. In addition, the leakage
of personal information from OSNs can be associated with the
user activity on non-OSN sites as well [4].

However, the exponential growth of the OSNs suggests that
users are ready to trade privacy over utility of the services
offered. As a result, there is almost negligible motivation for
the OSN operators to address privacy concerns of the users.
In order to address privacy concerns of OSN users, research
community has resorted to the P2P paradigm for OSN content
management. Replacing the big-brother with a community of

users, enables OSN users to have complete control on their
profile content.

In this paper, we present an initial design of such a system,
referred to as porkut, where users organize a social network
over a P2P overlay with privacy-preserving data access. We
briefly outline the system architecture and mainly focus on
the distributed storage layer. Specifically, we propose a de-
centralized mechanism for users to manage their own online
social network on top of resources collectively contributed by
themselves. Such a design is motivated with several goals
in mind: a) It eliminates the requirement for a single big-
brother who can exploit the users’ profile data for his own
interest without users’ consent. b) It preserves the privacy
of individuals social profile content, as they have complete
control on who can access which parts of the content. c)
It exploits the trust relationships among users in the social
network to improve the content availability and the storage
performance. Both issues are non-trivial in a P2P setting.
Three approaches with different goals for improving storage
performance are introduced, while maintaining high content
availability. A user’s profile content is hosted only on a set
of self-defined trusted nodes that enforce access control on
the content. This set of trusted nodes is selected intuitively
keeping the availability and performance goals in mind. Other
issues such as the structure of the profile content, the format of
the access control policies, trusted identity management, and
other data integrity issues are beyond our scope.

In addition, the system constructs a privacy-preserving
index of the social network content that enables privacy-
aware searching. We argue that such an index enables content
discovery among friends in OSNs and helps system users
discover new friends (based on content, such as common
interests etc.) within the OSN application and establish new
social connections. This is an add-on feature over existing
OSNs like Facebook that do not allow content-based search.
Such an index is hosted over the P2P overlay in a distributed
hash table (DHT). Users can specify their privacy objectives
during content publishing and thus content existence and own-
ership are only revealed according to their preferences. This
index could be used to serve advertisements on searches and
distribute the revenues to the users according to their published
content. This way, users can benefit from their content without
compromising their privacy. In contrast, the current OSN
applications exploit users’ content for own monetary gains.

The rest of the paper is organized as follows. In Section II,
a brief description of the system is provided. The storage layer
is discussed in Section III. The privacy preserving indexing is

described in Section IV. In Section V, we discuss the related
work and, finally in Section VI, we conclude this paper and
outline our future work.

II. SYSTEM OVERVIEW

As mentioned earlier, the porkut system exploits the trust
relationships among friends and social network connections to
improve the availability and search performance of the system.
We assume that a user of porkut runs the client on his office
or personal laptop/computer. Hence, for the rest of the paper,
we use the terms user and node interchangeably.

A user u’s profile content is hosted only on a set of self-
defined trusted nodes, which enforce access control on the
content on behalf of the user. This set of trusted nodes for a
user is referred to as his trusted proxy set (TPS). The TPS
members for a user are properly selected with respect to the
availability and performance goals. We observe that every
user in an OSN has friends scattered over a limited set of
geographical locations (e.g. his home town, working location,
home country, location of previous institute etc.). Moreover,
we observe that each user’s online timings are predictable
to a large extent (e.g. his office hours, completely offline
on weekends). Exploiting these facts, we populate this set
of trusted nodes in such a way that, at any given time, one
node in this set is online to satisfy the profile access requests,
while at the same time, the content is located at a node falling
within a geographical neighborhood away from the user that
frequently asks for it. The computation of the set TPS based
on a user’s social graph is explained in next section. Each user
u is identified by a unique identifier denoted by UIdu. Note
that a TPS is a set of UIds.

The porkut system employs a distributed hash table (DHT)
hosted at the resources contributed by the users. This DHT
is used for storing the privacy-preserving index of the profile
content and other meta information, e.g. the current IP address
of a user. A user u and his TPS mapping is stored in the DHT
in the form of (key,value) pair with key being the UIdu and
value being the members of the TPS. Using cryptographic
signatures, it should be trivial to test the authenticity of such
an entry in the DHT. This user-to-TPS mapping in the DHT is
useful for contacting the nodes where the profile of a particular
user is stored.

We assume that, with a reasonable replication factor, one
can ensure that the data items stored inside DHT are highly
available in spite of node churn. As a trusted storage is not
required by the system design, such a DHT could be hosted
at a highly available cloud storage or in publicly available
OpenDHT-like services [5]. The porkut storage architecture is
illustrated in Figure 1. Therein, the user u1 has 5 friends in
the OSN, namely u2 to u6. The set TPS = fu1; u2; u4g is
shown in the figure and a mapping between u1 and TPS[u1]
is inserted into the DHT. The user social graph is represented
as online time graph, which is explained in the next section.

DHT

TPS[u1]={u1,u2,u4}

u1

u6

u5

u4
u2

u3

(u1,TPS[u1])

Fig. 1. The porkut storage layer

III. STORAGE LAYER

In this section, we discuss the storage mechanism of the
porkut system, and mainly address the construction of the set
TPS(u) for a user u from his social graph.

The social network graph is denoted as G(U;R), where U
is the set of users represented by the vertices in the graph and
R is the set of friendship relations represented by edges. For
example, an edge between two vertices u1 and u2 models the
fact that users u1; u2 are friends. We assume that friendship
relationships are symmetric. This is the default assumption in
current OSN applications, e.g. Orkut, Facebook. We use the
notation NG(u) to represent the set of neighbors (i.e. friends
on the OSN) of user u in the social graph G, and NG[u] to
represent NG(u) [fug.

We assume that each user u in the social network is
characterized with two parameters: his geographical location
and online time period. For instance, the location can be set to
the country/city where the user is currently located. We exploit
location information of friends of a user, in order to place data
as close as possible to the nodes that most frequently access
the data for getting profile updates etc. Therefore, data is stored
on nodes falling within a certain geographical proximity from
its most-frequent access points.

This is quantified by the metric access cost Cu2
u1

between
two geographical locations/users/nodes u1 and u2, which is
defined as the cost of the communication link between them
(i.e. unit cost for transferring data in between these two nodes).
This could be measured, for example, in terms of RTT between
these two nodes.

Online time period represents the usual time that the user is
online in the social network. This is the time window in which
the user contributes his resources (i.e. bandwidth, storage, and
processing power) for the social network operation. The node
can only reply to the data access requests (for the data it hosts)
that are generated during this time window. Beyond this time
window frame, the user is offline. We denote the location and
online time period parameters for a user u as Lu and OTu
respectively. Given two users u1 and u2’s locations and online
time settings, we argue that they can contact each other and
thus exchange data if and only if their online time intervals
overlap, which we represent by the condition that OTu1 \
OTu2 6= ;.

A. Trusted Proxy Set

Each user u selects some of the neighbors in his social
network as trusted nodes. The user trusts these nodes both for

storing his profile content and for enforcing access control
on the access requests. We believe that storing content in
plain text and leveraging mutual trust relationships for access
control enforcement simplifies the system to a great extent.
This way of exploiting trust relationships for access control
was first introduced by the authors in [6] and employed for
the social network case in [1]. We assume that users mutually
cooperate for hosting content and delegating access control
with some social contracts. The intuition is that users do not
breach the delegation responsibilities because of social pres-
sure and monitoring. This is left for future study. Alternative
solutions, which employ encryption mechanisms for access
control and content storage [7], not only involve complicated
key management issues, but also, they are highly inefficient in
terms of storage overhead, as the same data item may need to
be encrypted multiple times for different users with different
access rights.

Let T (u) � NG(u) be the set of trusted users/nodes for user
u based on his social relationships. T [u] also includes the user
u himself in the set of trusted nodes. The user selects a subset
of these trusted users for hosting his content. We call this set
as trusted proxy set (TPS) (TPS(u) � T (u)). The content of
user u is stored on the members of the set TPS(u) and itself,
which is denoted as

TPS[u] = TPS(u) [fUIdug

We propose the following criteria to select the proper set
of members into TPS from the set of all the trusted users
of a user: i) low access and consistency costs and ii) high
data availability. To this end, the number of replicas should
consider access and update costs and replica placement should
consider users online time settings.

Next, we describe three approaches for the computation of
the set TPS[u] that satisfy high availability but have different
cost minimization objectives. In every approach, once TPS[u]
is computed, for each friend/user in the social neighborhood
of user u (i.e., 8v 2 NG(u)), a mount point is configured
(represented by Mv) for accessing u’s profile. In other words,
for a certain friend of u, u’s profile is said to be mounted at
a certain node. Note that, by definition, the mount point is
available at some point in time during the friend’s online time
frame so that he can access u’s profile. However, a single-
mount-point-per-user technique allows to access the profile
replica only when that mount point is online. To increase the
availability, we can use all the nodes in TPS[u] as mount
points. In this case, Mv would be the primary mount point
and the remaining would be the secondary ones. In the rest
of the discussion, we assume that content accesses are being
done from the primary mount point.

Given the above, the purpose of the following algorithms is
to compute a storage configuration for user u, which is given
by:

� the set TPS[u], and
� 8v 2 NG(u), the mount point Mv , where Mv 2 TPS[u].

u1

u2
u4

u6

T[u1]={u1,u2,u4,u6}

u7
u5

u3

Fig. 2. The graph OGu1

B. Computing the storage configuration

Computing the storage configuration for a user u involves
two steps:

i) Constructing the online time graph.
ii) Storage configuration computation from this graph based

on some criterion.
For simplicity, we assume that geographical locations are
considered at the granularity of country, assuming an OSN user
has friends scattered over several countries. First, we construct
the online time graph (denoted by OGu) for user u. This graph
will be used to compute TPS(u).

Definition 1: Online time graph: for a user u (denoted by
OGu) is defined as (NG[u]; E) where NG[u] is the set of
vertices and E is the set of edges, such that

8v1; v2 2 NG[u], 9 an edge(v1; v2) 2 E iff
(v1 2 T [u] _ v2 2 T [u]) ^ (OTv1 \OTv2 6= ;)

Next, we specify the following two conditions on the graph
OGu, which are necessary and sufficient in order to compute
a valid storage configuration.

1) OGu must be connected. Only then, every user in the
set NG[u] can access u’s content.

2) The sub-graph induced by the set T [u] i.e., the graph
OGu[T [u]] must also be connected, in order to al-
low content synchronization across TPS members pass
through only trusted nodes1.

We suppose that each user constructs OGu offline locally from
the set of friendship relations that he has in the social network
and their online time (OT) specifications. The construction of
OGu is explained with the following example. Assume a user
u1 with neighbors in the OSN u2 to u7 and their locations
set as follows: Lu1 is Switzerland, Lu2 and Lu3 are India,
and finally the rest are US-West. Assume OT set to 8am to
5pm local time for all users. Let T [u1] = fu1; u2; u4; u6g.
The resulting OGu1 is shown in Figure 2.

Note that OGu[T [u]] is expected to be connected for a
reasonable number of trusted friends with overlapping online
times (given 120 friends per user in Facebook and 100 in
Orkut on average [2]). Otherwise, another node v 2 OGu, yet
v =2 T [u], has to be employed in the TPS construction as
well. However, profile data stored at v has to be encrypted by
a key shared by the T [u] members. This approach would be
particularly useful in the bootstrap phase of the social network.

In the next subsections, we describe three algorithms with
different cost minimization objectives for TPS generation and

1However, as long as the first condition is met, nodes from the set T [u] can
be removed one by one until the resulting induced graph becomes connected.

u1

u2
u4

u6

u7
u5

u3

TPS[u1]={u1,u2,u6}

Fig. 3. MAC approach

u1

u2
u4

u6

u7
u5

u3

TPS[u1]={u1}

Fig. 4. MNR approach

user-mount point mappings. If two TPS members are not
directly connected in OGu, synchronization has to happen
through another node v 2 T [u]. In this case, a profile replica is
stored at node v as well; however, still v is not considered as a
member of TPS, as it is not a mount point for any neighbor.

1) Minimize the access cost (MAC): The MAC approach
prioritizes only the access cost for each friend in a user’s social
network. Hence, for every user v in OGu, it assigns the nearest
(i.e., with minimum access cost) trusted node connected to v
as the mount point, i.e.

8v 2 OGu;M(v) = v0 : Cv
0

v � Ci

v; 8i 2 T [u]

Then,

TPS(u) = fv : v 2 T (u) ^ 9 v0 2 NG(u) : M(v0) = vg

The set TPS(u) contains all members of T (u), which are
assigned as mount points for friends of u.

In OGu1 (Figure 2), assume that CSwitzerland

India
= 1 and

CSwitzerland

US�West
= 2. The resulting storage configuration for the

MAC approach is shown in Figure 3.
2) Minimize the number of replicas (MNR): The MNR ap-

proach determines the number of replicas to be maintained for
a user, so as to minimize the storage and replica management
overhead. In addition, it applies an optimization step in order
to minimize the access costs as well.

Our approach exploits the fact that the set TPS can be
modeled as the minimum connected dominating set (MCDS)
on the graph OGu, with the additional constraint that the
members of the MCDS must belong to T [u]. Hereby, we
modify a greedy algorithm from [8] to solve this variant of
the MCDS problem.

Algorithm 1 The MNR algorithm
1: Mark all v 2 OGu as white
2: Mark u as black
3: Mark all neighbors of u in OGu as grey
4: while 9 a white node in OGu do
5: Select a grey v0 2 T (u) such that v0 has the highest

number of white neighbors in OGu

6: Mark v0 as black and its neighbors as grey
7: end while
8: TPS[u] is the set of all black nodes in OGu

9: for all grey nodes v in OGu do
10: Mv = v0 : Cv

0

v � Ci
v , 8i 2 TPS[u]

11: end for

3) Minimize storage cost: This approach quantifies the stor-
age cost of a given storage configuration (x = (M;TPS[u]))
and, by exploring the entire solution space, picks the storage
configuration with the minimum effective cost. The storage
cost is measured in terms of the total cost incurred for
accessing and updating the profile content by a user’s friends
in addition to that of replica synchronization among all TPS
members. We do not consider the access cost incurred by
non-friend users, even though the system allows such users
to access the profile content on case-by-case basis based on
the access control settings.

Let nva be the number of times a user v accesses a user
u’s profile content with each access involving sva units of
data access on average. nvu and svu represent number of
updates and update sizes respectively. Note that this update
is performed on Mv , which must be then pushed to the other
members of the TPS as well. We assume that these parameters
are approximated from the statistics collected over a certain
period. To this end, the user u selects the configuration x that
minimizes its storage cost, i.e.

arg
x

min �
v2NG(u)

h
nva � s

v

a � C
v

Mv
+ nvu � s

v

u � C
v

Mv

+�v02TPS[u]�fMvg

�
nvu � s

v

u � C
v
0

Mv

� i

We refrain from further discussion of this approach for brevity
reasons.

C. Handling updates in social graph and TPS

As social relations evolve, there will be updates in a user’s
social graph. Moreover, breach of trust or of the social contract
to host and enforce access control on behalf of others, may
result to updates in the set TPS. Once a node v is removed
from a user u’s TPS, it is no longer contacted for u’s content.
All users in NG(u) for which v is the mount point are
informed of this change. Such nodes are mapped to a new
temporary mount point (say the node u itself), until one of
the three aforementioned algorithms are run to assign them
new mount points. We assume the user periodically invokes
TPS computation process to accommodate the updates made
on OG graph because of updates in the set T (u) or updates
in friendship relationships.

Since revocations can happen from the set TPS, users must
choose TPS members carefully. Such revocation can happen
either because one of the three aforementioned algorithms
excludes an existing member from the set TPS, or a breach in
the social contract is noticed. However, we believe that mutual
social contracts (i.e. reciprocative hosting of data between
users) restrict users from maliciously exploiting their hosted
data after their removal from the TPS. Handling additions to
the set TPS is simple: user u copies the replica of the profile
to this new member, which there on, serves access requests.

When a new social relationship is made by user u, we assign
as default mount point for the new member the node u itself,
or another TPS node that has an overlapping online time
interval. Later, the new friend could be assigned a different

mount point based on the result of the execution of above
algorithms.

When there is a change in the location of some trusted
nodes, the graph OGu may get disconnected. Noticing this,
node u should set itself as mount point of the disconnected
nodes. We suggest u to adjust its online time frame OTu in
order to make the TPS graph connected in this case.

D. Replica synchronization

We propose that after every update, the concerned mount
point pushes the update to other TPS members during their
online time frame. Note that OGu[T [u]] is connected. Assume
that each TPS member is informed of other members by
the user u during TPS creation. Until recent updates reach
a mount point, it continues to serve access requests with
out-dated content, which is acceptable, as porkut aims to
eventual consistency among replicas with tolerable temporary
inconsistencies.

E. Accessing a user’s profile

A user u’s profile content is available to his friends in
the social network directly through their mount points. New
nodes which are not assigned any mount point, can reach the
TPS members via the DHT index and access the content after
appropriate authorization. However, as already mentioned, the
exact organization of the profile content, the request format,
and the access control policies are beyond our scope.

IV. PRIVACY PRESERVING INDEXING

We advocate privacy-aware indexing of social networking
content of users in the system. Such index facilitates content
discovery on OSN among friends and allows users with
specialized interesting content to reach new potential friends.
Furthermore, this index allows for short-lived friendship rela-
tions for the exchange of a particular content.

A. Privacy objectives

porkut’s indexing service addresses various levels of pri-
vacy, which are described below:

� No privacy: Content with no privacy requirements is
freely accessible by any social network participant.

� Owner privacy: The owner of a particular content (i.e.
the user in whose profile the content exists) should not
be able to be determined with certainty by the index entry
for the content.

� Content and Owner privacy: In addition to owner privacy,
the index entry should not allow someone to determine
with certainty whether a particular content item exists in
the system or not.

B. Index creation

A conventional DHT-based index has entries in the form
(key,value) pairs, where a content identifier (i.e., search term
on the index) maps to the key and the user profile identifier
(UId) maps to the value field. In order to achieve content

and owner privacies, porkut indexing mechanism uses k-
anonymization techniques [9] and (key,value) pairs are re-
placed by (key[],value[]) pairs i.e., a list of keys are now
mapped to a list of values. We call such an index entry as
(c; o)- entry, where c is the size of the key list and o is the size
of value list. A user inspecting a (c; o)-entry cannot identify
which of the content items exist in the system. By analogy,
the conventional index entries are referred to as (1; 1)- entries.
When a user creates an index entry for a content item, he
mixes the item identifier with c � 1 randomly chosen yet
meaningful item identifiers and the owner identifier with o�1
randomly chosen user identifiers, thus creating a (c; o)-entry
from a (1; 1)-entry. Each user uses a dictionary of content
items which, for example, can be constructed from all of his
accessible content items in the social network. This dictionary
is used as input to the content anonymization technique.

Content entries that require no privacy use c = 1; o = 1.
When only owner privacy is needed, c = 1; o > 1 are
employed. Using c > 1; o > 1 results in index entries that
support both content and owner privacies.

Once a user constructs (c; o)-entry, he publishes this entry
into the DHT anonymously by employing a Crowds-like
source anonymization technique [10], where a crowd is the set
of these o users in the index entry. At the end of anonymous
routing, a (c; o)-entry is inserted into the DHT as c separate
(1; o) entries with each of them having one of the c keys as a
pivot. The detailed privacy preserving index construction and
its evaluation for a P2P system are described in [11].

A user retrieves from the DHT, the list of UIds associated
with his searched key. Then, for each of the UIds, he contacts
one (again k-anonymized) of its corresponding TPS members
for the content item that he looks for. Our index allows
strangers (i.e. non-friend users) to contact each other based
on interesting content. Authentication and authorization follow
this step.

V. RELATED WORK

There is significant related work on privacy issues in social
networks. The possibility for involuntary personal information
leakage in current social networks is highlighted in [12], e.g.
by means of certain OSN features like annotating or tagging
user photos, and its effects are demonstrated in [4].

Lockr system [13] improves the privacy of centralized
and decentralized content sharing systems. It allows users
to control their own social information by decoupling the
social networking information from other OSN functionality
using social attestations, which act like capabilities. However,
these social attestations are used only for authentication and
authorization is enforced using separate authorization policies.
Persona [14] uses attribute-based encryption to realize privacy-
preserving OSNs. The attributes a user has (e.g., friend, family
member, colleague) determine what data he can access. The
NOYB approach [3] adopts a novel approach for preserving
content privacy. They observe that if users address their privacy
issues themselves by hosting encrypted content on OSNs, they
could be expelled from the OSN by the OSN operator. Hence,

they propose to replace users profile content items with “fake”
items randomly picked from a dictionary. NOYB encrypts the
index of the user’s item in this dictionary and uses the ciphered
index to pick the substitute. On the other hand, flyByNight [15]
encrypts the users’ content that hosts on the OSN.

Recently, the issue of using decentralized infrastructures
for organizing OSNs in a privacy-preserving manner, was ad-
dressed by the research community [1], [7], [16]. PeerSon [16]
adopts encryption mechanisms for content storage and access
control enforcement. It uses a two-tier architecture in which
the first tier is a DHT, which is used as a common storage by
all participants. The second tier consists of peers and contains
the user data. The DHT stores the meta-data required to find
users. Peers connect each other directly, exchange the content,
and then disconnect. [7] addresses privacy in OSNs by storing
profile content in a P2P storage infrastructure. Each user in
the OSN defines his own view (“matryoshka”) of the system.
In this view, nodes are organized in concentric rings, having
nodes at each ring trusted by the nodes in its immediate inner
ring, with the user node being the center of all rings. The user’s
profile data is stored encrypted at the innermost ring, which
is accessed by other users through multi-hop anonymous
communication across this set of concentric rings. In the DHT,
an entry for a user with the list of nodes in the outermost
ring is added. Thus, [7] achieves both content privacy (using
encryption) and anonymity of searcher and hosting nodes, yet
limited content discovery and profile availability, as opposed
to our approach.

In [1], a decentralized OSN, Vis-à-Vis is proposed, where
a user’s profile content is stored at his own machine called as
virtual individual server (VIS). VISs self-organize into P2P
overlays, one overlay per social group what has access to
content stored on a VIS. Three different storage environments
are considered: cloud alone, P2P storage on top of desktops,
a hybrid storage, and their availability, cost, and privacy
trade-offs were studied. In desktop-only storage model, a
socially-informed replication scheme was proposed, where a
user replicates his content to his friend nodes and delegates
access control to them. However, normally, a uses trusts only
a fraction of his friends to the extent of delegating access
control enforcement, as considered in our porkut approach
along with online time information. Our earlier work [6]
considered access control delegation in P2P systems in terms
of trust transitivity.

Tribler [17] is a P2P file sharing application which exploits
friendship relationships, tastes and preferences of users to
increase the performance of file sharing. However, in Tribler,
users host their own profile and therefore profile placement
for high availability and low access or consistency cost are
not considered. Finally, LifeSocial [18] is a P2P-hosted OSN
where users employ public-private key pairs to encrypt profile
data that is stored in a distributed way and is indexed in a
DHT. Friends can read a user’s profile based on a symmetric
key that is encrypted with their public keys. However, data
privacy and profile availability are not considered in [18].

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the initial design of porkut,
a privacy-preserving decentralized OSN. We emphasized on
satisfying high availability and lookup efficiency of scattered
OSN profiles. The users geographical locations and online time
statistics were exploited in deciding the user’s profile storage
points. Three algorithms with different cost minimization
objectives were presented for selecting the set of nodes that
host OSN profiles, while preserving high availability. As a
future work, we plan to deploy the porkut system, and study its
performance, availability and privacy characteristics in detail.

ACKNOWLEDGEMENT

This work was funded by the Swiss Nano-Tera OpenSense
project (Nano-Tera ref. 839 401).

REFERENCES

[1] A. Shakimov, A. Varshavsky, L. P. Cox, and R. Cáceres, “Privacy, cost,
and availability tradeoffs in decentralized osns,” in Proc. of the WOSN,
2009.

[2] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” in Proc. of
the 7th Internet measurements conference, 2007.

[3] S. Guha, K. Tang, and P. Francis, “Noyb: privacy in online social
networks,” in Proc. of the WOSP, Seattle, WA, USA, 2008.

[4] B. Krishnamurthy and C. E. Wills, “On the leakage of personally
identifiable information via online social networks,” in Proc. of the
WOSN, 2009.

[5] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, “Opendht: a public dht service and its uses,”
SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 73–84, 2005.

[6] N. Rammohan, Z. Miklos, and K. Aberer, “Towards access control
aware p2p data management systems,” in Proc. of the 2nd International
workshop on data management in peer-to-peer systems, 2009.

[7] L. A. Cutillo, R. Molva, and T. Strufe, “Privacy preserving social
networking through decentralization,” in Proc. of the WONS, 2009.

[8] L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K.-I. Ko, “A greedy
approximation for minimum connected dominating sets,” Theoretical
Computer Science, vol. 329, no. 1-3, pp. 325 – 330, 2004.

[9] L. Sweeney, “k-anonymity: a model for protecting privacy,” Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557–570,
2002.

[10] M. K. Reiter and A. D. Rubin, “Crowds: anonymity for web transac-
tions,” ACM Trans. Inf. Syst. Secur., vol. 1, no. 1, 1998.

[11] R. Narendula, T. G. Papaioannou, and K. Aberer, “Panacea: Tunable
privacy for access controlled data in peer-to-peer systems,” 2010, EPFL
Technical Report 148337. http://infoscience.epfl.ch/record/148337.

[12] I.-F. Lam, K.-T. Chen, and L.-J. Chen, “Involuntary information leakage
in social network services,” in Proc. of the 3rd International Workshop
on Security, 2008.

[13] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman, “Lockr: better
privacy for social networks,” in Proc. of the CoNEXT, 2009.

[14] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin,
“Persona: an online social network with user-defined privacy,” in Proc.
of the ACM SIGCOMM, 2009.

[15] M. M. Lucas and N. Borisov, “Flybynight: mitigating the privacy risks
of social networking,” in Proc. of the WPES, 2008.

[16] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “Peerson: P2p
social networking: early experiences and insights,” in Proc. of the ACM
EuroSys Workshop on Social Network Systems, 2009.

[17] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup,
D. H. J. Epema, M. Reinders, M. R. van Steen, and H. J. Sips, “Tribler:
a social-based peer-to-peer system: Research articles,” Concurr. Comput.
: Pract. Exper., vol. 20, no. 2, pp. 127–138, 2008.

[18] K. Graffi, P. Mukherjee, B. Menges, D. Hartung, A. Kovacevic, and
R. Steinmetz, “Practical security in p2p-based social networks,” in Proc.
of the IEEE LCN, October 2009.

