
Collaborative Modelling and Co-Simulation
with DESTECS: A Pilot Study

Ken Pierce, Carl Gamble

School of Computing Science,

Newcastle University, Newcastle upon Tyne,

United Kingdom, NE1 7RU

Email: kenneth.pierce@ncl.ac.uk,

carl.gamble@ncl.ac.uk

Yunyun Ni, Jan F. Broenink

Control Engineering,

Faculty of Electrical Engineering,

Mathematics and Computer Science,

University of Twente, Enschede, Netherlands

Email: y.ni@utwente.nl,

j.f.broenink@utwente.nl

Abstract—This paper describes a collaborative modelling ex-
ercise using the DESTECS framework. The DESTECS approach
allows engineers and software designers to collaborate to produce
system models that contain a discrete-event (DE) model of a
controller and continuous-time (CT) model of a plant. We call
these models co-models and call their execution co-simulation.
The DESTECS tool couples existing DE and CT tools (Overture
and 20-sim, respectively) allowing engineers to use paradigms
and tools with which they are familiar, while collaborating
to construct these shared system models. The work involved
collaborative modelling of a line-following robot. We report on
both the details of the models and experience in producing them.

Keywords-Collaborative modelling, co-simulation, embedded
control, fault tolerance, evolution, DESTECS, VDM, 20-sim.

I. INTRODUCTION

The creation of dependable embedded control systems is

challenging. Building these systems requires collaboration

across disciplines, with engineers and software designers

working together to produce systems with hardware and soft-

ware elements. Increasing market pressures make successful

collaboration more important, and the need to consider faults

and fault tolerance increases system complexity.

One approach to dealing with this complexity is to build

models in formally defined languages and run simulations in

order to validate designs at an early stage, without resorting to

expensive prototypes. Modelling of embedded control systems

is restricted however by their cross-disciplinary nature: each

discipline has a different culture, abstractions and formalisms.

Often continuous-time (CT) formalisms are used by engineers

in the design of physical systems, with which it can be

difficult to describe supervisory and modal control. Con-

versely, discrete-event (DE) formalisms are used by software

designers, where techniques such as object-orientation permit

the modelling of complex supervisory control, but in which

descriptions of plants must be greatly simplified.

The DESTECS1 project aims to bridge this gap by develop-

ing tools and methodologies that allow engineers and software

designers to collaborate in building models of embedded

control systems and to analyse them through simulation. Our

1http://www.destecs.org/

approach is to provide a tool to allow DE and CT models

to be executed simultaneously using existing tools, with data,

events, and time shared between them. In our terminology, a

co-model is a system model that includes a CT model and a

DE model. Simulation of a co-model with the DESTECS tool

is called a co-simulation. With co-models and co-simulation,

engineers and software designers can collaborate to build and

analyse models of embedded control systems using formalisms

and abstractions with which they are familiar.

The primary benefit of the DESTECS approach is that

co-models can describe systems that would be difficult to

model within the CT or DE formalism alone. There are two

primary challenges. First, in order perform co-simulations

with predictable and valid results, the semantics of the two

formalisms must be reconciled, and a tool built to manage co-

simulation. Second, the cultural gap between the engineering

and software disciplines must also be bridged. This includes

describing the terminology and world view of each discipline

to the other. To this end, DESTECS is also developing a

set of methodological guidelines that will help engineers to

collaboratively build and maintain co-models.

While the industrial case studies of DESTECS inform the

content of the guidelines, they are by their nature relatively

large co-models that evolve slowly and are worked on at

individual sites, by one or two key personnel. A need was

identified for a more agile, rapid feedback cycle to both

generate and validate guidelines, which can then feed into the

industrial case studies through a resulting “methods manual”.

The pilot study presented in this paper was proposed to meet

these needs, in which a collaborative, multi-site co-model

development was undertaken in order to provide input to the

guidelines and evaluate the emerging tools. A small line-

following robot was selected as the basis for the study. This

paper reports on the details of the co-model that was produced,

as well as the experience in producing it.

Background and related work are given in Section II. The

case study and co-model are described in Section III, with

details of modelling faults and fault tolerance mechanisms

given in Section IV. Experiences of collaborative modelling

are given in Section V. Finally, conclusions are drawn in

Section VI, with directions for future work identified.

2012 IEEE 21st International WETICE

1524-4547/12 $26.00 © 2012 IEEE

DOI 10.1109/WETICE.2012.69

281

2012 IEEE 21st International WETICE

1524-4547/12 $26.00 © 2012 IEEE

DOI 10.1109/WETICE.2012.69

281

2012 IEEE 21st International WETICE

1524-4547/12 $26.00 © 2012 IEEE

DOI 10.1109/WETICE.2012.69

280



(a) (b) (c)

Figure 1. A photo of the R2-G2P robot (a), an example path that the robot should follow (b), and a 3D representation of the robot generated by 20-sim (c).

II. BACKGROUND AND RELATED WORK

The core concept of the DESTECS approach is that of a

co-model. A co-model is a system model comprising a DE

model of the control software and a CT model of the plant,

with a contract that describes the communication between

them. The contract is used to define shared variables (state

shared between the two models); named events (raised in the

CT model and handled by the DE model); and shared design

parameters (values that affect the system design, but are fixed

over the course of a co-simulation run). Shared variables can

be either monitored variables (read by the DE model and

written by the CT model) or controlled variables (written by

the DE model and read by the CT model). The DESTECS

tool allows such co-models to be defined and acts as a co-

simulation engine, synchronising the time steps taken and data

exchanged between the simultaneously executing tools during

a co-simulation.

Within DESTECS, the Vienna Development Method

(VDM) is used to model control software, supported by

the Overture2 tool [1]. VDM is a well-established formal

method that includes features for object-orientation and con-

currency [2], and features to describe real-time embedded

systems [3]. The 20-sim3 tool [4] is used to build, simulate

and visualise CT models, it allows the dynamics of the plant

to be modelled in a number of ways, including the powerful

bond graph [5] notation: a domain-independent description for

the dynamic behaviour of physical systems.

A methodology on co-simulation tools is described by

Nicolescu et al. [6]. Ptolemy II [7] offers DE and CT sim-

ulation within a single tool, though lacks the mechanisms for

structuring supervisory control of VDM and the component

libraries offered by 20-sim. Work on how co-models can be

combined, i.e. time synchronisation between the DE and CT

elements, is described in hybrid systems literature, for instance,

Cassandras et al. [8].

The terminology of Avižienis et al. [9] is adopted with

respect to non-normative behaviours: a failure of a system is

a deviation from its specified behaviour, caused by an error
(some system state) propagating to the system boundary where

the behaviour is observed. The (hypothesised) cause of this

2http://www.overturetool.org/
3http://www.20sim.com/

error is the fault. Within the methodology, the use of the terms

ideal, realistic and faulty to describe a component’s behaviour

was found to be useful. The ideal behaviour is a model of a

component’s core functionality which ignores any deviations

due to signal noise or manufacturing tolerances. A realistic

model of such a component is more faithful to that of a real

object and includes the previously ignored deviations. Faulty

behaviours are those which cause a failure of the component.

We do not give a prescriptive categorisation of behaviours into

ideal, realistic and faulty, which are domain and experience

specific.

III. PILOT STUDY: A LINE-FOLLOWING ROBOT

The pilot study that is the focus of this paper involved

production of a co-model of the small robot called R2-G2P

(pronounced “are-two gee-top”) shown in Fig. 1a. The pilot

study focused on the task of line following, whereby the robot

should follow a black line on the floor. The key features of the

robot relevant to this task are: two wheels, connected to servo

motors that provide movement and differential steering; and

two infrared line-following sensors that sense the lightness of

the floor based on infrared reflection.

An example line for the robot to follow is given in Fig. 1b.

To follow the line, the controller uses the sensor data to always

try to steer towards the line, whilst also moving forward. If it

begins to lose the line, it alters the direction of its turn to try

to stay on the line. In order to visualise the robot co-model,

a 3D representation was created in 20-sim. A screenshot of

this is shown in Fig. 1c. This view also shows the path on

the floor in black (the floor texture is purely decorative and is

seen as ‘white’ by the robot). Note that although the sensors

on the real robot are placed underneath the body, those in the

3D view are placed on the front (represented as spheres) for

the convenience of giving visual feedback about the state of

the sensors. The colour of the sphere represents the lightness

of the floor as interpreted by the sensor (i.e. if the sensor sees

black, the sphere is black).

A. Co-model and Contract

The co-model of the robot consists of a DE controller

model and a CT plant model. The CT model includes the

main elements of robot (the body and wheels), models of

the sensors, and data representing the line on the surface

282282281



Name Type Notes

controlled velocity Left real range: [-1,1]

velocity Right real range: [-1,1]

monitored lfLeft int range: [0,255]

lfRight int range: [0,255]

Figure 2. Co-simulation contract for the R2-G2P co-model

Figure 3. RobotPhysics submodel of the R2-G2P CT model

Figure 4. Top-level 20-sim model of the R2-G2P

under the robot. The DE model must read data from the

two line-following sensors and control the speed of the two

wheels. This suggests that four shared variables are required

in the co-model: two monitored, one for each sensor; and

two controlled, one for each wheel. These are realised in the

contract in Fig. 2. In this simple task, only shared variables are

used (no events and shared design parameters are required).

B. CT Model

The CT model can be split into two distinct parts, one in the

signal domain and the other using bond graphs. Fig. 3 shows

the physics model of the robot, described using a bond graph.

This model includes continuous-rotation servo motors with

speed control, wheels to translate the servo outputs to linear

motion and a robot body that connects the two drive units and

acts as a mass to be moved. Together these elements form the

RobotPhysics submodel that can be seen in the top-level signal

domain model, Fig. 4. This model also contains (left and right)

LineFollowSensor and WheelPositionEncoder submodels, and

a ‘controller’ block, which holds the CT model’s view of the

shared variables.

C. DE Model

The DE model makes use of the object-orientation available

in VDM, which offers structuring and encapsulation methods,

and permits the use of Gamma et al. style design patterns [10].

The controller follows the style for VDM controller models

described by Fitzgerald et al. [11]. A class diagram of the

controller is given in Fig. 5. The core of the model is the

Controller class, which defines a periodic thread that

Figure 5. Modal R2-G2P VDM controller (class diagram)

calls a Step operation to perform the control loop. The line-

following sensors and servos (actuators) are accessed through

the IRSensor and SpeedServo classes respectively. Two

objects of each type are used to access the four shared

variables shown in Fig. 2. A special system class (not shown)

is used to describe the architecture of the controller. In this

case the controller object is deployed to a single CPU.

The controller is modal, broadly following the state pat-
tern [10]. This means that the actual behaviour of the controller

is delegated to a set of Mode classes, each of which imple-

ments the AbstractMode class. These classes encapsulate

the behaviour of a particular mode and can easily be swapped

at runtime. Initially, two modes were created: an IdleMode,

which does nothing, and a TwoSensorMode, which follows

the line using data from both line-following sensors. Further

modes were introduced in order to add fault tolerance.

IV. MODELLING FAULTS AND FAULT-TOLERANCE

The line-following sensors are modelled using the two-

dimensional lookup table function provided by 20-sim. The

data in the table is loaded from a bitmap, representing the

surface under the robot. During simulation, the coordinates of

the sensor are passed to the table, which yields the lightness

of the surface under that point. The values output from the

table are scaled to suit the expected outputs from the sensor

before being quantised by an analogue to digital (A/D) block.

This model represents the ideal behaviour of these sensors.

Faulty and realistic behaviours were then added to the

line-following sensor model. A set of behaviours that could

be included in the model was generated by considering the

sensors in the light of the “SHARD guidewords” [12]. These

guidewords help to guide the thinking of a person when

considering what faulty and realistic behaviours a component

might exhibit. The list of behaviours derived by applying

these guidewords can be seen in Fig 6. From this list, three

behaviours were modelled: stuck value (a failure), A/D noise

and ambient light (both realistic behaviours).

A. Fault Modelling

The modelling of the two realistic behaviours necessitated

modification of the ideal sensor model in different ways.

Adding the effects of ambient light required the model to

become more concrete than the previous version, by inter-

preting the values in the lookup table in a different way.

283283282



Guideword Deviation

Subtle Stuck value, A/D noise on lower bits,

ambient light affecting readings

Coarse A/D noise on higher bits

Early None found

Late Slow response to brightness change

Omission Fail silent

Commission None found

Figure 6. The fault/realistic behaviours generated using SHARD guidewords

Specifically, where the table values had previously represented

the brightness of the floor directly, they were now interpreted

to represent the reflectivity of the floor. This change allows the

sensor to perform a calculation of the IR light incident on the

floor and from this estimate the light that would be received

by the sensor.

To add A/D noise, the decision was taken to modify

the implementation of the standard A/D block provided by

20-sim. This new implementation adds a scaled amount of

Gaussian noise to the input signal before it is quantised for

consumption by the controller. The scaling factor is defined

by the number of digital bits that may be subject to noise.

This effectively defines a signal-to-noise ratio for the device. A

second implementation for this behaviour was also considered,

in which the Gaussian noise is generated by a standard 20-sim

block and added to the signal before it enters the A/D block.

This implementation has the advantage that the noise element,

which would not be implemented in a real system, can be

easily separated from the ideal behaviour that would be. The

downside of the second implementation is that the magnitude

of the noise is decoupled from the A/D parameters and so has

to be updated manually if these are changed.

The final modification to the sensor model was to implement

the stuck value behaviour. In DESTECS we advocate that such

failure behaviour be separated from the desired behaviour and

so the fault injector pattern was employed [13]. This pattern

sees a single block effectively wrap the sensor model such

that the inputs to and outputs from the sensor may both

be intercepted and altered to implement a specific failure

mode as required. A feature of 20-sim that allows multiple

implementations for a single block was also used. In this case

two implementations are provided: the “faulty” one, which

exhibits the latent stuck fault that could be activated during

co-simulation; and an alternative “no fault” implementation,

which guarantees that no fault will not occur. This desired

implementation can be selected before simulation commences.

Fig. 7 show samples of the outputs obtained from the

sensor as it sweeps left and right over a black line. The

leftmost sample shows the ideal behaviour of the sensor. The

second reading is subject to ambient light, resulting in a

reduced differential between the values for white and black.

The third sample includes both ambient light and A/D noise.

A combination of A/D noise and high ambient light levels

may make it impossible to determine (from a single sample)

if the sensor is over black or white. The final sample shows

Figure 7. Example sensor output, with bars indicating the sensed data as
the robot sweeps over a black line. Left to right: ideal sensor, ambient light
added, A/D noise added, sensor value stuck.

the output when the stuck value fault is activated.

B. Fault Tolerance Mechanisms

In order to tolerate the effects of ambient light, A/D noise

and sensor failure, the DE controller incorporates a number

of fault tolerance mechanisms implemented using design pat-

terns [10]. A/D sensor noise is addressed by employing the

filter pattern [13]. In this pattern a filter class, which provides

the same interface as the sensor, is defined and instantiated in

place of the original sensor object. The filter object holds a

reference to the original sensor and all sensor readings pass

through the filter to allow processing before the filtered value

is passed on to the controller. In this case, the filter takes the

mean of a series of readings to account for noise.

To handle the effects of ambient light, an additional mode,

CalibrationMode, was added to the controller. This mode

requires that initially one sensor is over a black area and the

other over a white area. It then proceeds to take a series of

readings from which the mean values for black and white

are determined, which are then taken into account when

making further readings. Once this is complete, the controller

instantiates the original TwoSensorMode for line following.

In the event of a sensor failing, the controller can attempt

to follow the line using the remaining working sensor. To

implement this, a OneSensorMode was also introduced.

This is a degraded behaviour, requiring a slower sweeping

motion. If the other sensor fails, the controller reverts to

IdleMode, since it can no longer make progress.

V. COLLABORATIVE MODELLING EXPERIENCE

The purpose of the pilot study presented in previous sec-

tions was to gain experience in collaborative modelling with

DESTECS, and to record problems that arose and communica-

tions between engineers needed to solve them. Two separate

developments began, one between collaborators at different

geographical sites and one on the same site. One aspect

of interest was whether communications were different in

the single-site development (where collaborator could quickly

chat about problems in person) as opposed to the multi-

site development (where communication requires emails and

netmeetings). In the later stages of the study, the models were

merged to form the single co-model described in the previous

sections. The problems that arose are reported below, followed

by a reflection on how they might have been avoided.

284284283



A. Initial Discussions

The single-site development began by writing a list of

assumptions about the robot and environment (sensor ranges,

size of the robot etc.) before defining an initial contract, in an

attempt to minimise problems from implicit assumptions. The

multi-site development defined an initial contract directly. Both

developments encountered problems, despite the extra effort

spent recording assumptions in the single-site development.

B. Integration Testing

Initial integration testing, in which the separate DE and CT

models were combined into a co-model and tested, caused

problems. Bugs were found in both CT models (one robot

hardly moved and the other moved incredibly rapidly), which

required feedback to the CT modellers and testing of new

versions. This cycle was much quicker in the single-site

development, but still took time. This led to the observation

that truly parallel development, in which testing of the two

models is performed within a co-model, is extremely difficult.

In response to this, all further models were subject to greater

testing before integration.

It is also worth noting that during initial integration testing,

both developments were based on a small contract allowing

control of motor power and feedback from wheel encoders.

This meant that in theory both CT models could be tested

with the same DE controller. However, although the types

of the shared variables were the same, the meanings were

different. In one contract, the encoder reported the actual

distance travelled, while the other gave a rotation count that

required further processing by the controller. This illustrates

that knowledge of the type of shared variables alone may not

be enough to use them correctly.

C. Model Evolution

Both developments followed the same stages of evolution:

tracing a known path (e.g. a square), then adding line follow-

ing with ideal sensors, and finally adding realistic and fault

behaviours to the sensors. The initial addition of the sensors

required extension of the co-simulation contracts with two new

monitored variables per sensor. This did not cause problems

since it simply represents an additional behaviour. The effect

of adding faulty and realistic behaviours to the line-following

sensors was significant on the DE side, because it represented a

change in behaviour of an existing component (noisy readings

and readings affected by ambient light). To handle these new

behaviours, calibration and error detection operations were

added to the DE sensor class using the decorator pattern [10],

allowing the interface to be extended whilst maintaining

backwards compatibility for regression testing.

D. Tool Problems

The addition of line-following sensors to one of the CT

models caused a problem when it was used in a co-simulation,

due to an incorrect filename and an error misreported by the

co-simulation engine. Here the use of a third tool, the co-

simulation engine, resulted in additional complexity in testing.

To overcome this problem, a number of alternative sensor

implementations were built in an attempt to find a workaround.

This issue occurred in the single-site development, so new ver-

sions of the CT model could be quickly tested and discussed

until a solution was discovered. The testing cycle of new CT

models lasted for one day, but it is expected this would have

taken longer in the multi-site development.

E. Model Merging

Towards the end of the study, elements from the two co-

models were merged to form a single co-model. This involved

merging the higher-fidelity physics model of one CT model

with the sensor models from the other. This caused two

problems. First, although the interface between the physics

submodel was discussed —that the output should be the

translation and rotation of the robot— it was discovered during

testing that the angle of rotation assumed by each modeller

was different. The physics submodel assumed that rotation

is recorded counterclockwise from the x-axis, in line with

standard practice, while the sensor models assumed clockwise

rotation. This issue initially required the addition of numerous

small ‘fixes’ to calculations and later a reworking of the model

to follow standard practice. This could perhaps have been

avoided if implicit assumptions made by modellers had been

recorded, particularly the tacit knowledge of the engineer that

“rotation goes counterclockwise”. This is an example of a

knowledge gap between two groups.

A second issue caused by this change was that the higher-

fidelity physics submodel more closely resembled the real

R2-G2P robot in that the wheels were attached to speed-

controlled continuous-rotation servos, and not simple DC

motors assumed by the chosen DE model. This evolution did

not require a change in the contract or in the type of the

controlled variables (the range of acceptable values in both

cases is [-1,1]). It did however mean that the DE controller no

longer needed loop (i.e. PID) controllers, since the interface

to the servos is based on speed, not power: in essence, the

speed-controlled servos have internal loop controllers. Again,

the knowledge of the type of shared variables alone is shown

to be insufficient: extra information needs to be communicated

between modellers.

F. Reflection

While the collaborators successfully produced working co-

models, effort was required in solving the problems described

above. We can, in retrospect, suggest guidelines that could

reduce the risk of other DESTECS users wasting effort in the

same way. The first of these would begin to address problems

due to interpretation of shared variables. It is apparent that

while information regarding these variables was discussed,

there were important details missing. Had extra information

been added to the description of the variables then the differ-

ence in assumptions may have been avoided. We suggest that

the following four properties of a shared numerical variable

be made explicit as a minimum set of metadata: the SI unit or

simple description of the value; the range of acceptable values;

285285284



the datum against which a value is measured and the direction

of positive values or frame of reference.

The second guideline that we extract from the study so far

recommends that models have an explicit set of acceptance

tests performed before they are released for use by others

within the project, in this case the other co-modeller. To

support this we suggest that the CT and DE models are tested

in a single domain initially (with a simple controller and plant,

respectively), before integration into a co-model. These simple

test models should only be good enough to gain confidence in

the general performance of the model, and are not intended to

replace the counterpart model in the co-model.

VI. CONCLUSIONS AND FURTHER WORK

This paper presented a collaborative modelling exercise

within the DESTECS framework, involving modelling of a

line-following robot. Using the emerging DESTECS tools and

methodologies, a CT modeller and DE modeller were able

to collaborate to build a co-model of the robot that could be

analysed through co-simulation. This co-model comprises a

CT model of the robot, a DE model of the controller and a

contract defining the variables shared between them (signals to

the servos and from the line-following sensors). Both the CT

and DE models required a detailed knowledge of the respective

languages and tools, which would require a lot of time and

effort for one person to learn.

The project has demonstrated two distinct benefits of the

approach. The first is that the use of a contract between

the DE and CT domains gave a clear boundary for each

engineer to work in, allowing each to work on their individual

parts with only a general overview of the other model. The

second benefit was that each engineer was able to work in

their own discipline, with the semantic differences between

the modelling tools being reconciled transparently by the

DESTECS tool.

As the co-model evolved, a number of problems arose that

required communication between the modellers in order to be

resolved: changing requirements; the introduction of realistic

and fault behaviours; and integration of two CT models. A

clear conclusion is that the main problems in “co-modelling”

are similar to those of collaboration in general: there will

always be assumptions that have not been made explicit, but

this can be mitigated by documenting as many assumptions

as possible. One novel problem caused by co-modelling is

the need for communication between disciplines. It was very

difficult to find all problems without one co-modeller having

at least some knowledge of the other domain’s model. Again,

this could perhaps be addressed through greater documentation

in addition to the co-simulation contract. Communication

between geographically separated sites also slowed down the

co-modelling process due to slower cycles of testing and more

protracted discussions. The addition of a third tool (the co-

simulation engine) also caused problems, for example the

problem of the suppressed error message described previously

could not be reproduced in single-domain testing. This may

not be an problem in future however as tool support improves.

Looking to future work, the experience and guidelines

produced as a result of the study will be validated by the

industrial partners of the DESTECS project. The experiences

here will be linked with industrial experience to produce a

valuable “methods manual” for collaborative modelling. Effort

is also being directed toward formally modelling consistency

between DE and CT models such that some guidelines may

be automatically checked. A clear goal is to continue collabo-

rative modelling with the robot, expanding the co-model from

a single robot to a “swarm” of multiple robots collaborating

on a more complex task, such as collective transport.

ACKNOWLEDGMENTS

The authors would like to thank Stefan Groothuis for his

help with 20-sim modelling; John Fitzgerald and Sune Wolff

for their comments on draft versions; and other colleagues

from the project for their valuable input. The research leading

to these results has received funding from the European Com-

munity’s Seventh Framework Programme (FP7/2007-2013)

under grant agreement no. 248134 (DESTECS). Additionally

the work of Pierce and Gamble is supported by the UK EPSRC

Platform Grant on Trustworthy Ambient Systems.

REFERENCES

[1] P. G. Larsen, N. Battle, M. Ferreira, J. Fitzgerald, K. Lausdahl, and
M. Verhoef, “The Overture Initiative – Integrating Tools for VDM,”
ACM Software Engineering Notes, vol. 35, no. 1, January 2010.

[2] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef,
Validated Designs for Object–oriented Systems. Springer, New York,
2005. [Online]. Available: http://www.vdmbook.com

[3] M. Verhoef, P. G. Larsen, and J. Hooman, “Modeling and Validating
Distributed Embedded Real-Time Systems with VDM++,” in FM 2006:
Formal Methods, J. Misra, T. Nipkow, and E. Sekerinski, Eds. Lecture
Notes in Computer Science 4085, 2006, pp. 147–162.

[4] J. F. Broenink, “Modelling, Simulation and Analysis with 20-Sim,”
Journal A Special Issue CACSD, vol. 38, no. 3, pp. 22–25, 1997.

[5] V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx, Modeling
and Control of Complex Physical Systems. Springer, 2009.

[6] G. Nicolescu, H. Boucheneb, L. Gheorghe, and F. Bouchhima, “Method-
ology for efficient design of continuous/discrete-events co-simulation
tools,” in High Level Simulation Languages and Applications, J. Ander-
son and R. Huntsinger, Eds. San Diego, CA: SCS, 2007, pp. 172–179.

[7] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong, “Taming heterogeneity – the Ptolemy approach,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, January 2003.

[8] C. G. Cassandras, Analysis and design of hybrid systems: a proceedings
volume from the 2nd IFAC conference. Elsevier, Jun. 2006. [Online].
Available: http://www.sciencedirect.com/science/book/9780080446134

[9] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, pp. 11–33, 2004.

[10] R. E.Gamma, R.Helm and J.Vlissides, Design Patterns. Elements of
Reusable Object-Oriented Software., ser. Addison-Wesley Professional
Computing Series. Addison-Wesley Publishing Company, 1995.

[11] J. Fitzgerald, P. G. Larsen, K. Pierce, and M. Verhoef, “A Formal
Approach to Collaborative Modelling and Co-simulation for Embedded
Systems,” To appear in Mathematical Structures in Computer Science,
2011, see also Tech. Report 1264, School of Computing Science,
Newcastle University, UK, July 2011.

[12] D. Pumfrey, “The principled design of computer system safety
analyses,” Ph.D. dissertation, Department of Computer Science,
University of York, UK, September 1999. [Online]. Available:
http://www.cs.york.ac.uk/∼djp/publications/Thesis16.pdf

[13] J. F. Broenink, J. Fitzgerald, C. Gamble, K. Pierce, Y. Ni, and
X. Zhang, “D2.2 — Methodological Guidelines 2,” The DESTECS
Project (INFSO-ICT-248134), available from http://www.destecs.org/,
Tech. Rep., December 2011.

286286285


